Publications (Puma, under construction)
2023
- Pollinger, T., Rentrop, J., Pflüger, D., Kormann, K.: A stable and mass-conserving sparse grid combination technique with biorthogonal hierarchical basis functions for kinetic simulations. Journal of Computational Physics. (2023). https://doi.org/10.1016/j.jcp.2023.112338.
- Breyer, M., Van Craen, A., Pflüger, D.: Performance Evolution of Different SYCL Implementations Based on the Parallel Least Squares Support Vector Machine Library. In: Proceedings of the 2023 International Workshop on OpenCL. Association for Computing Machinery, Cambridge, United Kingdom (2023). https://doi.org/10.1145/3585341.3585369.
- Breyer, M., Van Craen, A., Pflüger, D.: Performance Evolution of Different SYCL Implementations Based on the Parallel Least Squares Support Vector Machine Library. In: Proceedings of the 2023 International Workshop on OpenCL. Association for Computing Machinery, Cambridge, United Kingdom (2023). https://doi.org/10.1145/3585341.3585369.
- Breyer, M., Van Craen, A., Pflüger, D.: Performance Evolution of Different SYCL Implementations Based on the Parallel Least Squares Support Vector Machine Library. In: ACM (ed.) Proceedings of the 2023 International Workshop on OpenCL. Association for Computing Machinery, Cambridge, United Kingdom (2023). https://doi.org/10.1145/3585341.3585369.
2022
- Van Craen, A., Breyer, M., Pflüger, D.: PLSSVM—Parallel Least Squares Support Vector Machine. Software Impacts. 100343 (2022). https://doi.org/10.1016/j.simpa.2022.100343.
- Van Craen, A., Breyer, M., Pflüger, D.: PLSSVM—Parallel Least Squares Support Vector Machine. Software Impacts. 100343 (2022). https://doi.org/10.1016/j.simpa.2022.100343.
- Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D., Niepert, M.: PDEBench Datasets, https://doi.org/10.18419/darus-2986, (2022). https://doi.org/10.18419/darus-2986.
- Van Craen, A., Breyer, M., Pflüger, D.: PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine. In: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 818–827 (2022). https://doi.org/10.1109/IPDPSW55747.2022.00138.
- Leiteritz, R., Davis, K., Schulte, M., Pflüger, D.: Deep Learning-Based Surrogate Modelling of Thermal Plumes for Shallow Subsurface Temperature Approximation. In: AI for Earth Sciences ICLR Workshop 2022 (2022).
- Leiteritz, R., Buchfink, P., Haasdonk, B., Pflüger, D.: Surrogate-data-enriched Physics-Aware Neural Networks. In: Proceedings of the Northern Lights Deep Learning Workshop 2022 (2022). https://doi.org/10.7557/18.6268.
- Van Craen, A., Breyer, M., Pflüger, D.: PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine. In: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 818–827 (2022). https://doi.org/10.1109/IPDPSW55747.2022.00138.
- Breyer, M., Van Craen, A., Pflüger, D.: A Comparison of SYCL, OpenCL, CUDA, and OpenMP for Massively Parallel Support Vector Machine Classification on Multi-Vendor Hardware. In: International Workshop on OpenCL. pp. 1–12. Association for Computing Machinery, Bristol, United Kingdom, United Kingdom (2022). https://doi.org/10.1145/3529538.3529980.
- Breyer, M., Van Craen, A., Pflüger, D.: A Comparison of SYCL, OpenCL, CUDA, and OpenMP for Massively Parallel Support Vector Machine Classification on Multi-Vendor Hardware. In: International Workshop on OpenCL. pp. 1–12. Association for Computing Machinery, Bristol, United Kingdom, United Kingdom (2022). https://doi.org/10.1145/3529538.3529980.
- Breyer, M., Van Craen, A., Pflüger, D.: A Comparison of SYCL, OpenCL, CUDA, and OpenMP for Massively Parallel Support Vector Machine Classification on Multi-Vendor Hardware. In: International Workshop on OpenCL. pp. 1–12. Association for Computing Machinery, Bristol, United Kingdom, United Kingdom (2022). https://doi.org/10.1145/3529538.3529980.
- Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D., Niepert, M.: PDEBench: An Extensive Benchmark for Scientific Machine Learning. In: 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks (2022).
- Van Craen, A., Breyer, M., Pflüger, D.: PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine, http://arxiv.org/abs/2202.12674, (2022).
- Leiteritz, R., Davis, K., Schulte, M., Pflüger, D.: A Deep Learning Approach for Thermal Plume Prediction of Groundwater Heat Pumps, https://arxiv.org/abs/2203.14961, (2022). https://doi.org/10.48550/ARXIV.2203.14961.
2021
- Leiteritz, R., Hurler, M., Pflüger, D.: Learning Free-Surface Flow with Physics-Informed Neural Networks. In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). pp. 1664–1669 (2021). https://doi.org/10.1109/ICMLA52953.2021.00266.
- Pollinger, T., Hurler, M., Obersteiner, M., Pflüger, D.: Distributing Higher-Dimensional Simulations Across Compute Systems: A Widely Distributed Combination Technique. In: 2021 IEEE/ACM International Workshop on Hierarchical Parallelism for Exascale Computing (HiPar). pp. 1--9 (2021). https://doi.org/10.1109/HiPar54615.2021.00006.
- Breyer, M., Daiß, G., Pflüger, D.: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL. In: International Workshop on OpenCL. pp. 1–12. Association for Computing Machinery, Munich, Germany (2021). https://doi.org/10.1145/3456669.3456692.
- Daiß, G., Simberg, M., Reverdell, A., Biddiscombe, J., Pollinger, T., Kaiser, H., Pflüger, D.: Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX. In: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 377--386 (2021). https://doi.org/10.1109/IPDPSW52791.2021.00066.
- Rehme, M.F., Roberts, S.G., Pfluger, D.: Uncertainty quantification for the Hokkaido Nansei--Oki tsunami using B-splines on adaptive sparse grids. In: McLean, W., Macnamara, S., and Bunder, J. (eds.) Proceedings of the 19th Biennial Computational Techniques and Applications Conference, CTAC-2020. pp. C30--C44 (2021). https://doi.org/10.21914/anziamj.v62i0.16121.
- Leiteritz, R., Pflüger, D.: How to Avoid Trivial Solutions in Physics-Informed Neural Networks, https://arxiv.org/abs/2112.05620, (2021).
- Leiteritz, R., Hurler, M., Pflüger, D.: Learning Free-Surface Flow with Physics-Informed Neural Networks, http://arxiv.org/abs/2111.09705, (2021).
2020
- Pollinger, T., Pflüger, D.: Learning-Based Load Balancing for Massively Parallel Simulations of Hot Fusion Plasmas. Advances in Parallel Computing. 36, 137–146 (2020). https://doi.org/10.3233/APC200034.
- Brunn, M., Himthani, N., Biros, G., Mehl, M., Mang, A.: Fast GPU 3D Diffeomorphic Image Registration. arXiv preprint arXiv:2004.08893. (2020).
- Hirschmann, S., Kronenburg, A., Glass, C.W., Pflüger, D.: Load-Balancing for Large-Scale Soot Particle Agglomeration Simulations. In: Foster, I., Joubert, G.R., Kucera, L., Nagel, W.E., and Peters, F. (eds.) Parallel Computing: Technology Trends. pp. 147--156. IOS Press (2020). https://doi.org/10.3233/APC200035.
- Lago, R., Obersteiner, M., Pollinger, T., Rentrop, J., Bungartz, H.-J., Dannert, T., Griebel, M., Jenko, F., Pflüger, D.: EXAHD: A massively parallel fault tolerant sparse grid approach for high-dimensional turbulent plasma simulations. In: Software for Exascale Computing-SPPEXA 2016-2019. pp. 301--329. Springer International Publishing (2020).
- Hirschmann, S., Kronenburg, A., Glass, C.W., Pflüger, D.: Load-Balancing for Large-Scale Soot Particle Agglomeration Simulations. In: Foster, I., Joubert, G.R., Kucera, L., Nagel, W.E., and Peters, F. (eds.) Parallel Computing: Technology Trends. pp. 147--156. IOS Press (2020). https://doi.org/10.3233/APC200035.
- Van Craen, A.: PISM Performance Profiling - Analyse einer Eisschild Simulation, http://elib.uni-stuttgart.de/handle/11682/11604, (2020). https://doi.org/10.18419/OPUS-11587.
- Breyer, M.: Distributed k-nearest neighbors using Locality Sensitive Hashing and SYCL, http://dx.doi.org/10.18419/opus-11586, (2020).
- Müller, S.: Symplectic Neural Networks, (2020).
- de Wolff, T., Pflüger, D., Rehme, M.F., Heuer, J., Bittner, M.-I.: Evaluation of Pool-Based Testing Approaches to Enable Population-wide Screening for COVID-19, (2020).
- de Wolff, T., Pflüger, D., Rehme, M.F., Heuer, J., Bittner, M.-I.: Evaluation of Pool-Based Testing Approaches to Enable Population-wide Screening for COVID-19, (2020).
2019
- Hirschmann, S., Glass, C.W., Pflüger, D.: Enabling unstructured domain decompositions for inhomogeneous short-range molecular dynamics in ESPResSo. The European Physical Journal Special Topics. 227, 1779--1788 (2019). https://doi.org/10.1140/epjst/e2019-800159-0.
- Hirschmann, S., Glass, C.W., Pflüger, D.: Enabling unstructured domain decompositions for inhomogeneous short-range molecular dynamics in ESPResSo. The European Physical Journal Special Topics. 227, 1779--1788 (2019). https://doi.org/10.1140/epjst/e2019-800159-0.
- Brunn, M., Himthani, N., Biros, G., Mehl, M., Mang, A.: Fast 3D diffeomorphic image registration on GPUs. (2019).
- Pfander, D., Daiß, G., Pflüger, D.: Heterogeneous Distributed Big Data Clustering on Sparse Grids. Algorithms. 12, 60 (2019).
- Pfander, D., Daiß, G., Pflüger, D.: Heterogeneous Distributed Big Data Clustering on Sparse Grids. Algorithms. 12, 60 (2019).
- Rehme, M.F., Pflüger, D.: Stochastic Collocation with hierarchical extended B-splines on Sparse Grids. In: Fasshauer, G.E., Neamtu, M., and Schumaker, L. (eds.) Approximation Theory XVI. Springer (2019).
- Rehme, M.F., Pflüger, D.: Stochastic Collocation with hierarchical extended B-splines on Sparse Grids. In: Fasshauer, G.E., Neamtu, M., and Schumaker, L. (eds.) Approximation Theory XVI. Springer (2019).
- Rehme, M.F., Pflüger, D.: Active Subspaces with B-splines on Sparse Grids. In: Proceedings of the 3rd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering (2019).
- Daiß, G., Amini, P., Biddiscombe, J., Diehl, P., Frank, J., Huck, K., Kaiser, H., Marcello, D., Pfander, D., Pflüger, D.: From Piz Daint to the Stars: Simulation of Stellar Mergers Using High-level Abstractions. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. pp. 62:1--62:37. ACM, Denver, Colorado (2019). https://doi.org/10.1145/3295500.3356221.
- Daiß, G., Amini, P., Biddiscombe, J., Diehl, P., Frank, J., Huck, K., Kaiser, H., Marcello, D., Pfander, D., Pflüger, D.: From Piz Daint to the Stars: Simulation of Stellar Mergers Using High-level Abstractions. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. pp. 62:1--62:37. ACM, Denver, Colorado (2019). https://doi.org/10.1145/3295500.3356221.
- Rehme, M.F., Pflüger, D.: Active Subspaces with B-splines on Sparse Grids. In: Proceedings of the 3rd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering (2019).
- Rehme, M.F., Franzelin, F., Pflüger, D.: B-Splines on Sparse Grids for Surrogates in Uncertainty Quantification, (2019).
- Rehme, M.F., Franzelin, F., Pflüger, D.: B-Splines on Sparse Grids for Surrogates in Uncertainty Quantification, (2019).
2018
- Valentin, J., Sprenger, M., Pflüger, D., Röhrle, O.: Gradient-Based Optimization with B-Splines on Sparse Grids for Solving Forward-Dynamics Simulations of Three-Dimensional, Continuum-Mechanical Musculoskeletal System Models. International Journal for Numerical Methods in Biomedical Engineering. 1--16 (2018). https://doi.org/10.1002/cnm.2965.
- Hirschmann, S., Lahnert, M., Schober, C., Brunn, M., Mehl, M., Pflüger, D.: Load-Balancing and Spatial Adaptivity for Coarse-Grained Molecular Dynamics Applications. In: Nagel, W.E., Kröner, D.H., and Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’18. pp. 1--510. Springer International Publishing (2018). https://doi.org/10.1007/978-3-030-13325-2.
- Pfander, D., Daiß, G., Marcello, D., Kaiser, H., Pflüger, D.: Accelerating Octo-Tiger : Stellar Mergers on Intel Knights Landing with HPX. In: Deakin, T. (ed.) IWOCL’18 : Proceedings of the International Workshop on OpenCL. pp. 68–75. ACM (2018). https://doi.org/10.1145/3204919.3204938.
- Pfander, D., Brunn, M., Pflüger, D.: AutoTuneTMP: Auto-Tuning in C++ With Runtime Template Metaprogramming. In: IPDPS Workshops. pp. 1123–1132. IEEE Computer Society (2018).
- Hirschmann, S., Lahnert, M., Schober, C., Brunn, M., Mehl, M., Pflüger, D.: Load-Balancing and Spatial Adaptivity for Coarse-Grained Molecular Dynamics Applications. In: Nagel, W.E., Kröner, D.H., and Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’18. pp. 1--510. Springer International Publishing (2018). https://doi.org/10.1007/978-3-030-13325-2.
- Pfander, D., Daiß, G., Pflüger, D., Marcello, D., Kaiser, H.: Accelerating Octo-Tiger: Stellar Mergers on Intel Knights Landing with HPX. In: Proceedings of the 6th International Workshop on OpenCL. pp. 1--9. ACM (2018).
- Pfander, D., Brunn, M., Pflüger, D.: AutoTuneTMP: Auto-Tuning in C++ With Runtime Template Metaprogramming. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 1--10. IEEE (2018).
- Valentin, J., Pflüger, D.: Fundamental Splines on Sparse Grids and Their Application to Gradient-Based Optimization. In: Garcke, J., Pflüger, D., Webster, C.G., and Zhang, G. (eds.) Sparse Grids and Applications - Miami 2016. pp. 229--251. Springer (2018). https://doi.org/10.1007/978-3-319-75426-0_10.
- Hirschmann, S., Lahnert, M., Schober, C., Brunn, M., Mehl, M., Pflüger, D.: Load-Balancing and Spatial Adaptivity for Coarse-Grained Molecular Dynamics Applications. In: Nagel, W.E., Kröner, D.H., and Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’18. pp. 1--510. Springer International Publishing (2018). https://doi.org/10.1007/978-3-030-13325-2.
- Pfander, D., Daiß, G., Marcello, D., Kaiser, H., Pflüger, D.: Accelerating Octo-Tiger : Stellar Mergers on Intel Knights Landing with HPX. In: Deakin, T. (ed.) IWOCL’18 : Proceedings of the International Workshop on OpenCL. pp. 68–75. ACM (2018). https://doi.org/10.1145/3204919.3204938.
- Daiß, G.: Octo-Tiger: Binary Star Systems with HPX on Nvidia P100, (2018).
- Daiß, G.: Octo-Tiger: Binary Star Systems with HPX on Nvidia P100, (2018).
- Van Craen, A.: GPU-beschleunigte Support-Vector Machines, http://elib.uni-stuttgart.de/handle/11682/10165, (2018). https://doi.org/10.18419/OPUS-10148.
- Heene, M.: A Massively Parallel Combination Technique for the Solution of High-Dimensional PDEs, (2018).
- Rehme, M.F., Pflüger, D.: Hierarchical Extended B-splines for Approximations on Sparse Grids, (2018).
- Rehme, M.F., Pflüger, D.: Hierarchical Extended B-splines for Approximations on Sparse Grids, (2018).
2017
- Inci, G., Kronenburg, A., Weeber, R., Pflüger, D.: Langevin Dynamics Simulation of Transport and Aggregation of Soot Nano-particles in Turbulent Flows. Flow, Turbulence and Combustion. 1--21 (2017). https://doi.org/10.1007/s10494-016-9797-3.
- Hirschmann, S., Brunn, M., Lahnert, M., Glass, C.W., Mehl, M., Pflüger, D.: Load balancing with p4est for Short-Range Molecular Dynamics with ESPResSo. In: Advances in Parallel Computing. pp. 455--464. IOS Press (2017). https://doi.org/10.3233/978-1-61499-843-3-455.
- Diehl, P., Bußler, M., Pflüger, D., Frey, S., Ertl, T., Sadlo, F., Schweitzer, M.A.: Extraction of Fragments and Waves After Impact Damage in Particle-Based Simulations. In: Meshfree Methods for Partial Differential Equations VIII. pp. 17--34. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-51954-8_2.
- Hirschmann, S., Brunn, M., Lahnert, M., Glass, C.W., Mehl, M., Pflüger, D.: Load balancing with p4est for Short-Range Molecular Dynamics with ESPResSo. In: Advances in Parallel Computing. pp. 455--464. IOS Press (2017). https://doi.org/10.3233/978-1-61499-843-3-455.
- Hirschmann, S., Brunn, M., Lahnert, M., Glass, C.W., Mehl, M., Pflüger, D.: Load balancing with p4est for Short-Range Molecular Dynamics with ESPResSo. In: Advances in Parallel Computing. pp. 455--464. IOS Press (2017). https://doi.org/10.3233/978-1-61499-843-3-455.
- Heene, M., Hinojosa, A.P., Bungartz, H.-J., Pflüger, D.: A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs. In: Desprez, F. and al., E. (eds.) Euro-Par 2016: Parallel Processing Workshops. pp. 635--647. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58943-5_51.
- Peherstorfer, B., Pflüger, D., Bungartz, H.-J.: Density Estimation with Adaptive Sparse Grids for Large Data Sets. In: Proceedings of the 2014 SIAM International Conference on Data Mining. pp. 443--451. SIAM (2017). https://doi.org/10.1137/1.9781611973440.51.
- Brunn, M.: Coupling of Particle Simulation and Lattice Boltzmann Background Flow on Adaptive Grids, http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-0036&engl=1, (2017).
2016
- Diehl, P., Franzelin, F., Pflüger, D., Ganzenmüller, G.C.: Bond-based peridynamics: a quantitative study of Mode I crack opening. International Journal of Fracture. 1--14 (2016). https://doi.org/10.1007/s10704-016-0119-5.
- Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for the numerical solution of high-dimensional PDEs. Parallel Computing. 52, 78--105 (2016).
- Garcke, J., Pflüger, D. eds: Sparse Grids and Applications - Stuttgart 2014. Springer International Publishing (2016).
- Franzelin, F., Pflüger, D.: From Data to Uncertainty: An Efficient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty. In: Sparse Grids and Applications - Stuttgart 2014. pp. 29--49. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-28262-6_2.
- Heene, M., Hinojosa, A.P., Bungartz, H.-J., Pflüger, D.: A massively-parallel, fault-tolerant solver for high-dimensional PDEs. In: European Conference on Parallel Processing. pp. 635--647 (2016).
- Heene, M., Pflüger, D.: Scalable Algorithms for the Solution of Higher-Dimensional PDEs. In: Bungartz, H.-Joachim., Philipp, N., and Wolfgang, N. (eds.) Software for Exascale Computing - SPPEXA 2013-2015. pp. 165--186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40528-5_8.
- Hirschmann, S., Pflüger, D., Glass, C.W.: Towards Understanding Optimal Load-Balancing of Heterogeneous Short-Range Molecular Dynamics. In: 2016 IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW). pp. 130--141. IEEE (2016). https://doi.org/10.1109/HiPCW.2016.027.
- Pfander, D., Heinecke, A., Pflüger, D.: A New Subspace-Based Algorithm for Efficient Spatially Adaptive Sparse Grid Regression, Classification and Multi-evaluation. In: Garcke, J. and Pflüger, D. (eds.) Sparse Grids and Applications - Stuttgart 2014. pp. 221--246. Springer International Publishing (2016).
- Hirschmann, S., Pflüger, D., Glass, C.W.: Towards Understanding Optimal Load-Balancing of Heterogeneous Short-Range Molecular Dynamics. In: 2016 IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW). pp. 130--141. IEEE (2016). https://doi.org/10.1109/HiPCW.2016.027.
- Hegland, M., Harding, B., Kowitz, C., Pflüger, D., Strazdins, P.: Recent Developments in the Theory and Application of the Sparse Grid Combination Technique. In: Bungartz, H.-J., Neumann, P., and Nagel, W.E. (eds.) Software for Exascale Computing - SPPEXA 2013-2015. pp. 143--163. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-40528-5_7.
- Valentin, J., Pflüger, D.: Hierarchical Gradient-Based Optimization with B-Splines on Sparse Grids. In: Garcke, J. and Pflüger, D. (eds.) Sparse Grids and Applications - Stuttgart 2014. pp. 315--336. Springer (2016). https://doi.org/10.1007/978-3-319-28262-6_13.
- Pflüger, D., Pfander, D.: Computational Efficiency vs. Maintainability and Portability. Experiences with the Sparse Grid Code SG++. In: 2016 Fourth International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering (SE-HPCCSE). pp. 17--25. IEEE, Salt Lake City, UT, USA (2016).
- Brunn, M.: Data-mining on adaptively refined sparse grids with higher order basis functions on GPUs, http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BCLR-2479&engl=1, (2016).
2015
- Peherstorfer, B., Kowitz, C., Pflüger, D., Bungartz, H.-J.: Selected Recent Applications of Sparse Grids. Numerical Mathematics: Theory, Methods and Applications. 8, 47--77 (2015).
- Hinojosa, A.P., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.-J.: Towards a fault-tolerant, scalable implementation of GENE. In: Proceedings of ICCE 2014. Springer-Verlag (2015).
- Wagner, S., Pflüger, D., Mehl, M.: Simulation Software Engineering: Experiences and Challenges. In: Proceedings of the 3rd International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering. pp. 1--4. ACM (2015). https://doi.org/10.1145/2830168.2830171.
- Heene, M., Pflüger, D.: Efficient and scalable distributed-memory hierarchization algorithms for the sparse grid combination technique. In: Parallel Computing: On the Road to Exascale, Proceedings of the International Conference on Parallel Computing, ParCo 2015, 1-4 September 2015, Edinburgh, Scotland, UK. pp. 339--348 (2015). https://doi.org/10.3233/978-1-61499-621-7-339.
- Heene, M., Pflüger, D.: Efficient and scalable distributed-memory hierarchization algorithms for the sparse grid combination technique. In: Parallel Computing: On the Road to Exascale. pp. 339--348. IOS Press (2015). https://doi.org/10.3233/978-1-61499-621-7-339.
2014
- Bungartz, H.-J., Heinecke, A., Pflüger, D., Schraufstetter, S.: Parallelizing a Black-Scholes solver based on finite elements and sparse grids. Concurrency and Computation: Practice and Experience. 1640--1653 (2014). https://doi.org/10.1002/cpe.2837.
- Garcke, J., Pflüger, D. eds: Sparse Grids and Applications - Munich 2012. Springer International Publishing (2014).
- Pflüger, D., Bungartz, H.-J., Griebel, M., Jenko, F., Dannert, T., Heene, M., Hinojosa, A.P., Kowitz, C., Zaspel, P.: EXAHD: An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond. In: Euro-Par 2014: Parallel Processing Workshops. Springer-Verlag (2014).
- Hupp, P., Jacob, R., Heene, M., Pflüger, D., Hegland, M.: Global Communication Schemes for the Sparse Grid Combination Technique. In: Bader, M., Bungartz, H.-J., Bode, A., Gerndt, M., and Joubert, G.R. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE). pp. 564--573. IOS Press, Amsterdam (2014).
- Khakhutskyy, V., Pflüger, D., Hegland, M.: Scalability and Fault Tolerance of the Alternating Direction Method of Multipliers for Sparse Grids. In: Bader, M., Bungartz, H.-J., Bode, A., Gerndt, M., and Joubert, G.R. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE). pp. 603--612. IOS Press, Amsterdam (2014).
- Khakhutskyy, V., Pflüger, D.: Alternating Direction Method of Multipliers for Hierarchical Basis Approximators. In: Garcke, J. and Pflüger, D. (eds.) Sparse Grids and Applications - Munich 2012. pp. 221--238. Springer International Publishing (2014).
- Peherstorfer, B., Franzelin, F., Pflüger, D., Bungartz, H.-J.: Classification with Probability Density Estimation on Sparse Grids. In: Garcke, J. and Pflüger, D. (eds.) Sparse Grids and Applications - Munich 2012. pp. 255--270. Springer International Publishing (2014).
- Heene, M., Kowitz, C., Pflüger, D.: Load Balancing for Massively Parallel Computations with the Sparse Grid Combination Technique. In: Parallel Computing: Accelerating Computational Science and Engineering (CSE). pp. 574--583 (2014).
- Franzelin, F., Diehl, P., Pflüger, D., Schweitzer, M.A.: Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations. In: Griebel, M. and Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VII. Sonstige (2014).
- Hirschmann, S.: GPU-Based Regression Analysis on Sparse Grids. In: Plödereder, E., Grunske, L., Schneider, E., and Ull, D. (eds.) Informatik 2014, Big Data - Komplexität meistern. pp. 2425--2436. Gesellschaft für Informatik e.V., Bonn (2014).
- Buse, G., Pflüger, D., Jacob, R.: Efficient Pseudorecursive Evaluation Schemes for Non-Adaptive Sparse Grids. In: Garcke, J. and Pflüger, D. (eds.) Sparse Grids and Applications - Munich 2012. pp. 1--27. Springer International Publishing (2014).
- Heene, M., Kowitz, C., Pflüger, D.: Load Balancing for Massively Parallel Computations with the Sparse Grid Combination Technique. In: Bader, M., Bungartz, H.-J., Bode, A., Gerndt, M., and Joubert, G.R. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE). pp. 574--583. IOS Press, Amsterdam (2014).
2013
- Heinecke, A., Pflüger, D.: Emerging Architectures Enable to Boost Massively Parallel Data Mining using Adaptive Sparse Grids. International Journal of Parallel Programming. 41, 357--399 (2013).
- Heinecke, A., Karlstetter, R., Pflüger, D., Bungartz, H.-J.: Data Mining on Vast Datasets as a Cluster System Benchmark. Concurrency and Computation: Practice and Experience. (2013).
- Hans-Joachim, B., Stefan, Z., Martin, B., Pflüger, D.: Modellbildung und Simulation: Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin (2013).
- Hans-Joachim, B., Stefan, Z., Martin, B., Pflüger, D.: Modeling and Simulation - An Application-Oriented Introduction. Springer-Verlag, Berlin (2013).
- Heinecke, A., Pflüger, D., Budnikov, D., Klemm, M., Narkis, A., Shevtsov, M., Zaks, A.: Demonstrating Performance Portability of A Custom OpenCL Data Mining Application to the Intel(R) Xeon Phi(TM) Coprocessor. In: International Workshop on OpenCL Proceedings 2013. Sonstige, Georgia, Tech (2013).
- Peherstorfer, B., Adorf, J., Pflüger, D., Bungartz, H.-J.: Image Segmentation with Adaptive Sparse Grids. In: Proceedings of 26th Australasian Joint Conference on Artificial Intelligence. Springer (2013).
2012
- Heinecke, A., Klemm, M., Pflüger, D., Bode, A., Bungartz, H.-J.: Extending a Highly Parallel Data Mining Algorithm to the Intel(R) Many Integrated Core Architecture. In: Euro-Par 2011: Parallel Processing Workshops: Proceedings of the 4th Workshop on UnConventional High Performance Computing 2011 (UCHPC 2011). pp. 375--384. Springer, Bordeaux, France (2012).
- Pflüger, D.: Spatially Adaptive Refinement. In: Garcke, J. and Griebel, M. (eds.) Sparse Grids and Applications. pp. 243--262. Springer, Berlin, Heidelberg, (2012).
- Buse, G., Jacob, R., Pflüger, D., Murarasu, A.: A Non-static Data Layout Enhancing Parallelism and Vectorization in Sparse Grid Algorithms. In: Proceeding of the 11th International Symposium on Parallel and Distributed Computing - ISPDC 2012. IEEE, Munich (2012).
- Heinecke, A., Klemm, M., Pabst, H., Pflüger, D.: Towards high-performance implementations of a custom HPC kernel using Intel(R) Array Building Blocks. In: Facing the Multicore-Challenge II. pp. 36--47. Springer, Berlin (2012).
- Heinecke, A., Peherstorfer, B., Pflüger, D., Song, Z.: Sparse Grid Classifiers as Base Learners for AdaBoost. In: 2012 International Conference on High Performance Computing and Simulation (HPCS),. pp. 161--166. IEEE, Madrid (2012).
- Alin, M., Gerrit, B., Josef, W., Pflüger, D., Bode, A.: fastsg: A Fast Routines Library for Sparse Grids. In: Proceedings of the International Conference on Computational Science, ICCS 2012. Sonstige (2012).
- Butnaru, D., Buse, G., Pflüger, D.: A Parallel and Distributed Surrogate Model Implementation for Computational Steering. In: Proceeding of the 11th International Symposium on Parallel and Distributed Computing - ISPDC 2012. IEEE, Munich (2012).
- Kowitz, C., Pflüger, D., Jenko, F., Hegland, M.: The Combination Technique for the Initial Value Problem in Linear Gyrokinetics. In: Griebel, M. and Garcke, J. (eds.) Sparse Grids and Applications. pp. 205--222. Springer, Heidelberg (2012).
- Benk, J., Pflüger, D.: Hybrid Parallel Solutions of the Black-Scholes PDE with the Truncated Combination Technique. In: Proceedings of the HPCS conference. Sonstige, Madrid (2012).
- Peherstorfer, B., Pflüger, D., Bungartz, H.-J.: Clustering Based on Density Estimation with Sparse Grids. In: KI 2012: Advances in Artificial Intelligence. Springer (2012).
- Butnaru, D., Peherstorfer, B., Pflüger, D., Bungartz, H.-J.: Fast Insight into High-Dimensional Parametrized Simulation Data. In: 11th International Conference on Machine Learning and Applications (ICMLA). IEEE, Boca Raton, Florida (2012).
2011
- Bungartz, H.-J., Heinecke, A., Pflüger, D., Schraufstetter, S.: Option Pricing with a Direct Adaptive Sparse Grid Approach. Journal of Computational and Applied Mathematics. 236, 3741--3750 (2011).
- Alin, M., Josef, W., Gerrit, B., Butnaru, D., Pflüger, D.: Compact Data Structure and Scalable Algorithms for the Sparse Grid Technique. In: Proceedings of the 16th ACM symposium on Principles and practice of parallel programming. pp. 25--34. ACM, New York, Usa (2011).
- Heinecke, A., Pflüger, D.: Multi- and Many-Core Data Mining with Adaptive Sparse Grids. In: Proceedings of the 8th ACM International Conference on Computing Frontiers. pp. 29--29. ACM, New York, Usa (2011).
- Butnaru, D., Pflüger, D., Bungartz, H.-J.: Towards High-Dimensional Computational Steering of Precomputed Simulation Data using Sparse Grids. In: Proceedings of the International Conference on Computational Science (ICCS) 2011. pp. 56--65. Springer-Verlag (2011).
- Peherstorfer, B., Pflüger, D., Bungartz, H.-J.: A Sparse-Grid-Based Out-of-Sample Extension for Dimensionality Reduction and Clustering with Laplacian Eigenmaps. In: Wang, D. and Reynolds, M. (eds.) AI 2011: Advances in Artificial Intelligence. pp. 112--121. Springer, Berlin, Heidelberg (2011).
2010
- Frommert, M., Pflüger, D., Riller, T., Reinecke, M., Bungartz, H.-J., Enßlin, T.: Efficient cosmological parameter sampling using sparse grids. Efficient cosmological parameter sampling using sparse grids. 1177--1189 (2010).
- Pflüger, D., Peherstorfer, B., Bungartz, H.-J.: Spatially adaptive sparse grids for high-dimensional data-driven problems. Journal of Complexity. 26, 508--522 (2010).
- Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München (2010).
- Bungartz, H.-J., Heinecke, A., Pflüger, D., Schraufstetter, S.: Parallelizing a Black-Scholes Solver based on Finite Elements and Sparse Grids. In: IEEE International Parallel & Distributed Processing Symposium. Sonstige (2010).
2009
- Bungartz, H.-J., Zimmer, S., Buchholz, M., Pflüger, D.: Modellbildung und Simulation: Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin, Heidelberg (2009).
2008
- Bungartz, H.-J., Pflüger, D., Zimmer, S.: Adaptive Sparse Grid Techniques for Data Mining. In: Bock, H.G., Kostina, E., Hoang, X.P., and Rannacher, R. (eds.) Modelling, Simulation and Optimization of Complex Processes 2006. pp. 121--130. Springer-Verlag, Berlin, Heidelberg (2008).
2007
- Pflüger, D., Muntean, I.L., Bungartz, H.-J.: Adaptive Sparse Grid Classification Using Grid Environments. In: Shi, Y., van Albada, D., Dongarra, J., and Sloot, P. (eds.) ICCS 2007. pp. 708--715. Springer, Berlin, Heidelberg, (2007).
2004
- Buchholz, M., Pflüger, D., Poon, J.: Application of Machine Learning Techniques to the Re-ranking of Search Results. In: Biundo, S., Frühwirth, T., and Palm, G. (eds.) KI 2004: Advances in Artificial Intelligence. pp. 67--81. Springer-Verlag (2004).