Kontakt
+49 711 685 88465
+49 711 685 70413
E-Mail
Universitätsstraße 38
70569 Stuttgart
Deutschland
Raum: 2.125
Sprechstunde
Nach Vereinbarung
- Huber, F., Bürkner, P.-C., Göddeke, D., & Schulte, M. (2024). Knowledge-based modeling of simulation behavior for Bayesian optimization. Computational Mechanics, 74, Article 1. https://doi.org/10.1007/s00466-023-02427-3
- Homs‐Pons, C., Lautenschlager, R., Schmid, L., Ernst, J., Göddeke, D., Röhrle, O., & Schulte, M. (2024). Coupled simulations and parameter inversion for neural system and electrophysiological muscle models. GAMM-Mitteilungen. https://doi.org/10.1002/gamm.202370009
- Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2024). OpenDiHu: An efficient and scalable framework for biophysical simulations of the neuromuscular system. Journal of Computational Science, 79, 102291. https://doi.org/10.1016/j.jocs.2024.102291
- Davis, K., Leiteritz, R., Pflüger, D., & Schulte, M. (2023). Deep learning based surrogate modeling for thermal plume prediction of groundwater heat pumps.
- Maier, B., Schneider, D., Schulte, M., & Uekermann, B. (2023). Bridging scales with volume coupling --- Scalable simulations of muscle contraction and electromyography. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’21 (pp. 185–199). Springer International Publishing.
- Chourdakis, G., Davis, K., Rodenberg, B., Schulte, M., Simonis, F., Uekermann, B., Abrams, G., Bungartz, H.-J., Cheung Yau, L., Desai, I., Eder, K., Hertrich, R., Lindner, F., Rusch, A., Sashko, D., Schneider, D., Totounferoush, A., Volland, D., Vollmer, P., & Koseomur, O. Z. (2022). preCICE v2: A sustainable and user-friendly coupling library. Open Research Europe, 2, 51. https://doi.org/10.12688/openreseurope.14445.2
- Schmidt, P., Jaust, A., Steeb, H., & Schulte, M. (2022). Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. Computational Geosciences, 26, Article 2. https://doi.org/10.1007/s10596-021-10120-8
- Maier, B., & Schulte, M. (2022). Mesh generation and multi-scale simulation of a contracting muscle–tendon complex. Journal of Computational Science, 59, 101559. https://doi.org/10.1016/j.jocs.2022.101559
- Davis, K., Schulte, M., & Uekermann, B. (2022). Enhancing Quasi-Newton Acceleration for Fluid-Structure Interaction. Mathematical and Computational Applications, 27, Article 3. https://doi.org/10.3390/mca27030040
- Himthani, N., Brunn, M., Kim, J.-Y., Schulte, M., Mang, A., & Biros, G. (2022). CLAIRE—Parallelized Diffeomorphic Image Registration for Large-Scale Biomedical Imaging Applications. Journal of Imaging, 8, Article 9. https://doi.org/10.3390/jimaging8090251
- Leiteritz, R., Davis, K., Schulte, M., & Pflüger, D. (2022). A Deep Learning Approach for Thermal Plume Prediction of Groundwater Heat Pumps.
- Halilovic, S., Odersky, L., Böttcher, F., Davis, K., Schulte, M., Zosseder, K., & Hamacher, T. (2022). Optimization of an Energy System Model Coupled with a Numerical Hydrothermal Groundwater Simulation. 43rd IAEE International Conference.
- Totounferoush, A., Pour, N. E., Roller, S., & Mehl, M. (2021). Parallel Machine Learning of Partial Differential Equations. 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 698–703. https://doi.org/10.1109/IPDPSW52791.2021.00106
- Brunn, M., Himthani, N., Biros, G., Mehl, M., & Mang, A. (2021). Fast GPU 3D diffeomorphic image registration. Journal of Parallel and Distributed Computing, 149, 149–162. https://doi.org/10.1016/j.jpdc.2020.11.006
- Totounferoush, A., Simonis, F., Uekermann, B., & Schulte, M. (2021). Efficient and Scalable Initialization of Partitioned Coupled Simulations with preCICE. Algorithms, 14, Article 6. https://doi.org/10.3390/a14060166
- Brunn, M., Himthani, N., Biros, G., Mehl, M., & Mang, A. (2021). CLAIRE: Constrained Large Deformation Diffeomorphic Image Registration on Parallel Computing Architectures. Journal of Open Source Software, 6, Article 61. https://doi.org/10.21105/joss.03038
- Totounferoush, A., Ebrahimi Pour, N., Schröder, J., Roller, S., & Mehl, M. (2021). A data-based inter-code load balancing method for partitioned solvers. Journal of Computational Science, 51, 101329. https://doi.org/10.1016/j.jocs.2021.101329
- Totounferoush, A., Naseri, A., Chiva, J., Oliva, A., & Mehl, M. (2021). A GPU Accelerated Framework for Partitioned Solution of Fluid-Structure Interaction Problems. 14th WCCM-ECCOMAS Congress. https://doi.org/10.23967/wccm-eccomas.2020.021
- Totounferoush, A., Schumacher, A., & Schulte, M. (2021). Partitioned Deep Learning of Fluid-Structure Interaction.
- Maier, B., Stach, M., & Mehl, M. (2021). Real-Time, Dynamic Simulation of Deformable Linear Objects with Friction on a 2D Surface. In J. Billingsley & P. Brett (Eds.), Mechatronics and Machine Vision in Practice 4 (pp. 217–231). Springer International Publishing. https://doi.org/10.1007/978-3-030-43703-9_18
- Lindner, F., Totounferoush, A., Mehl, M., Uekermann, B., Pour, N. E., Krupp, V., Roller, S., Reimann, T., C. Sternel, D., Egawa, R., Takizawa, H., & Simonis, F. (2020). ExaFSA: Parallel Fluid-Structure-Acoustic Simulation. In H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing - SPPEXA 2016-2019 (pp. 271–300). Springer International Publishing.
- Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
- Emamy, N., Litty, P., Klotz, T., Mehl, M., & Röhrle, O. (2020). POD-DEIM Model Order Reduction for the Monodomain Reaction-Diffusion Sub-Model of the Neuro-Muscular System. In J. Fehr & B. Haasdonk (Eds.), IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22--25, 2018 (pp. 177–190). Springer International Publishing.
- Subramanian, S., Scheufele, K., Mehl, M., & Biros, G. (2020). Where did the tumor start? An inverse solver with sparse localization for tumor growth models. Inverse Problems, 36, Article 4. https://doi.org/10.1088/1361-6420/ab649c
- Rüth, B., Uekermann, B., Mehl, M., Birken, P., Monge, A., & Bungartz, H.-J. (2020). Quasi‐Newton waveform iteration for partitioned surface‐coupled multiphysics applications. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.6443
- Brunn, M., Himthani, N., Biros, G., Mehl, M., & Mang, A. (2020). Multi-Node Multi-GPU Diffeomorphic Image Registration for Large-Scale Imaging Problems. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 1–17. https://doi.org/10.1109/SC41405.2020.00042
- Naseri, A., Totounferoush, A., González, I., Mehl, M., & Pérez-Segarra, C. D. (2020). A scalable framework for the partitioned solution of fluid--structure interaction problems. Computational Mechanics, 66, Article 2. https://doi.org/10.1007/s00466-020-01860-y
- Naseri, A., Totounferoush, A., González, I., Mehl, M., & Pérez-Segarra, C. D. (2020). A scalable framework for the partitioned solution of fluid--structure interaction problems. Computational Mechanics, 66, Article 2. https://doi.org/10.1007/s00466-020-01860-y
- Totounferoush, A., Ebrahimi Pour, N., Schröder, J., Roller, S., & Mehl, M. (2019). A New Load Balancing Approach for Coupled Multi-Physics Simulations. 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 676–682. https://doi.org/10.1109/IPDPSW.2019.00115
- Hirschmann, S., Brunn, M., Lahnert, M., Mehl, M., Glass, C. W., & Pflüger, D. (2017). Load balancing with p4est for Short-Range Molecular Dynamics with ESPResSo. Advances in Parallel Computing, 32, 455–464. https://doi.org/10.3233/978-1-61499-843-3-455
- Bradley, C., Emamy, N., Göddeke, D., Klotz, T., Krämer, A., Krone, M., Maier, B., Mehl, M., Rau, T., & Röhrle, O. (2017). Towards realistic HPC models of the neuromuscular system. Frontiers in Physiology. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1772
- Scheufel, K., & Mehl, M. (2017). Robust multi-secant Quasi- Newton variants for parallel fluid-structure simulations -- and other multiphysics applications. SIAM Journal on Scientific Computing, 39, 404–433. https://doi.org/10.1137/16M1082020
- Gholami, A., Mang, A., Scheufele, K., Davatzikos, C., Mehl, M., & Biros, G. (2017). A Framework for Scalable Biophysics-based Image Analysis. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis SC17, 19:1–19:13. https://doi.org/10.1145/3126908.3126930
- Bungartz, H.-J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., & Uekermann, B. (2016). preCICE – A fully parallel library for multi-physics surface coupling. Computers & Fluids, 141, 250–258. https://doi.org/10.1016/j.compfluid.2016.04.003
- Bader, M., Bungartz, H.-J., & Mehl, M. (2011). Space-Filling Curves. Encyclopedia of Parallel Computing, 1862–1867. https://doi.org/10.1007/978-0-387-09766-4_145