Graph Machine Learning for Chemistry: synthesis planning

Supervised by Nina Lukashina, M.Sc

This topic is temporarily suspended. Please contact the Supervisor again from 01/01/2023.

Graph Machine Learning for Chemistry: synthesis planning

Synthesis planning (retrosynthesis) is a fundamental problem in chemistry, widely used in drug discovery. The aim of this process is to understand how to produce a given molecule. Namely, having a target molecule, retrosynthesis aims to find a route from this molecule to commercially available or synthetically known building blocks.

To solve this problem, many methods of Computer-Aided Synthesis Planning were developed. In recent years, Deep Learning models, and particularly, Geometric Deep Learning methods, are used to speed up the process and reduce associated costs.

However, modern models still have many weak spots. Some of the problems are low Top-1 accuracy (although Top-3 accuracy is reasonable), missing reaction conditions, the lack of possibility to learn from negative data, the absence of good metrics, etc.

The research focuses on improvement of (Graph) Machine Learning methods in retrosynthesis. Some of the related topics in Geometric Deep Learning, Explainable Machine Learning and Machine Learning for chemistry and drug design are also under research. 


To the top of the page