
Noname manuscript No.
(will be inserted by the editor)

A survey on provenance
What for? What form? What from?

Melanie Herschel · Ralf Diestelkämper · Houssem Ben Lahmar

Received: date / Accepted: date

Abstract Provenance refers to any information describing
the production process of an end product, which can be
anything from a piece of digital data to a physical object.
While this survey focuses on the former type of end prod-
uct, this definition still leaves room for many different inter-
pretations of and approaches to provenance. These are typi-
cally motivated by different application domains for prove-
nance (e.g., accountability, reproducibility, process debug-
ging) and varying technical requirements such as runtime,
scalability, or privacy. As a result, we observe a wide variety
of provenance types and provenance-generating methods.

This survey provides an overview of the research field of
provenance, focusing on what provenance is used for (what
for?), what types of provenance have been defined and cap-
tured for the different applications (what form?), and which
resources and system requirements impact the choice of de-
ploying a particular provenance solution (what from?). For
each of these three key questions, we provide a classification
and review the state of the art for each class. We conclude
with a summary and possible future research challenges.

1 Provenance: data about a production process

Provenance generally refers to any information that de-
scribes the production process of an end product, which can
be anything from a piece of data to a physical object. Thus,
provenance information encompasses meta-data about enti-
ties, data, processes, activities, and persons involved in the
production process [89]. Essentially, provenance can be seen
as meta-data that, instead of describing data, describes a pro-
duction process. The collection (also referred to as capture)

M. Herschel, R. Diestelkämper, and H. Ben-Lahmar,
University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany
E-mail: {firstname.lastname}@ipvs.uni-stuttgart.de

and processing of provenance is important in various set-
tings, e.g., to assess quality, to ensure reproducibility, or to
reinforce trust in the end product. As a first glimpse on the
large variety of possible provenance applications, consider
the following three sample use cases.

1.1 Provenance use cases (What for?)

Supply chains. In 2013, the European food market was hit
by a major scandal: several processed food products suppos-
edly containing beef were discovered to contain horse meat
instead. As a consequence, labelling the origin of (ingredi-
ents in processed) food and documenting its whole process-
ing and supply chain were debated by food vendors, national
governments, and the European Commission [53]. Indepen-
dently of the individual measures taken, consumers experi-
enced a (at least temporary) general awareness and increased
need for information on the provenance of food to better as-
sess food’s quality and to regain trust in food products. Sim-
ilar stories regarding how provenance about product origin
and supply chain can be told for various other sectors [146].
Scientific experiments. The ATLAS experiment is one ma-
jor experiment at the Large Hadron Collider at CERN. The
first run of data acquisition has led to the accumulation of
around 100 PB of data (both raw and processed). Experi-
ments of this scale are not easily repeatable, meaning that
ensuring the reproducibility and accessibility of the scien-
tific results is essential. Therefore, the ATLAS collaboration
has set up a strategy for preserving both the data and the pro-
cedures used to analyze them, relying on provenance [54].
Complex data processing. When implementing applica-
tions involving data processing, it is typically difficult to
formulate the correct queries or data manipulations from
scratch at first try. Reasons for instance lie in a poor docu-
mentation of used sources, cryptic values, unclear data qual-

This version of the article has been accepted for publication, after peer review and is subject to Springer
Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00778-017-0486-1

2 Melanie Herschel et al.

ity, faulty code, etc. This entails incremental development
of complex data processing pipelines: developers write the
necessary code, test it, analyze the result, refine the code (or
clean the data) as the result does not (yet) match their ex-
pectation, test again and so on until the desired and expected
result is obtained. The collection and analysis of provenance
in this context can lead to faster and higher-quality analysis,
debugging, and refinement of data processing [30, 96].

From the above three examples, we observe that the end
product for which provenance is collected can be anything
(food, a scientific result, or derived data). This survey fo-
cuses on methods and systems providing provenance for de-
rived data that result from possibly complex data processing
pipelines. To the best of our knowledge, this is also the focus
of existing systems that support provenance.

The above examples further illustrate some of the differ-
ent applications of provenance, e.g., assessing quality, pre-
serving processes for repeatability, or supporting query de-
velopment to improve process quality. This survey provides
a classification of the various applications of provenance
that in general serve to understand, reproduce, and improve
production processes and their end products.

1.2 Types of provenance (What form?)

Within the scope of considered provenance use cases, i.e.,
provenance of derived data serving various applications, we
observe that different types of provenance can be collected.
This survey presents a classification of these provenance
types. Based on [98], our classification includes four main
provenance types, namely provenance meta-data, informa-
tion systems provenance, workflow provenance and data
provenance. As illustrated in Fig. 1, these roughly form a
hierarchy where provenance meta-data is the widest, i.e.,
most general type, whereas data provenance has the most
specific domain. That is, as we move up the hierarchy, ad-
ditional restrictions on the provenance type apply, reducing
some degrees of freedom at the benefit of being able to lever-
age the narrower scope to collect provenance. More specif-
ically, these restrictions limit the set of supported processes
or provenance models (see left side of Fig. 1) and directly re-
late to the level of instrumentation available to collect prove-
nance of a given type (see right side of figure). Indeed, at the
low level of the spectrum, no instrumentation may be avail-
able in general (and thus, provenance collection reduces to
some ad-hoc meta-data collected about an arbitrary produc-
tion process). Opposed to that, data provenance relies on a
highly instrumented environment, exploiting clear seman-
tics of individual processing steps and relationships between
them available due to the restriction to structured data mod-
els and associated declarative query languages.

Data
provenance

Workflow
provenance

Information system
provenance

Provenance meta-datapr
oc

es
s /

 p
ro

ve
na

nc
e

m
od

el

general low

highspecific

Le
ve

l o
f i

ns
tru

m
en

ta
tio

n

Fig. 1: Provenance hierarchy

We further sharpen the distinction between the differ-
ent provenance types below. However, we point out that the
transition from one type to another is a gradient rather than
a sharp edge. The detailed discussion of the survey will then
focus on the two top-levels of the hierarchy, namely data
provenance and workflow provenance.
Provenance meta-data. Provenance meta-data is the most
general type of provenance that encompasses any possible
meta-data about a production process. It provides users with
the widest degree of freedom to model, store, or access the
provenance of any type of end product or production process
and allows to classify proprietary solutions for provenance
management (e.g., Informatica Big Data Management, IBM
InfoSphere Information Governance Catalog, SAS Lineage)
where internals are not disclosed. Note that we distinguish
provenance meta-data from other meta-data based on their
intended applications. Indeed, whereas general meta-data
aims at assigning meaning to data, provenance information
is descriptive of the data derivation process [64].

Being a placeholder for any provenance, no restrictions
nor assumptions apply on the underlying process being de-
scribed by provenance, the data model of provenance infor-
mation, etc. Consequently, we cannot instrument any pre-
defined properties or assumptions for the purpose of prove-
nance management. So in summary, provenance meta-data
is defined as meta-data describing an arbitrary production
process using an arbitrary data model and model of compu-
tation.
Information system provenance. Moving up one level
in the hierarchy, we restrict the type of production process
to processes producing digital data within information sys-
tems (in a very wide sense, ranging from the Web over net-
works to Big Data processing pipelines). Information sys-
tem provenance is meta-data about processes within an in-
formation system that are involved in the dissemination of
information (e.g., storage / retrieval [50, 142], communica-
tion [68,123,141,190,192], or distribution [113,140,191] of
information). While the internals of each process are gener-
ally unknown, provenance collection may exploit the input,
the output, and parameters of a process.

In summary, we define information system provenance
as meta-data collected for an information-disseminating

A survey on provenance 3

process that can be computed based on the input, the out-
put, and the parameters of the process.
Workflow provenance. Workflow provenance, surveyed for
instance in [62, 74], specializes the previously described in-
formation system provenance by further restricting the type
of production processes to so called workflows. In this sur-
vey, we view a workflow as a directed graph where nodes
represent arbitrary functions or modules in general with
some input, output, and parameters and where edges model
a predefined dataflow or control flow between these mod-
ules. Given this more detailed process model, the degree of
instrumentation for provenance collection increases as sys-
tems supporting workflow provenance leverage all informa-
tion of the workflow graph. As we will see, this rich informa-
tion (as compared to previously discussed provenance types)
allows for different forms and granularities of provenance
in different application domains where characteristics of the
workflow graph vary.
Data provenance. Data provenance (surveys include [46])
allows to track the processing of individual data items (e.g.,
tuples) at the “highest resolution”, i.e., the provenance itself
is at the level of individual data items (and the operations
they undergo). Collecting data provenance typically applies
on structured data models and declarative query languages
with clearly defined semantics of individual operators. This
is necessary to push the degree of instrumentation to its
highest level, where, on top of the instrumented information
for workflow provenance, we now also benefit from having
processes with clear semantics (based on an algebra, calcu-
lus, or other formalism). This high degree of instrumentation
allows to obtain data provenance of individual data items.

Due to space constraints, we only briefly summarize es-
sential work on data provenance recently surveyed in [46]
to the benefit of a more detailed novel survey on provenance
research focusing on explaining why some data are not part
of a query result, even though they were expected results.

1.3 System requirements (What from?)

Collecting, querying, or analyzing provenance to achieve
the intended application generally adds additional load on
any data processing system. One reason for why research on
provenance has not yet been widely adopted by practical ap-
plications may be that the system requirements entailed by
proposed algorithms are not transparent enough or do not fit
the expectations of system administrators. Intuitively, one
question to be answered is “From what requirements or re-
sources may my choice of provenance technique depend?”

In this survey, we consider various system requirements,
including (but not limited to) runtime, scalability, security,
interoperability, system decoupling, or fault tolerance. In

light of these requirements, we analyze which of these have
been considered or even optimized in the research literature.

1.4 Contributions and article structure

As illustrated by our use cases, provenance is an important
topic that has high practical relevance in various areas of
data management and beyond. Its timeliness and importance
are tightly coupled with the increasing number and complex-
ity of data-driven processes entailed by recent trends (Big
Data analytics, Internet of Things).

Compared to previous surveys on provenance that, ex-
cept for [136], focus on a particular type of provenance, this
survey summarizes and characterizes work across prove-
nance types, providing a broad view of the field. This per-
spective allows us to more precisely set terms that have until
now been used in an ad-hoc and often inconsistent way in
the provenance community. Finally, this survey puts a par-
ticular focus on recent provenance research and thus com-
plements earlier surveys that predate recent trends such as
distributed big data processing or process debugging. Over-
all, we provide an extensive and up to date classification
of provenance research. Note that in analogy to our ear-
lier comment on provenance types, while our discussion will
generally strictly follow the proposed classes, solutions may
fall in several classes and transitions and distinctions are
more of a gradient. Based on our detailed study, we derive
several research opportunities in the area of provenance.

Sec. 2 provides a classification of applications of prove-
nance. Sec. 3 and 4 cover research on data provenance and
workflow provenance in detail. Which factors of the system
environment can or should be considered when designing or
extending a system that leverages provenance is at the heart
of Sec. 5. We conclude this survey by a summary and an
outlook of provenance research challenges in Sec. 6.

2 Applications of provenance

As illustrated in Sec. 1.1, provenance may serve various ap-
plications. This section provides a classification of applica-
tions of provenance found in the literature, which is sum-
marized in Fig. 2. This classification is built on the general
idea of first understanding, then reproducing and validat-
ing a process, before it can eventually be improved. This
is reflected by the first layer of the classification that dis-
tinguishes between understandability, reproducibility, and
quality. The second layer further distinguishes applications
of provenance based on their “target audience”, i.e., the typ-
ical users capturing and using the provenance. While the
classes of our taxonomy are shown in blue in Fig. 2, pro-
ducers and consumers of provenance are labelled below the
yellow arrows. We identify three types of involved parties:

4 Melanie Herschel et al.

Applications	of	provenance

Understandability

Co
lla
bo

ra
tio

n

Pr
es
en

ta
tio

n

At
tr
ib
ut
io
n

Reproducibility

Re
ca
ll

Re
pl
ica

tio
n

Quality

Pr
oc
es
s	

qu
al
ity

Da
ta
	q
ua
lit
y

Provenance	producer	– provenance	consumer
self	– self self	– allexpert	– allexpert	– expert all	– all all	– allexpert	– expert

Fig. 2: Classification of applications of provenance

expert designates the entities that implement or administer
the processing for which provenance is collected, all encom-
passes both these experts as well as end users of the end
product (not necessarily involved or knowledgeable in how
it was obtained), and self restricts the producer and con-
sumer to be the same expert. The distinction of user types
may allow the development of applications tailored and op-
timized to different configurations of provenance producers
and consumers in the future.

While this section focuses on describing applications for
which provenance solutions have been developed, note that
solutions proposed for one application may equally serve
other applications as well. This is due to the fact that the
same general challenges underlie these applications. For in-
stance, the reconstruction of intermediate processing states
supports both an expert in recalling why different process-
ing steps were necessary to obtain a result and equally al-
lows scientists to replicate each other’s result step by step.
Knowledge about intermediate processing states also facili-
tates the further improvement of a process. Another overar-
ching challenge is the attribution of data to sources or pro-
cesses. Clearly, this helps in attributing changes and new
versions of a process to collaborating developers and al-
lows a more transparent and verifiable presentation of de-
rived facts. This may ultimately impact the trust in data,
trust being one important data quality dimension. As third
example, communicating changes in a collaborative setting
via provenance is relevant for collaboration and replication
of the process by all collaborators, and bears important in-
formation for process and product quality assessment and
improvement.

Despite these common challenges, we observe that
within the literature, a solution is often focused on ad-
dressing these challenges within the scope of a particular
application. This may be caused by the different environ-
ments, types of processes, or properties of the solutions
themselves. Therefore, and further being inspired by previ-
ous classifications of provenance applications and applica-
tions [83, 87, 162, 166], our discussion is structured around
particular applications. Our classification is the first that is
domain-independent and that takes into account the latest
developments in provenance research of the last decade. In-
deed, the classifications of application of provenance from

Attribution

Process	quality

Presentation

Data	quality

Replication

[18] Collaboration

Recall

[7
8,
	1
29

]

[50]

[2,	49,	71,	
149,	189]

[13,	28,	44,	99,	
100,	109,	120]			

[4,	64,	119,	143]

[88,	116,	126,	
137,	157,	181]

[3,	16,	51,	55,	81,	90,	
92,	111,	113,	115,	139,	
140,	141,,	156,	164]

[60,	86,	91,	
117,	186]

165	+	1

Fig. 3: Survey of applications of provenance in the literature

the mid 2000’s [83,166] focus on scientific and business do-
mains while application classes in [87, 162] are guided by
possible uses of provenance for Web data and in visualiza-
tion tools, respectively. Finally, our classification considers
the entities capturing and consuming provenance.

We now discuss the different classes of our application
classification in more detail. Fig. 3 summarizes works ref-
erenced for each application as examples for solutions for a
given application. We neither claim that the list is exhaus-
tive nor that a system targeted or tested for one application
may not equally work for another (illustrated by several ex-
amples in intersections). Indeed, as we have seen, solutions
covering a challenge shared among applications may span
multiple classes.

2.1 Understandability

Understandability emphasizes on explaining results or pro-
cesses to make these transparent to some audience. Research
on understandability includes to identify what information
to convey and how. In this context, provenance conveys in-
formation on how an end product was obtained to expert
users or a general audience (the provenance consumers). In
this survey, this application class unifies applications related
to understandability previously identified in [162, 166].

Collaboration. To collaborate among multiple users work-
ing on a same project, understanding the actions of collabo-
rators is key. As described in [162], provenance may convey
relevant information to allow each group member to better
understand the actions of others. Clearly, this application of
provenance is centered around expert groups within which
each member produces and consumes provenance.

We further distinguish between synchronous and asyn-
chronous collaboration. Essentially, synchronous collabora-
tion requires the communication of information, including
provenance, among group members in real-time, whereas

A survey on provenance 5

asynchronous collaboration does not. Systems leveraging
provenance in both settings exist. For instance, the infras-
tructure presented in [71] captures, during collaborative de-
sign, provenance about the evolution of a workflow based on
tracking changes made by all users in real-time. Unlike ver-
sion control systems like GIT 1 and Mercurial 2, [71] does
not merge changes automatically. Instead, it renders a work-
flow evolution provenance containing branches that present
users’ changes. Asynchronous collaboration typically in-
volves exporting provenance and making it accessible and
query-able to reviewers or collaborators [49, 50, 149, 189].

As the size of provenance can become large, it may eas-
ily overwhelm users, defeating the purpose of understand-
ability. As counter-measure, summarization and aggregation
of provenance have been explored (e.g., [2, 78]).

In a collaborative setting, preserving privacy and confi-
dentiality of information is essential and also spans infor-
mation contained in provenance traces. Approaches consid-
ering these issues include [129, 145].

Presentation. The way information is presented and dis-
played significantly impacts on its understandability, requir-
ing research on appropriate visualization of and interaction
with the data. In this context, enriching data with informa-
tion on how they were obtained may potentially improve
on their understandability. This means using provenance
for presentation [162] (an application also called informa-
tion [166]). This application of provenance is tightly linked
to the use of visualizations that allow to easily display, nav-
igate, and explore provenance.

Node link graphs have been widely adopted to visual-
ize provenance [13, 20, 37, 44, 109, 169]. A drawback of
this technique is its scalability to large graphs, as it leads
to cluttered visualizations for large provenance data sets.
The use of Sankey diagram addresses this scalability is-
sue [100] by grouping nodes of the node-link provenance
graphs and highlighting the magnitude of data flows ex-
changed between activities. Further explored visualizations
include radial form [28] and Lamport diagrams [7]. Whereas
the former is suited to show relationships between and nav-
igate through different resolutions of provenance, the latter
is used to present provenance tracked in distributed systems
with multiple actors and at different points in time.

Hlawatsch et al. [99] combine many visualization tech-
niques in order to ensure scalability of the presentation to
large provenance traces collected for workflows. The visu-
alization emphasizes the logical time order of provenance,
employs summarization techniques and visualizes branches
to highlight the workflow evolution and dependencies.

We further differentiate works for provenance-based
presentation based on their interaction capabilities. Sys-

1 http://git-scm.com
2 https://www.mercurial-scm.org

tems either limit to static visualization thus supporting
provenance-based presentation for information only (e.g.,
[95, 170]) or they provide interactive visualizations and
give users the possibility to customize their view of prove-
nance (e.g., [120, 124]).

For the presentation application, expert users (experts on
the production process and the end product) are typically re-
sponsible for capture while consumers of provenance are a
more general, not necessarily expert public, for which ade-
quate visualizations and interactions need to be developed.

Attribution. Attribution [166] limits understandability to
one particular aspect of the production process, i.e., who /
what authored (which part of) it. This information is useful
to establish copyright and ownership of data, enable its cita-
tion, or determine liability for erroneous data. This applica-
tion falls under the scope of communication between users
since it clarifies actions performed by each collaborator.

Attribution has been considered in various provenance-
enabled systems. PASS [142] supports attribution at the
level of command line executions where the meta-data (=
provenance) records user and group information for partic-
ular command line executions. Provenance is extended in
[4, 118, 123, 168] to further describe the execution environ-
ment (operating system, user session name etc.). On cloud
infrastructures, tracking files transferred from one machine
to another is a challenge, addressed for instance in [170] by
collecting information about senders and receivers.

The systems mentioned so far record and make accessi-
ble meta-data that is explicitly available (e.g., through user
management). However, it is also possible that attribution
needs to be derived as it is implicitly hidden in the data.
As an example, [63] reconstructs the provenance of data
through hidden dependencies between social data. This in-
cludes identifying users adapting another user’s message,
without explicitly referring to it.

2.2 Reproducibility

Following [137], the reproducibility of a result consists of
starting with the same materials and methods and checking
if a prior result can be confirmed. As provenance is, in its
generality, capable of recording anything happening during
processing, it has naturally been used for reproducibility.

We divide reproducibility ino two sub-classes, depend-
ing on which entities produce and consume the provenance.

Recall. Recalling one’s steps in obtaining a result is essen-
tial to reproduce one’s work. Collecting provenance record-
ing actions and processing supports users for this application
of recall. Typically, this aide memoire is targeted towards the
entity responsible for the process, so provenance producer
and consumer are the same. Fig. 2 indicates this with the
self-self annotation below the application class. Provenance

6 Melanie Herschel et al.

for recall may for instance include what intermediate steps
are part of the process, which changes were made (e.g., to fix
bugs), how parameters were set and how they were varied,
etc. Remembering past actions on the process is important,
e.g., to speed up the development process.

As stated in [162], recall is beneficial especially over ex-
tended or intermittent periods of analysis and [121] demon-
strates the importance of supporting recollection, as even
over a short time span, participants are unable to accurately
remember the steps in their analysis process.

Recall is rarely considered as sole application of prove-
nance. Supporting recall is typically coupled with support-
ing further applications. These “secondary” applications fo-
cus on why users want to recall what they did previously.
We decided to keep recall as an individual application for
two reasons. First, supporting recall is at the core of sup-
porting further applications and it covers the how recall is
achieved as opposed to why it is needed. Second, the user-
centric property of recall (decoupled from further applica-
tions) gives the opportunity to develop dedicated solutions
in the future that potentially bear less overhead (due to sec-
ondary application) than existing ones.

Replication. Replication targets reproducibility of a final re-
sult not only by its original author but a wider group of ex-
perts, typically working in the same domain [162]. In this
context, captured provenance needs to be rich enough to al-
low other experts to reproduce the results.

Example applications leveraging provenance for repli-
cating results include [18, 37, 50, 126, 137, 157]. These ap-
plications are very diverse with respect to the use cases
and platforms they support, e.g., Big Data processing us-
ing the Pig language and running on Hadoop Map Reduce
clusters [116], grid-based scientific workflows [181], scien-
tific experiments in various contexts [50,88,169], visualiza-
tions [18], system configurations [123] (e.g., DHCP config-
uration, setting up SSH connections as reported in [124]),
or testing software programs submitted jointly with scien-
tific publications to validate reported results [157]. Not only
does the provenance collected allow one to reproduce the
obtained results, but also analyzing this provenance for dif-
ferent versions of a process allows to study the impact and
effect of differences between the versions or predict the be-
havior of the system as changes to the transformation occur.

2.3 Quality

This section summarizes the use of provenance to either im-
prove the quality of the end product or the production pro-
cess. Whereas improving the process is typically done by
experts on the process, data quality issues may be tackled
by any individual handling the data and who is not necessar-
ily knowledgable in the way the data studied was obtained.

In this case, provenance may shed some light on quality is-
sues in data (e.g., while not knowing what an expert user
has done, noticing quality issues for which the provenance
reveals that they are all caused by the same expert possibly
helps finding and fixing the cause of the issue).

Process Quality. In general, process quality focuses on
assessing and possibly improving the quality of a process.
Quality has many dimensions, e.g., it includes correctness,
performance, or fault-tolerance. In this context, provenance
is commonly used for monitoring and debugging applica-
tions to assess and improve certain quality dimensions.

The processes considered in the literature are very di-
verse: [129] uses provenance of Web service states (and state
changes) to support developers in selecting adequate ser-
vices for their particular application. Opposed to that, [164]
focuses on improving the entry set of dictionaries used dur-
ing information extraction to better label entities in unstruc-
tured text. Works [113,123,140,141,156,170] collect prove-
nance for distributed systems (cloud computing) to detect
cloud security problems such as malicious actions and data
policy violations. For Map/Reduce programs, [3] collects
provenance to decide how to optimize future executions by
deciding where to store related data blocks that might be
processed jointly.

In the context of scientific workflows, finding related
workflows to the one that is being designed may help speed-
up the development and improve the quality of these work-
flows. Provenance traces have been explored in assessing
relatedness [18, 78]. Provenance has further been used to
debug SQL queries [90, 95, 139], transactions [16], schema
mappings [51, 81, 111], or preference queries [92]. Finally,
provenance also supports improving the fault-tolerance of
scientific workflow executions [55, 115] and making fault-
tolerance protocols more robust [7].

Data Quality. Data quality encompasses various dimen-
sions and metrics to assess the quality of data, includ-
ing completeness, accuracy, timeliness, or trust [19, 182].
Clearly, all methods improving process quality to obtain
a higher quality end result belong to this class as well.
In addition, provenance is often considered when it comes
to either assess the quality of data sources and providers
(e.g., [60, 91, 168]) or result data based on the sources it
has been derived from (e.g., [60,86,117,186] consider trust,
[145] considers integrity and accuracy).

3 Data provenance

We now start our discussion of provenance types, starting
with data provenance (the most specific type of provenance
as shown in Fig. 1). Data provenance counts more than two
decades of research [183,185], which we classify according
to the hierarchy depicted in Fig. 4.

A survey on provenance 7

Data	provenance

Existing	results

Why How Where

Missing	results

Instance-
based Query-based Refinement-

based

Fig. 4: Classification of data provenance research

The first level includes two classes: the first class, prove-
nance of existing results, focuses on describing both the ori-
gins and the processing of data in the result of a query. Op-
posed to that, the second first-level class considers possi-
ble origins and processing steps causing expected data to be
missing from a query result. It is therefore labeled as prove-
nance of missing results (aka why-not provenance [43]).

The second level of data provenance of existing results
reproduces the original classification of [46]. It classifies re-
search along three main lines based on where [33] the data
were copied from (exactly what attributes of which tuples),
why [33, 58] a query answer was produced (i.e., based on
what source data), and how [85] data were manipulated by
the query to produce the result data in question. Considering
the provenance of missing results, we consolidate previously
used classifications [23,98]. Having the common goal to ex-
plain why some data are not part of a query result, the output
is often referred to as explanations. These may take several
forms: instance-based explanations identify source data that
is missing from the sources to produce the desired result,
whereas query-based explanations identify query operators
that “lose” relevant data along the way. Refinement-based
explanations tell how queries would need to be adapted to
get the desired result.

We cover each class in more detail in the following.
Sec. 3.1 focuses on provenance of existing results whereas
Sec. 3.2 covers provenance of missing results. Each discus-
sion first considers the general input, output, and processes
supported before we delve into specializations of these.

3.1 Provenance of existing results

Due to space constraints, this section briefly summarizes re-
search defining the different types of provenance of existing
results and we refer readers to [46] for further details. In
addition, we cover concepts relevant for our novel detailed
survey on the provenance of missing results.

Input. As indicated in Sec. 1.2, data provenance restricts the
process to a query with clearly defined semantics. In gen-
eral, we denote the query as Q. The input further includes
input data D, its data model being compatible with Q (e.g.,
relational for SQL, XML for XQuery, RDF for SPARQL).
Data provenance computation further requires the result of
executing Q over D, denoted Q(D).

Output. In general, methods capturing data provenance
compute a specific type of data provenance (as further
discussed below) for a set R ✓ Q(D), where R =
{tR1 , . . . , tRn}. Independently of whether an approach
computes why, how, or where provenance, data provenance
allows to obtain the provenance for each individual data item
(e.g., relational tuple or XML element) tRi 2 R. Note that
given the fact that the foundations of all provenance types
have been first defined and analyzed on relational data, we
will often say tuple instead of data item.
Queries. The query languages expressing Q vary between
proposed solutions. Q may be a query expressed in query
languages such as SQL [58], Datalog [85], XQuery [73], or
SPARQL [177]. Further formalisms with clear semantics on
how each tupte ti 2 D is processed also support the collec-
tion of data provenance, e.g., schema mappings [81].

3.1.1 Why-provenance

Why-provenance identifies, given Q, D, Q(D) and R,
which tuples DP ✓ D are involved in producing the tu-
ples of R. One of the first works formalizing this notion
defines the lineage of data in the output of (materialized)
relational views in a warehouse environment [57, 58]. The
solution covers a large class of queries (SQL queries with se-
lection, projection, join, aggregation, union, set difference,
and further operators typical in data warehouses). While this
approach guarantees that the returned set of lineage (source)
tuples is sufficient to produce R, not all returned lineage
tuples may be necessary simultaneously. To overcome this
shortcoming, [33] introduces the notion of witness basis.
Its computation involves considering the structure of the
query. As a very simple example to distinguish lineage from
why-provenance based on a witness basis, consider a sin-
gle result tuple tR of a query over a relational database, and
Q = (R 1 S) [(R 1 T). Assuming tables R = {t1},
S = {t2}, and T = {t3}, a returned why-provenance based
on a witness basis of {{t1, t2}, {t1, t3}} tells us that tR can
be obtained based either on t1 and t2, or t1 and t3. Opposed
to that, lineage returns {t1, t2, t3}, leaving open if all three
tuples are simultaneously necessary or not.

Given that the witness basis considers the structure of
the query, provenance may not be invariant with respect
to equivalent query rewritings. This means that in general,
the computed provenance may be different for equivalent
queries. The minimal witness basis [33] allows to guaran-
tee this property for conjunctive queries with equalities only
(both for relational and nested data).

3.1.2 How-provenance

In addition to identifying which tuples contributed to a re-
sult (as why-provenance does), how-provenance provides

8 Melanie Herschel et al.

a semiring-based tuple annotation for each result tuple
tR 2 R that encodes how source tuples combine to pro-
duce tR [110]. The work of [85] has led to the definition
of provenance using polynomials, a special class of semir-
ing. The model applies to various database semantics, in-
cluding relational, incomplete, or probabilistic databases.
Reusing the same sample query Q over relations R, S, and
T as above, a provenance polynomial for a result tuple tR

may be t1 ⇤ t2 + t1 ⇤ t3. This polynomial indicates that
tR can be either obtained by joining source tuple t1 with
source tuple t2 (both tuples are required) or, it can be ob-
tained by joining t1 with t3. Originally defined for unions
of conjunctive queries, the framework has been applied to
nested XML data [73] and RDF [177] (together with why-
and where-provenance), adapted to queries with aggrega-
tion [11] (moving from semirings to semi-modules), and
studied for queries with relational difference [10], showing
that in general, the semiring framework cannot be extended
while satisfying expected equivalence axioms.

3.1.3 Where-provenance

Whereas why- and how-provenance can be considered as
annotating a result tuple tR with provenance involving tu-
ples from D, where-provenance aims at identifying where
data of tR (e.g., an attribute value) were copied from [33].
Hence, the provenance refers to specific locations, e.g., spe-
cific cells of a relational table. For instance, consider a
query Q = ⇧R.BR 1 S of relations R(A,B) and S(B,C)
and joining tuples t1 and t2, respectively. Then, the where-
provenance of the result tuple tR will always refer to the
attribute value of B in relation R, denoted R.B. Opposed to
that, the why-provenance {t1, t2} and the how-provenance
t1 ⇤ t2 of tR do not encode whether the result value of R.B

was copied from R.B or S.B.
An alternative view of where-provenance can be ob-

tained by annotating attribute values in D and then propa-
gating these annotations through the processing of Q all the
way to the result. Then, a result value can be associated to its
original location through the propagated annotation [22,34].

3.2 Provenance of missing results

Research on provenance of missing results aims at explain-
ing why some expected data are not part of a query result.
Fig. 4 divides provenance of missing results depending on
whether a solution produces instance-based, query-based, or
refinement-based explanations.

Analogously to the previous subsection, we structure the
discussion by first introducing the general input, output, and
query languages being supported by the individual methods.
We then discuss details on each type of explanation. The

next subsections discuss algorithms producing explanations
for missing query results for each explanation class.

Input. The input to algorithms explaining missing results,
as defined by the framework of [94] generally consists of a
5-tuple (TR, Q,Q(D), D,C), where TR = {tR1 , . . . , tRn}

is a set of conditional tuples [105] describing the missing
results, Q = {q1, . . . , qn} is a set of queries, Q(D) =
{q1(D), . . . , qn(D)} are the results of these queries over a
source instance D, and C is a set of constraints defined over
the remaining four components of the 5-tuple. As the de-
tailed discussion of individual methods below shows, most
methods limit Q (and consequently Q(D)) to one query
only. We further distinguish two types of input questions:
most methods support what we call simple why-not ques-
tions, where any tuple in TR either specifies missing results
by comparing their attribute values to constants only or join
conditions (i.e., comparisons between attribute values) only
refer to attributes originating from the same relation R 2 D.
In all other cases, the conditional tuples in TR are quali-
fied as complex why-not questions, e.g., if the missing tuple
(a, c) expresses a why-not question over the result of a query
q = ⇧R.A,S.C(R 1 S) . Finally, the constraints expressed
in C by different methods highly vary.

Output. The output, i.e., the explanation returned by
a method strongly depends on the class of explana-
tion (instance-based, query-based, or refinement-based).
Instance-based methods typically return changes to the in-
put database D that, if actually performed, would yield
query results that satisfy all conditions expressed in TR

while satisfying any additional constraints defined in C.
Source instance edit operations include tuple insertion, tu-
ple deletion, and value update in existing tuples. Opposed
to that, query-based approaches return, in different forms
(i.e., sets or polynomials), query conditions (joins and selec-
tions) that prune data present in D and that may contribute
to missing results as defined in TR. Finally, refinement-
based approaches may modify an original input setting
(TR, Q,Q(D), D,C) to (T 0

R
, Q

0
, Q

0(D), D,C) such that
T

0
R
2 Q

0(D) while satisfying the constraints C.

Queries. For methods focusing on relational queries (us-
ing relational algebra, Datalog, or SQL), we distinguish be-
tween conjunctive queries (with and without inequalities),
also called select-project-join (SPJ) queries, queries involv-
ing set union, queries involving aggregation and grouping,
and non-monotonous queries with set difference. Further
queries, such as (reverse) skyline queries or (reverse) top-
k queries have been studied as well.

Given the above input, output, and query characteristics,
we now survey specific algorithms, which are summarized
in Tab. 1 (relational queries) and Tab. 2 (other queries).

A survey on provenance 9

Method characteristics Explanation based on Queries
name input question explanation instance query refinement SPJ Union Aggregation Difference

Missing-Answers [101] simple source edits (insert / update) X X
Artemis [97] complex source table edits (insert) X X X X

PGames [114, 163] simple source table edits (insert) X X X X
Meliou et. al. [128] simple causes (tuples) and responsibility X X

Why-Not [43] simple query operators X X X
NedExplain [25] simple query operators X X X X

TED [23, 24] complex query operator polynomials X X X
Conseil [94] simple source edits (insert/delete) + operators X X X X X X

ConQuer [179] complex refined query X X X
FlexIQ [107] simple refined query and why-not question X X

EFQ [26] simple refined query X X
TALOS [180] complex refined query X X X

Table 1: Main characteristics of algorithms producing explanations of results missing from the result of a relational query

Algorithm Explanation Query
Instance-based explanations

Calv. et. al. [38] additions to ABox instance & conj. queries
over DL-Lite ontology

ten Cate et. al. [176] ontology concepts conj. queries with comparisons
Refinement-based explanations

He and Lo [92] q
0 = (k0

,W
0) top-k query q = (k,W)

He and Lo [93] q
0 = (k0

,W), T 0
R top-k (dominating) query

WQRTQ [77] q
0 = (k0

,W, t
0), T 0

R reverse top-k query q = (k,W, t)
Chester [48] T

0
R and constraints constrained skyline query

Islam et. al. [108] t
0
, T

0
R reverse skyline for query tuple t

Table 2: Summary of solutions providing explanations of
missing results for non-relational queries. All solutions sup-
port simple why-not questions. For refinement-based expla-
nations, returned explanations may refine both (components
of) the original query q to q

0 and components of the why-not
input (TR, {q}, {q(D)}, D,C).

3.2.1 Instance-Based Explanations

Relational queries. Missing-Answers (MA) [101] com-
putes instance-based explanations that either insert or up-
date the source data for a single missing result and a sin-
gle SQL query including selection, projection, and join. To
limit the number of returned explanations, trust constraints
allow to specify that certain tables or attributes cannot be
modified, thus preventing tuple insertions and value updates
on these. Overall, the input 5-tuple for the MA algorithm
is ({tR}, {q}, {q(D)}, D, {R,A}), with R being the set of
trusted relations and A the set of trusted attributes, and
tR being a simple why-not question. As example, consider
q = R 1 S with R = {t1} and S = ;. Clearly, the result
of the query is empty and one may ask the question why
we do not have any tuple (no matter the actual values), i.e.,
tR = [v1, v2, v3], where each vi is a variable on which no
further constraint applies. One possible instance-based ex-
planation is the insertion of a tuple [v2, v3] into S such that
v2 equals the joined value of t1. Alternatively, inserting a
pair of tuples that join together, i.e., [v1, v2], [v2, v3] into R

and S, respectively, would also yield a tuple satisfying the
template given by tR.

Artemis [97] generalizes MA to SQL queries involv-
ing selection, projection, join, union, or aggregation with

grouping. Furthermore, it supports complex why-not ques-
tions consisting of possibly more than one conditional tu-
ple over a set of queries (views) over a source instance D.
On the other hand, Artemis limits to instance-based expla-
nations that insert new tuples to D (i.e., updates to existing
tuples are not considered). Similarly to the trust constraints
defined by MA, Artemis allows to specify a set Qim of im-
mutable views where no data should be added. These views
may either be the sources (hence preventing insertions to D)
or views of part of Q that should not be affected by source
insertions, thus avoiding undesired side-effects of (potential)
source insertions on query results. In addition to prevent-
ing such side-effects, Artemis allows to specify that side-
effects should be minimized (in case they cannot be com-
pletely avoided) for given views Qm. In summary, Artemis
supports the input (TR, Q,Q(D), D, {Qim, Qm}), TR in-
cluding complex why-not questions. By leveraging the min-
imal witness basis [33], guarantees on the minimality of ex-
planations for conjunctive queries can be given.

Whereas the previous approaches specialize on explain-
ing missing answers only, the following two methods actu-
ally aim at unifying both provenance of existing results and
instance-based provenance of missing results.

Provenance games (PGames) [114, 163] do so by mod-
elling either a single existing tuple or a single missing tu-
ple as a won or lost game, respectively. By modelling the
query as a game, PGames are then able to retrace the dif-
ferent moves that lead to winning or losing the game (and
the result tuple). Essentially, winning paths provide how-
provenance equivalent to the semiring provenance [85] of
existing results whereas paths that lead to a loss translate
to an instance based explanation that describes which tu-
ples need to be inserted in D in order to obtain the miss-
ing result. The proposed method focuses on non recursive
Datalog and supports first oder queries. As the model con-
siders a single (missing) tuple and a single query without
any further constraints, the input characteristics summarize
as ({tR}, {q}, {q(D)}, D, ;).

Another approach unifying provenance of existing re-
sults and missing results leverages the concepts of causality
and responsibility [128]. Essentially, this methods relies on

10 Melanie Herschel et al.

the identification of a set of tuples D⇤
✓ D that either cor-

responds to the why-provenance of an existing result tuple
t 2 Q(D) or the instance-based explanation of a missing
result tR as determined for instance using [101] to iden-
tify causes and quantify their responsibility in contributing
to the (lack of) result tuple. More specifically, given D

⇤,
a tuple ti 2 D

⇤ is a cause of tR with a certain respon-
sibility depending on its contingency set. The contingency
set of ti includes all tuples in D

⇤ that should be updated
along with ti to obtain tR in the query result. The results
apply to conjunctive queries and simple why-not questions.
Within our framework, the input characteristics summarize
as ({tR}, {q}, {q(D)}, D, ;).

Ontologies. Whereas the methods discussed above focus on
relational queries, the following methods consider explain-
ing missing results in the presence of ontologies.

Calvanese et al. [38] study the problem of why-not
provenance for instance and (unions of) conjunctive queries
over description logic ontologies in DL � LiteA. The the-
oretical formalization and study leverage abductive reason-
ing. In summary, given a query q, a consistent ontology O

and a missing tuple tR, an instance-based explanation takes
the form of additions to the ABox that result in tR becoming
an answer while preserving the consistency of O.

While the work above considers explaining missing re-
sults over an ontology, ten Cate et al. [176] have studied
the problem of how to leverage an ontology to explain a
missing query result tuple. In this work, explanations gen-
eralize on the previous notion of instance-based explana-
tion as the returned explanations are composed of concepts
rather than data of the extension. More precisely, an expla-
nation of a missing tuple tR is a tuple of concepts from the
ontology whose extension includes tR while not including
any tuples from the query result q(D). The proposed frame-
work focuses on conjunctive queries with comparisons over
a database schema with a related ontology and supports sim-
ple why-not questions.

While instance-based explanations are typically consid-
ered user-friendly as they explain missing answers based on
examples from the data, all approaches suffer from the inher-
ent complexity of computing instance-based explanations
that comes from the fact that in general, a solution may have
to enumerate all possible explanations. Indeed, the number
of explanations grows exponentially (in O(NJ), where N

is the largest size of a relation in the schema of q and J

the number of joins in Q). In contrast to instance-based ex-
planations, query-based explanations, covered next, return
a much more concise explanation that can typically also be
computed more efficiently.

3.2.2 Query-based explanations

While instance-based explanations explain the missing re-
sult tR based on data, query-based explanations comprise
query operators potentially being responsible for eliminat-
ing a missing result from q(D), implicitly assuming that D
is correct and complete. In the previously given example,
a simple query-based explanation returns the join as culprit
operator, as it is too strict to return any result given D.

A first approach returning query-based explanations is
Why-Not [43]. While being motivated by providing why-not
provenance for scientific workflows modelled as directed
acyclic graphs, the solution applies to graphs where nodes
are operators from relational algebra (in particular, selection
projection, join, and union). In this setting, it takes as input
a tuple tR missing from the result q(D) of a relational query
q in the form of an algebraic query tree. First, it identifies
tuples in D that contain the constant values or that satisfy
the conditions of the simple missing-answer as specified by
tR while not being part of the lineage (as defined in [58])
of any result tuple. These tuples, named compatible tuples,
are then traced over the query operators to identify which
operators have them as input but not as output.

NedExplain [25] takes a similar approach to Why-Not
as it also traces tuples identified in the source relations over
a query tree representation of a relational query. However,
these compatible tuples are not restricted to source tuples
absent in the lineage of any result tuple. Based on this
modified base assumption and a novel formal definition of
query-based explanations, NedExplain computes a gener-
ally more complete, correct, and detailed set of explanations
than Why-Not. In addition, it supports queries involving se-
lection, projection, join, and aggregation (SPJA queries) as
well as unions of such SPJA queries.

An approach combining both query-based and instance-
based explanation has been proposed in [94]. It presents
both a unified framework for these two types of explana-
tions as well as an algorithm, named Conseil. Given a sin-
gle missing tuple and a relational query involving selection,
projection, union, aggregation, and a single set difference
(restriction for both complexity and usability reasons) rep-
resented as a query tree, Conseil returns hybrid explanations
that consist of two components (an instance-based compo-
nent and a query-based component). Intuitively, the explana-
tions describe in their query-based component what query
operators would be responsible for pruning compatible tu-
ples and hence the missing result should the source table
modifications described in the instance-based component be
performed.

As the above approaches consider the query as a tree of
relational operators, the explanations returned are not invari-
ant with respect to equivalent query rewritings. To remedy
to this problem, TED [24] proposes a framework that returns

A survey on provenance 11

equivalent query-based explanations for equivalent conjunc-
tive queries. Explanations take the form of polynomials in
analogy to how-provenance. Whereas the annotations of the
how-provenance semirings describe combinations of tuples,
the explanations returned by TED annotate the query and
describe combinations of query operators that prune combi-
nations of compatible tuples that may otherwise lead to the
missing tuple. For instance, an explanation for why a tuple
tR is not in the result of a query q = �A=5(R 1 S) may
read (in a simplified way for illustration and conciseness)
5 ⇤�+10 ⇤ 1 +3 ⇤�⇤ 1, meaning that among all compati-
ble tuples combined from source relations R and S, 5 would
satisfy the join but are pruned by the selection, 10 satisfy the
selection but not the join, and 3 neither satisfy the selection
nor the join. How to efficiently compute these query-based
explanations for unions of conjunctive queries and complex
why-not questions is discussed in [23].

The worst-case size of a query-based explanation varies
between the number of conditions in q, denoted cond(q) for
Why-Not and NedExplain and 2cond(q) for TED. The run-
time of the algorithms tracing compatible data through the
query tree is dominated by the time needed to iterate over in-
termediate query operator outputs of worst size NO (at most
once for every node in the logical tree of q) to check whether
a compatible tuple passed an operator. As for TED, its com-
plexity is in O(N |from(q)|), where N is the maximum size
of a source relation in the set of relations referred to in the
FROM clause of q, denoted from(q).

3.2.3 Refinement-based explanations

Refinement-based explanations encode how to modify a
query q or the specified missing results TR into a refined
query q

0 or missing results T 0
R

such that all tuples of T 0
R

2

q
0(D). In the relational context and reusing the same exam-

ple as previously, the query q may have to be rewritten by
replacing the join between R and S by a left outer join to
yield a result tuple.

Relational queries. ConQuer [179] returns rewritings of
an initial relational query (including selection, projection,
join, and aggregation) for possibly multiple missing result
tuples TR. In addition, it allows to specify constraints span-
ning multiple missing result tuples. In our general frame-
work, this can be modelled via the set of constraints C. The
returned refined queries all return the missing tuples in their
result while retaining all query results of the original query q

and possibly minimizing the appearance of side-effect tuples
not in TR [q(D). Changes to the query apply on the condi-
tions of the WHERE clause, if these are not sufficient, Con-
Quer further considers changes to the query schema. To re-
duce the number of side-effect tuples, the candidate queries
returned at this stage are further constrained with additional

conditions in the WHERE-clause. The refined queries Con-
Quer identifies are ranked based on their similarity to q and
the number of side-effects. A key concept that Conquer re-
lies on for both identifying selection predicates and ranking
queries is skyline computation [29].

Another approach relying on skyline computations is
FlexIQ [107] that aims at resolving both existing but unex-
pected as well as missing but expected query results. Both
these types of tuples are specified as part of the set of input
tuples. Focusing on SPJ queries, FlexIQ computes refine-
ments of q such that the query result of these refinements
include all expected but missing tuples, removes all unex-
pected tuples and retains all remaining tuples from the ini-
tial query result q(D). When no exact query refinement can
be found, the algorithm suggests an approximate solution by
refining the set of missing tuples.

EFQ [26] presents a framework producing rewritings of
SPJ queries to include a missing result tR in the result of
a given query q. While being similar to ConQuer, it reduces
the search space of rewritings by leveraging previously com-
puted why-not provenance polynomials [23]. In addition, it
also considers rewriting joins to outer joins.

Opposed to the above methods relying on skyline com-
putations, TALOS [180] relies on decision trees. TALOS has
originally been developed to solve the problem of generat-
ing instance equivalent queries that, given a set of result tu-
ples T and optionally an initial query q, generate the same
output set T if executed over the same input dataset. By set-
ting T to include all results of a query and missing tuples,
i.e., T = q(D) [TR, this method can be used to produce
refinement-based explanations for missing tuples. The solu-
tion proposed focuses on queries with selection, projection,
join, and aggregation and supports complex why-not ques-
tions. The changes applied to the initial query are analogous
to those described for ConQuer.
(Reverse) top-k queries. Refinement-based explanations
have been considered beyond relational queries and we be-
gin the discussion of these techniques with solutions for an-
swering why-not questions for top-k queries and reverse top-
k queries. In general, a top-k query is a query q = (k,W)
for the k best tuples in a dataset based on a ranking func-
tion assigning the weights in W to corresponding relation
attributes. In this context, He and Lo [92] have studied re-
fining q by queries q0 = (k0,W 0) to answer the question why
a set of missing tuples TR are not part of the result of q. In-
tuitively, the refined query q

0 includes all tuples in TR in its
top-k’ results. Note that the refined queries are not required
to retain all results (or a subset thereof) of q(D). As solv-
ing the exact problem is computationally prohibitive, the au-
thors propose an approximate algorithm based on sampling
of weighting vectors and that is optimized to avoid unnec-
essary computations of refined queries, identified as queries
dominated by previously computed queries. These methods

12 Melanie Herschel et al.

are adapted to top-k dominating queries [93] that return the
top-k tuples based on the number of tuples that they domi-
nate. Again, the why-not question asks for a set of tuples TR

not in the result of q. However, the rewritten queries refine
k to k

0 and possibly also TR to T
0
R

.
We now discuss query refinement for answering why-not

questions on reverse top-k queries. Given a set of tuples and
a set of preference vectors, a reverse top-k query returns, for
a particular tuple t, the set of preference vectors that contain
t in their top-k result. A why-not question over the result of a
reverse skyline query expresses why certain preference vec-
tors TR are missing from the result of a reverse top-k query.
WQRTQ [77] proposes a framework to answer such why-
not questions by refining TR (i.e., the preference vectors of
the why-not question), the tuple t, or k. To find an optimal
solution, methods minimizing a penalty score that measures
the difference of the proposed rewriting to the original set-
ting are proposed.
(Reverse) skyline queries. As final type of query for which
answering why-not questions has been considered, we sum-
marize approaches focusing on skyline queries and reverse
skyline queries. In general, a skyline query returns all tuples
that are not dominated by any other tuples. One variant of
skyline queries named constrained skyline queries [155] al-
low further constraints on the value range of attributes. For
such constrained skyline queries, Chester and Assent [48]
propose refinement-based explanations for why-not ques-
tions that ask why a certain tuple tR is not in the skyline
returned by a skyline query. The refinement focuses on mod-
ifying the constraints of the constrained skyline query and
may extend to refining tR.

The definition of reverse skyline queries is based on the
definition of dynamic skyline queries [155]. Essentially, the
dynamic skyline for a given query tuple t includes all tu-
ples that are not dominated by other tuples according to
their distance to the query tuple t. Then, the reverse skyline
query [66] of a query tuple t includes all tuples that have t in
their dynamic skyline. In this context, the why-not question
as defined in [108] asks why a certain tuple tR is missing
from the reverse skyline of a query tuple t. As refinements,
the algorithm proposed in [108] returns refinements to t or
tR such that the refined missing tuple t

0
R

appears in the re-
verse skyline of the refined query tuple t

0 and that all tuples
previously returned as part of the reverse skyline are retained
in the result of the refined query.

While we can generally say that the number of expla-
nations returned by refinement-based approaches is expo-
nential in the size of updatable input fragments, we cannot
make general comments on the computational complexity as
the discussed solutions employ different algorithms and op-
timizations for different queries. A more detailed discussion
would require significantly more space and is thus out of the
scope of this paper.

Workflow	
Provenance

Domain

FormGranularity

BusinessScience Data	Analytics General	
Programming

Fine-Grained

Coarse-
Grained

Prospective

Retrospective

Evolution

Fig. 5: Workflow Provenance Overview

4 Workflow provenance

Fig. 5 distinguishes work on workflow provenance, which
has emerged more than ten years ago [6,20,150], along three
dimensions based on their domain of application, its granu-
larity, and the form of captured provenance.

We identify four major domains: business, science, data
analytics, and general programming. While the first two
domains are adopted from previous surveys on workflow
provenance [74, 136, 162], the latter ones reflect recent ad-
vancements in workflow provenance research. Concerning
the granularity of captured provenance, it may vary between
coarse-grained and fine-grained provenance. The form of
provenance is the third dimension we consider. In this sur-
vey, we focus on work made since [74] in the field of retro-
spective, prospective provenance, and evolution provenance.

Before delving into the details of the individual dimen-
sions, we describe the general input, output, and processes
(i.e., workflows) covered by worfklow provenance.

Input. Workflow provenance solutions commonly obtain
provenance based on the input I = (W,D,C): W repre-
sents the workflow definition in form of a directed graph,
i.e., W = (M,P) where M is the set of nodes representing
workflow modules while the edges P describe dependen-
cies between the modules. D refers to the input data (could
be structured relational data, nested semi-structured data or
even unstructured data). In order to process D, (modules of)
the workflow W may require execution parameters, which
are input through the execution context C.

Output. Depending on the application of the provenance,
the level of available instrumentation, and further input
properties, the form and granularity of output provenance
may vary. For instance, it may be fine-grained, i.e., at the
level of individual data items processed by a workflow,
which is similar to the output of data provenance solutions
of existing results. Opposed to that, the output may limit to
modifications made on the workflow definition, parameters,
or other input. We discuss the different forms and granular-
ities of the output further below.

Workflows. The general graph model for a workflow intro-
duced above covers different, more constrained graph mod-
els, which, as we will see, coincide with workflow types

A survey on provenance 13

Solution Granularity Form
Coarse Fine ProspectiveRetrospectiveEvolution

Science
DFL [1] X X X

Galaxy [84] X X X
Kepler [6, 32, 126] X X X X X

Taverna [5, 131, 135] X X X X
VisTrails [20, 37, 75] X X X
WebLab PROV [8] X X

Business
[59, 125, 171] X X

[172] X X
Data Analytics

Ariadne [82] X X X
Differential DF [52] X X X

HadoopProv [3] X X X
Inspector Gadget [153] X X X

Lipstick [9] X X X
Newt [122] X X X

RAMP [104] X X X
Titian [106] X X X

General Programming
Jif [144] X X X X

LLVM/SPADE [79, 175] X X
NoWorkflow [143, 158] X X

No+YesWorkflow [69, 159] X X X X
Pimentel et al. [160] X X
RDataTracker [120] X X

Starflow [15] X X X
YesWorkflow [127] X X

Table 3: Overview of Workflow Provenance Solutions

used in different domains. For instance, depending on the
domain, edges in P may represent data or control depen-
dencies, the graph may be restricted to acyclic graphs, etc.
Based on the general graph model, let us further define a
generic execution model, which we will reuse later on. In
general, we assume that a workflow module m 2 M is a
black-box where we have no knowledge about its semantics
or performed computation. Then, m requires input data Im

and execution context Cm to produce output Om. The exe-
cution of a workflow yields an execution log or trace T . T is
a directed acyclic graph T = (E,CD) where E represents
events occuring during workflow execution (i.e. activation
of modules in the workflow) and CD represents causal de-
pendencies between these events (i.e. the temporal order of
the activation of modules in W).

We now discuss the different dimensions depicted in
Fig. 5. Tab. 3 summarizes the discussion. The focus of this
section’s discussion is on the type of provenance captured by
workflow systems. Further aspects such as accessing, query-
ing, or exploring provenance are out of the scope of this sec-
tion and are topics further discussed in [74, 162].

4.1 Granularity

Provenance solutions generate outputs with different levels
of details. The two ends of the spectrum are coarse-grained
and fine-grained provenance [32, 136, 173], however, note
that solutions may produce provenance between these two
extremes. In this context, knowledge about the internal be-
havior of workflow modules plays an important role. When

modules’ internal behavior or semantics are unknown, the
modules are referred to as “black boxes”. Other modules
may have a well specified and documented internal behavior
and are called “white boxes”.

Coarse-grained provenance. In the most general setup,
M consists of black box modules only. As a consequence,
provenance solutions may - in general - not be capable to
provide derivation information on individual data items pro-
cessed by a workflow. They rather rely on the assumption
that the output data of a module depends as a whole on its
full input and context [5,136,173]. More formally, we qual-
ify provenance as coarse-grained if the entire output Om of a
module m 2 M depends on its input Im as a whole and the
complete execution context Cm, and this for all modules in
M . That is, we have 8m 2 M : m ⇥ Im ⇥ Cm ! Om.
Coarse-grained provenance is not detailed enough to ex-
press the individual derivation paths of seperate data items
o 2 Om. It is also referred to as provenance of the workflow
in other publications [61]. In our later discussion of individ-
ual solutions, note that when not mentioned otherwise, the
systems at least support coarse-grained provenance.

Fine-grained provenance. In the most specific setup,
provenance solutions can provide the derivation process of
individual data items. Typically, these solutions either ex-
ploit knowledge about the internal behavior of white box
modules in the workflow or about processing properties.
Some systems pipeline individual items through the work-
flow. The provenance solutions can exploit this behavior
to provide provenance for individual data items. We call
provenance at such a level of detail fine-grained prove-
nance [8,122,158]. It reflects that an item o 2 Om produced
by a workflow module m 2 M may not depend on the com-
plete input Im and entire context Cm, but only on subsets
I
0
m

✓ Im and C
0
m

✓ Cm. The finest-grained provenance is
obtained when, 8m 2 M, 8o 2 Om : m⇥I

0
m
⇥C

0
m

! o and
I
0
m

and C
0
m

are both minimal. A synonym for fine-grained
is provenance of the data [61].

Relationship to data provenance. Even though single data
items are tracked with fine-grained provenance, it is not nec-
essarily the same as data provenance. According to our type
hierarchy shown in Fig. 1, data provenance restricts to the
most specific type of process where queries are based on op-
erators with clearly defined semantics. Given our definition
of fine-grained workflow provenance, it now becomes evi-
dent that the transition between data and fine-grained work-
flow provenance is smooth. Work on workflow provenance
recognizing and working towards unifying these two types
of provenance include [1, 9, 119]. However, these limit the
considered workflow modules to modules mapping to nested
relational calculus. Within workflow provenance, we cover
the whole spectrum from the finest granularity resembling
data provenance to coarse-grained workflow provenance.

14 Melanie Herschel et al.

4.2 Prospective, retrospective, and evolution provenance

In addition to exhibiting different provenance granularities,
workflow provenance also differs in the form of the sup-
ported provenance, where we distinguish between prospec-
tive provenance, retrospective provenance, and evolution
provenance. This reflects the common classification adopted
for workflow provenance [74,136,143,160]. All three forms
are independent from one another. Hence, a provenance so-
lution may support only one, two, or all three of them.
Prospective provenance. Prospective provenance captures
the structure and static context of a workflow. It is indepen-
dent of any workflow execution or input data. Hence, prove-
nance solutions statically derive it from the workflow defini-
tion W and pre-specified parameters part of C. That is, the
input limits to I = (W, ;, C).

Across different domains, prospective provenance is
used to provide an abstracted overview of a workflow [5,69].
Prospective provenance solutions can reveal control flow as
well as coarse-grained dataflow dependencies.
Retrospective provenance. Retrospective provenance is as-
sociated with the information about a workflow execution,
i.e., with information becoming available when actually run-
ning the workflow. This information includes facts about the
execution of each workflow step as well as the runtime en-
vironment. Retrospective provenance also preserves infor-
mation on the resources that are accessed or generated dur-
ing execution. Formally, provenance solutions may access
all input parameters I = (W,D,C) to obtain retrospective
provenance. A common and general approach to capture ret-
rospective provenance involves the instrumentation of the
workflow or its execution environment. The instrumentation
allows for obtaining an execution trace T during workflow
execution. The trace T often becomes an essential part of
the output generated by the provenance solution.
Evolution provenance. Evolution provenance reflects the
changes made between two versions of the input I and I

0.
These changes may apply on W , D, or C. Whenever at least
one of them is altered the provenance solution keeps track of
those changes. Evolution provenance alleviates rapid itera-
tions on various data, parameters, and workflow manipula-
tions [6, 37]. This form of provenance is also called prove-
nance of the (development) process in the domain of scien-
tific workflows [133].

Even though presented as separate classes, provenance
solutions may consider combining the different forms. For
instance, the ProvOne standard proposal3 considers all three
forms of provenance. Prov2ONE generates as provenance a
graph containing prospective provenance from the workflow
definition and automatically adds retrospective provenance
when available [161]. In the context of scientific workflows,

3 http://vcvcomputing.com/provone/provone.html

all forms of provenance support the workflow developers.
For instance, prospective provenance, especially in the form
of annotations about module semantics, may help to under-
stand the retrospective provenance of a workflow execution
and ease collaboration as well as workflow and data explo-
ration [5,40]. Evolution provenance can accelerate the deci-
sion process about the correct module semantics since mul-
tiple workflow executions can be compared. In general pro-
gramming, solutions exist that combine prospective and ret-
rospective provenance [69, 159]. These solutions allow for
answering provenance questions no solution supporting only
one form of provenance is able to answer.

4.3 Application domains

Workflow provenance has been employed in a variety of do-
mains like experimental science, business, data analytics,
and general programming. As we will see shortly, the do-
mains are tightly coupled with different sets of restrictions
on the general workflow graph model we have introduced.
Again, the defined classes should not be considered as ex-
cluding each other. In the following, we describe character-
istics of workflows and provenance solutions in the different
domains and link back to the discussion on the form and
granularity of generated provenance.

4.3.1 Scientific workflows

Scientific workflows are typically created, managed, and
executed in scientific workflow management systems
(SWfMS). They have emerged for multiple scientific appli-
cations. For instance, Galaxy, Taverna, and Kepler originate
in research on biomedical subjects like genome research or
life sciences [32, 84, 150]. WebLab is designed for multi-
media information processing [8]. Pegasus provides exam-
ples on astrophysical research [65]. VisTrails collects prove-
nance on the exploration and analysis of environmental,
medical, or other scientific data [20, 37].
Workflow characteristics. Scientific workflows have ini-
tially been modelled in a data-driven way. Thus, the edges P
of the workflow graph describe data dependencies, leading
to acyclic graphs [65, 131]. Some SWfMSs (e.g., [32]) also
allow to model control flow to some extent (e.g., control-
loops), so resulting workflows may contain cycles.
Granularity. Especially in the domain of scientific work-
flows, initial efforts focus on collecting coarse-grained
provenance [6, 150]. For instance, Kepler, Galaxy and Tav-
erna collect module execution time and status [6, 84, 131].
This is part of the collected coarse-grained provenance since
it is linked to a module as a whole rather than to individ-
ual tuples. Similarly, module annotations contribute to the
coarse-grained provenance information [5, 6]. Fine-grained

A survey on provenance 15

provenance solutions for SWfMSs collect data dependencies
between individual data items. For instance, WebLab PROV
is capable to track individual items in nested XML arte-
facts [8]. Taverna and Kepler provide similar means to cap-
ture the derivation paths of single data items [32, 135, 151].
Form. Many provenance solutions in the scientific domain
allow to collect retrospective provenance at any granular-
ity [6, 8, 150]. Their output typically is a provenance graph
that is based on the execution trace T . Further solutions fo-
cus on capturing prospective provenance as well. They may
not only rely on static workflow analysis, but also on anno-
tations [5]. Evolution provenance is, for instance, supported
by Kepler [6] or Vistrails [75]. One goal of evolution prove-
nance is an extension of the W3C PROV model [130]. Initial
ambitions by Missier et al. have led to the D-Prov exten-
sion [133], which has evolved to the ProvOne standard pro-
posal. Oliveira et al. show that it is possible to map prove-
nance data from multiple SWfMSs to the ProvOne standard,
indicating the feasibility of the standard [152].
Overhead. The evaluation of existing provenance solutions
in the scientific workflow provenance domain has a clear fo-
cus on qualitative aspects. Regarding runtime or space over-
head for collecting provenance, no actual performance num-
bers or complexity analysis are provided.

4.3.2 Business workflows

Business workflows accompany and support processes be-
tween and within companies.
Workflow characteristics. Business workflows consist of
multiple activities, tasks, or events that may involve human
interaction. Unlike scientific workflows, they are driven by
the control flow [136]. That is why the edges P of a business
workflow W represent control flow. Data flow is typically
not even explicitly modelled in business workflows.
Granularity. Business process solutions mostly collect
provenance at the granularity of individual files [59,171]. A
major challenge in collecting provenance for business work-
flows is to identify collection points for provenance and to
establish a generic provenance model [125]. It may even
be necessary to infer data dependencies from the execu-
tion order of workflow modules [172]. As a consequence,
the provenance solutions are often not able to track the ori-
gin and derivation path of individual data items within each
file [59]. Tan et. al point that business workflows are of-
ten assembled from web services whose internals are not
known. These services do not allow for tracking fine-grained
provenance out of the box [172]. However, provenance so-
lutions typically track information about the origin, history,
and invocation of the web service [136].
Form. In the contex of business workflows, provenance is
often used for auditing, regulatory compliance, accountabil-

ity or trustworthiness. Thus, the provenance solutions typi-
cally focus on retrospective provenance [59, 172].

Overhead. In this domain, recording of provenance is often
required for legal compliance, rendering provenance track-
ing mandatory. That may be one reason why the work cited
in this section does not provide overhead measurements.

4.3.3 Data analytics

A third group of systems are the data analytics engines. Even
though data analytics programs are typically data driven
as the name implies, they differ from the above workflow
systems. They do not originate in interdisciplinary sciences
like scientific workflow systems and business process man-
agement tools. Their original purpose is to process semi-
structured or unstructured data from heterogenous sources.
Popular representatives of data analytics engines include
Hadoop [184], Hive [178], Pig [154], and Spark [187]. For
some of these engines provenance extensions are developed
to deeply understand execution results and debug programs
[9, 104, 106]. Initial provenance research has covered espe-
cially low level map/reduce engines like Hadoop as RAMP,
Newt, and HadoopProv show [3, 104, 122]. Since imple-
menting low level chains of map-reduce jobs is rigid and
yields a noticeable amount of custom code for recurring
problems [154] higher level languages like Pig [154], Hive
[178], and Spark [187] have emerged. They simplify the im-
plementation of complex data analytics programs by provid-
ing high-level, declarative modules like join, merge, or filter
with clear semantics. Provenance solutions like Titian [106],
Lipstick [9], and Inspector Gadget [153] are tailored to these
higher level languages. Some solutions are custom-made for
special applications, e.g., Ariadne is designed to efficiently
record provenance information for streaming data in data an-
alytics engines [82].

Workflow characteristics. Similarly to scientific work-
flows, data analytics workflows are data-driven. Thus, the
edges P generally describe data dependencies between data
manipulating modules M . Control dependencies like loops
as known from business workflows do not belong the pre-
defined repertoire of possible operations. The workflow
graph W itself is acyclic [154, 178, 187].

Granularity. Provenance solutions for data analytics sys-
tems provide fine-grained provenance, which for these sys-
tems subsumes coarse-grained provenance as well. They
capture the derivation path of individual data items [104,
106]. Amsterdamer et al. focus explicitly on data items in
nested data structures [9]. They describe a formal model
for Pig Latin that combines fine-grained and coarse-grained
provenance. It reflects the internal state of the workflow
models as well as fine-grained data dependencies. Chothia
et al. add the modification time for each item and mod-

16 Melanie Herschel et al.

ule to provide exact provenance for workflows with non-
monotonic modules [52].

Form. Similarly to scientific workflow solutions, solutions
instrument data analytics systems to collect retrospective
provenance during workflow execution. Lipstick, Titian,
RAMP, Newt, and others collect fine-grained retrospective
provenance [9,104,106,122]. To the best of our knowledge,
no work focusing on prospective or evolution provenance
has been published in the domain of data analytics.

Why- and how-provenance. All solutions mentioned above
allow to track individual data items. However, they do not
capture how the manipulation of each module contributes
to the manipulation. Therefore, all of the solutions sup-
port what we describe as why-provenance in Sec. 3. Only
Amsterdamer et al. [9] and Chothia et al. [52] target how-
provenance in the sense of Sec. 3. They store the prove-
nance in a graph rather than provenance polynomials. It
keeps track not only of the derivation path of a data item but
also of the manipulation process each data item undergoes.

Monotonicity limitations. Most provenance solutions for
data analytics provide accurate provenance only in deter-
ministic workflows that contain one non-monotonic mod-
ule at most [52]. A module m is considered monotonic if
for any input data I

0
m

✓ Im the constraint O
0
m

✓ Om

holds [104]. While map-modules are inherently monotonic,
many complex modules including reduce-modules may vi-
olate this constraint. Examples of violating modules include
top-k modules [104], a stable-matching modules [52], or a
reduce module that emits only those data items which exclu-
sively occur in either of two input datasets [52]. Chothia et
al. describe a provenance solution for analytics systems that
allows for precise provenance tracking in workflows with
more than one non-monotonic module. That is possible, be-
cause they record not only the derivation path but also the
logical time at which a data item is manipulated.

Overhead. Works in the data analytics domain report space
and time overhead of recording provenance (compared to
an execution not collecting provenance). However, the eval-
uation is not based on a unified benchmark. Dataset sizes
range from ten to hundred thousands of tuples [9], over a
few Gigabytes [153] to hundreds of Gigabytes [3,104,106].
The runtime overhead reported across the solutions ranges
from about 10% [3, 106, 122] in good cases to more than
100% in unfavorable test scenarios [9, 122]. To the best of
our knowledge, no formal complexity analysis on collecting
provenance in data analytics systems has been conducted.

4.3.4 General programming

Provenance solutions for general purpose programming lan-
guages like C++, Java, or Python have become subject to re-
search in the recent years. Unlike, for instance, SWfMSs, the

languages do not come with inherent provenance support.
As a consequence, multiple different approaches to collect
provenance are under research.

Workflow characteristics. Workflow graphs W derived
from programs written in general programming languages
may contain edges P representing data dependencies (i.e.,
changes of variable values) as well as control dependencies
(i.e. control loops or conditions). A consequence of the mix-
ture also is the presence of cycles in W .

Granularity. Both fine-grained and coarse-grained prove-
nance solutions for programming languages exist. For in-
stance, noWorkflow collects fine-grained provenance for in-
dividual variables or items in collections [143]. In contrast,
YesWorkflow provides coarse-grained provenance by limit-
ing provenance information to the level of function bound-
aries [127]. We observe that in this domain, several solutions
refer to fine-grained provenance. While these solutions in-
deed capture more details than those they compare to (and
are thus finer-grained), they do not qualify as fine-grained
according to our definition.

Form. In the context of programming languages, all forms
of provenance are under research. For instance, the prove-
nance solutions Starflow [15] and NoWorkflow [143] aim
at collecting fine-grained, retrospective provenance for each
individual global and local variable. While Starflow and Jif
require modifications or explicit modelling during the pro-
gram definition, noWorkflow handles unmodified programs.
In contrast to the named solutions, YesWorkflow generates
prospective provenance [127] from annotations. It extracts
building blocks and data dependencies solely from annota-
tions made in a dedicated annotation language. Relying not
only on a static analysis but also on annotations is common
to collect prospective provenance in this domain [69, 127].
Efforts to combine retrospective and prospective provenance
in the domain of general programming are also advanc-
ing [69,159]. Recent research also puts emphasis on collect-
ing evolution provenance for programs. Pimentel et al. [160]
propose a solution based on noWorkflow that captures modi-
fications to the program definition along with their execution
provenance. For each program execution, input data, results,
and the current version of the program are recorded.

Utilized languages. Many provenance solutions work
across different languages [127, 143, 175]. NoWorkflow
[143, 158], YesWorkflow [127], RDataTracker [120], and
Starflow [15] aim at interpreted languages like Python, R, or
Matlab. Provenance extensions also exist for compiled lan-
guages like C or C++. Tariq et al. introduce SPADE, a prove-
nance solution capable of tracking and analyzing prove-
nance from multiple possibly distributed sources including
sources compiled with an extended LLVM compiler. It adds
provenance instrumentation at compile time [79,175]. In or-
der to provide security guarantees on the data being pro-

A survey on provenance 17

cessed the Jif programming language extends Java to inter-
nally capture the information flow [144]. Even though work
on information flow security considerably resides in the con-
text of provenance, a more detailed discussion on it is out of
scope and can be found in [165].
Provenance capture. While many solutions have in com-
mon that they are applicable to multiple languages, their ap-
proach to track provenance differs. The first group of prove-
nance solutions relies on program annotation or instrumen-
tation. For instance, YesWorkflow obtains its provenance
graph from annotations associated with each function def-
inition [127]. Similarly, RDataTracker requires provenance
library calls for each method in order to build a provenance
graph [120]. The Jif programming language explicitly taints
all data processed in a program [144]. In contrast to this
group, the second one does not require any modification to
the script. NoWorkflow belongs to this group [143]. It em-
ploys program slicing to identify data dependencies [158].
A third group of solutions makes use of both explicit prove-
nance modifications to the program as well as transpar-
ent provenance collection. For instance, Starflow can track
provenance without annotation. However, expressiveness
and understandability of the provenance improves in case
annotations are available [15]. Dey et al. and Pimentel et
al. combine YesWorkflow and NoWorkflow to combine the
more abstract, simpler to understand YesWorkflow prove-
nance with the more detailed, less comprehensible NoWork-
flow provenance in order to obtain well-explorable prove-
nance with a high degree of details [69, 159].
Overhead. Evaluations provided in works in this domain
focus on a qualitative assessment of the provenance expres-
siveness. An exception is SPADE [175]., where they report
a runtime overhead of about 5% to 14% for provenance
collection. Further quantitative measurements and detailed
complexity analyses are yet to appear.

5 Requirements

Collecting, querying, or analyzing provenance of different
types to achieve the various applications summarized in
Sec. 2 needs to be performed within given system and ap-
plication requirements. The choice of what provenance so-
lution is best suited depends on various requirements, such
as runtime or interoperability. This section presents a clas-
sification of system requirements to be taken into account
and discusses different methods considering and possibly
proposing optimizations with respect to these requirements.

5.1 Requirement classification

Fig. 6 summarizes the proposed requirement classifica-
tion. Runtime focuses on the time “lost” for leveraging

System	Requirements

Runtime
Query	processing

Provenance	capture

Memory	footprint Storage

Main	memory

Scalability Data	volume

Interoperability

Standards-based

Proprietary

Query	expressiveness

Search

Navigation

Structured	queries

Integration
Decoupling

Extension
Security	&	Privacy

Access	control

Sanitization
Fault	tolerance

[13,	112,	171]	

[3,	4,	9,	23,	25,	118,	141,	153,	167]	

[2,	3,	14,	18,	41,	42,	52,	59,	129,	141,	189]	

[9,	23,	106,	140,	142]	

[3,	4,	28,	56,	67,	76,	106,	124,	140,	171]	

[31,	39,	56,	131,	133,	134,	148]	

[13,	28,	49,	74,	80,	141]	

[9,	13,	28,	49,	102,	120,	124]	

[13,	80,	112,	129,	141]	

[3,	4,	106]		

[3,	4,	106,	111,	120]	

[56,	142]	

[17,	35,	44,	49,	129,	147,	156]	

[27,	36,	45,	70,	103,	132]	

Fig. 6: Classification of requirements

provenance, and divides into cost of processing provenance
queries and the cost for capturing provenance. Leveraging
provenance typically also requires access and usage to both
main memory and storage, leaving a memory footprint. Scal-
ability requirements may apply, in particular on the data vol-
ume (of processed data and provenance). Another require-
ment is interoperability of provenance-enabled systems to
easily exchange provenance, for which both standards-based
or proprietary solutions apply. Concerning the query expres-
siveness of provenance queries, we distinguish between (se-
lective) search queries, navigation queries, and structured
queries. When it comes to system integration of the prove-
nance capabilities, requirements vary from possibly tightly
integrating provenance capabilities by extending the original
program code to necessitating a decoupling of provenance
management and the system for which provenance is used.
As for any application handling data, security and privacy
may be issues and systems may require different access con-
trol strategies and sanitization (or abstraction) techniques.
Finally, fault tolerance plays a role especially in modern,
highly distributed environments. We point out that there is
a minor overlap of our proposed classification with a classi-
fication of provenance purposes [87]. The overlap limits to
scalability, query expressiveness, and interoperability.

The following discussion provides examples of prove-
nance systems where specific requirements have been ex-
plicitly considered and optimized for. The list of citations
is not intended to be complete but to illustrate different as-
pects within the classes of the requirements classification.
Note that Fig. 6 also summarizes the examples (by refer-
ence) provided in each class.

18 Melanie Herschel et al.

5.2 Runtime

We distinguish approaches optimizing runtime during
provenance query processing or during provenance capture.
Query processing. As we have seen, different types of
queries apply in provenance (further see Sec. 5.6). Conse-
quently, different query optimization techniques apply. For
instance, provenance browser [13], a visualization tool for
provenance, uses optimization techniques proposed in [12]
to improve user’s query performance. Specialized indexing
techniques for accelerated query processing have also been
explored, e.g., in [112, 171].
Provenance capture. Many systems and algorithms, in-
cluding [3, 4, 9, 23, 25, 118, 141, 153, 167] develop solutions
to reduce provenance capture runtime overhead or at least
experimentally study the runtime overheads. Optimizations
are considered at various levels, from the way provenance
is physically or logically modelled to algorithmic optimiza-
tions. Another aspect influencing the runtime of provenance
capture is the choice of whether or not to capture prove-
nance in an eager or lazy way [46]. Whereas eager prove-
nance capture computes (and stores) provenance during pro-
cessing, lazy provenance capture computes (selected) prove-
nance when requested by a provenance query. Typically, ea-
ger provenance adds a higher one-time runtime overhead but
improves query processing runtime, while lazy provenance
capture has a priori less runtime overhead during processing
at the price of a higher query processing runtime.

5.3 Memory footprint

Provenance solutions require memory resources, both on
disk or main memory.
Storage. Concerning the storage on disk, optimizations re-
ducing the required storage space of provenance either re-
search adequate data models (e.g., [14, 18]) or opt for re-
ducing the amount of provenance to be stored. The latter
can be done either by restricting to an excerpt of the prove-
nance [41, 52, 59, 129] based on application need or user-
specification, or computing and storing provenance sum-
maries (either exact, e.g., [14,42] or approximate [2]). These
techniques typically incur some information loss that may
however be acceptable for different types of applications.
While not all provenance systems focus on optimizing re-
quired storage, several systems (e.g., [3, 141, 188]) provide
experimental evidence to showcase the acceptable storage
overhead incurred by provenance capture.
Main memory. Provenance-enabled systems primarily use
main memory to perform caching of intermediate results.
This typically aims for faster provenance capture [9,23,106,
140, 142]. However, we are not aware of any work studying
or optimizing the load put on main memory when adding
provenance capabilities to a system.

5.4 Scalability

Provenance systems must be capable to handle large
amounts of provenance data that applications produce.

Ensuring the scalability to large volumes of data in a
system’s backend is possible by taking advantage of paral-
lelization. For instance, Swift [76] includes a parallel script-
ing language and proposes a data model for recording and
querying scientific workflow provenance. Swift supports
scalability as it records provenance in large and distributed
workflows. However, its storage management is not cur-
rently scalable and querying provenance can take a long
time to execute. Another approach to enable scalability in
the backend is to leverage and extend scalable systems (e.g.,
Cloud solutions or Map Reduce programs). This strategy is
adopted by [3, 4, 56, 106, 140, 171].

As for scaling to large volumes of provenance data at
the front-end, MapOrbiter [124], Inprov [28], or [67] in-
clude solutions to visualize and interact with large volumes
of provenance. Both employ clustering of provenance en-
tities to avoid the presentation of a cluttered provenance
graph. However, clustering methods differ in the two works,
indeed, MapOrbiter uses semantic information to group re-
lated nodes whereas InProv uses temporal clustering of in-
formation recorded in the same period.

5.5 Interoperability

Interoperability describes the ability of a provenance-
enabled system to exchange provenance with other systems
and to combine provenance produced by multiple systems.
Standards-based. To facilitate the exchange between
provenance systems, standardization efforts have led to
the definition of a W3C standard. A first standardiza-
tion effort was the Open Provenance Model (OPM) [138],
adopted in several workflow provenance systems such as
Taverna [131, 134], Karma [39], Kepler-Hadoop [56] and
COMAD-Kepler [31]. The W3C PROV [130] standard is
deeply inspired by OPM. Several approaches further extend
the standard [133, 148].
Proprietary. Despite the above standardization efforts, we
observe that its adoption is not yet widely spread and that
many tools, even though allowing for provenance export and
import, rely on proprietary formats for exchanging prove-
nance using a variety of data models, including semantic,
relational, and semi-structured ones.

5.6 Query Expressiveness

Concerning the expressiveness of provenance queries, we
distinguish between (selective) search queries, navigation
queries, and structured queries.

A survey on provenance 19

Search queries. Several systems [13, 28, 74, 80, 141] allow
to query the provenance graph through easy to use search
queries such as searching by items (e.g., [49]), by time (e.g.,
[28]), or by kind of elements tracked (e.g., [13]).
Navigation. The extension of a dependency edge in a prove-
nance graph and changing granularity (ZOOM IN/OUT) is
for instance adopted in Map Orbiter [124], Provenance Cu-
rious [102], Provenance explorer [49], RDataTracker [120],
Lipstick [9], and InProv [28]. We consider these as navi-
gation queries through the provenance graph. Incremental
queries provided by Provenance browser [13] also qualify
as navigation queries since these allow to move, in the con-
text of one perspective on provenance to the next.
Structured query languages. The most expressive from of
queries are structured query languages. Since many prove-
nance systems use relational, XML, or RDF storage, they
support querying provenance by leveraging the correspond-
ing query languages. Indeed, they customize existing query
languages like XPath, SQL, or SPARQL in order to query
the provenance store (examples include PERM [80], PQL
[141], QLP [13], VQL [129], and ProQL [112]).

5.7 Application Integration

There are different means in extending an existing system
with provenance capabilities. Provenance management can
either be done at a layer decoupled from the main processing
engine or a tight integration is implemented by extending the
processing engine with provenance capabilities.
Extension. The tight integration implemented by extending
the code of systems or the environment (e.g. the kernel) in
which provenance should be tracked is a commonly adopted
technique (e.g., [56, 72]). However, such tight integration is
typically hard to implement for an already operative system
and may not adapt well to new versions of the underlying
(extended) software. Clearly, this imposes a high mainte-
nance burden on the extended software.
Decoupling. Examples of systems capturing provenance by
providing provenance-management decoupled from the ac-
tual processing include [3, 4, 106, 111, 120]. For instance,
Titian [106] is built on the top of existing systems and inte-
grates smoothly with the Spark runtime and programming
interface. Another example is RDataTracker [120] that is
implemented as a data provenance library for R scripts. As
for [111], which uses provenance for collaborative data shar-
ing, it is implemented as a layer above an RDBMS.

5.8 Security and Privacy

Making complete provenance available to all users may raise
both security and privacy concerns [21], currently addressed

either by implementing configurable access control mecha-
nism or by implementing sanitization techniques.
Access control. Configurable access control organizes ac-
cess to the resources provided by a provenance-supporting
system with a granularity that is sufficient to protect these
resources. For instance, [49] proposes an authentication sys-
tem to redirect users following their access privileges to the
suitable visualization of provenance. SecProv [44] is a vi-
sual interface that uses role-based access policy to determine
which view of workflow provenance is accessible to specific
users. Access control policies are specified during workflow
design, and inherited by the derived provenance produced
at execution time. Authors of [129] propose an approach to
collect provenance for private Web services in the context of
enterprises. Realizing that provenance must not be visible to
all users, they suggest an access control mechanism for Web
service runtimes including authentication and authorization
features. Another security issue is the fact that as provenance
capture is often implemented such that it executes with the
same privileges and the same user space as the process itself,
leading to new possible attacks. In this context, security of
the system may be improved based on sandboxing the ap-
plication [17]. Enhancing the security in the system is also
the topic of [156]. To ease the definition of access control
rules leveraging provenance, different languages have been
proposed [35, 147].
Sanitization. Sanitization abstracts or prunes provenance by
omitting sensitive pieces of the provenance. An overview of
provenance-aware sanitization systems is provided in [47].
Cheney [45] proposes a framework for provenance ab-
straction that is based on formalization of security policies
such as obfuscation and disclosure. Similarly, Cadenhead
et al [36] present a graph rewriting approach to abstract
away sensitive information within provenance. Zoom [27]
applies sanitization for workflow provenance. Here, users,
who are knowledgeable about the structure of the work-
flow, indicate which module they are interested in. A reduc-
tion of provenance is performed by grouping modules con-
sidered to be uninteresting. ProPub [70] computes prove-
nance that could be published based on certain privacy re-
quirements. It allows users to edit provenance by providing
anonymizing, abstracting, and hiding operators. ProPub en-
compasses mechanisms to repair conflicts expected between
user’s manipulations and privacy requirements. Abstracting
provenance conforming to W3C PROV given user creden-
tials is studied in [132]. This work includes mechanisms to
detect problems possibly occurring after abstraction opera-
tion, such as the appearance of cycles and the breaking of
temporal constraints. Similarly [103] proposes graph rewrit-
ing approaches that omit sensitive provenance while pre-
serving the integrity of the abstracted provenance graph.

As pointed out by [174], issues related to provenance se-
curity and privacy remain open issues. More specifically, it

20 Melanie Herschel et al.

highlights the gap between current provenance frameworks
used in distributed systems and requirements expected to en-
sure the security and privacy of provenance.

5.9 Fault tolerance

The last requirement of our classification to consider when
devising a solution for provenance management is fault tol-
erance, i.e., the ability of the system to re-compute prove-
nance when failure is detected. One solution is to use frame-
works like Apache Hadoop or Apache Spark, as tasks for
collecting provenance are distributed and replicated between
nodes of the cluster just like any other task. Consequently,
when a node fails to execute a sub-task of the provenance
process, another one will take over the execution of this
function. Current provenance systems taking advantage of
these functionalities and thus implementing fault tolerance
for provenance capture include [3, 4, 106].

6 Summary and Research Challenges

In the present survey, we have reviewed the state of the art
of provenance research, focusing on the questions why cap-
turing provenance is useful, what form captured provenance
information may take for various types of processes, and
which system requirements need to be considered by sys-
tems offering provenance capture.

The applications of provenance surveyed in this paper
relate to understanding, reproducing, and improving the pro-
duction processes of some derived data. Our classification
further highlights the targeted users for both collecting and
leveraging provenance for a given application.

Concerning the form provenance may take, we have pre-
sented a type hierarchy of provenance types that encom-
passes data provenance, workflow provenance, information
system provenance, and the generic type provenance meta-
data. In the detailed discussion of data provenance, we have
focused the discussion on novel techniques on the prove-
nance of expected, but missing query results. The novel clas-
sification of systems collecting workflow provenance recog-
nizes different domains of workflow provenance and distin-
guishes different provenance granularities and forms.

Our discussion of requirements for provenance compu-
tation reveals nine requirement classes such as efficiency,
scalability, security, or query expressiveness. Considering
and adequately coping with these requirements is essential
to deploy and leverage provenance management systems for
the various applications we have identified.

Achieving this overarching goal however requires to
tacke several research challenges that so far have only been
marginally addressed. We conclude this survey by four re-
search opportunities to the provenance community that all

aim at fostering the adoption of techniques capturing and
exploiting provenance information that, despite the very rel-
evant applications, is still quite modest.
Challenge 1: Systems. As pointed out in our discussion
of requirements, systems that are more aware of and re-
sponsive to requirements of end-users still need to be de-
veloped. To this end, workload-based optimization of prove-
nance collection is one possible avenue for future research.
Here, the optimization requires to for instance automatically
select an adequate type, model, granularity, compression, or
suited collection points of provenance while satisfying pos-
sibly multiple user constraints.
Challenge 2: Data provenance for further processes. The
most fine-grained type of provenance, namely data prove-
nance, is so far achieved for a very restricted class of pro-
cesses. While first efforts have studied to capture the same
level of detail for workflow provenance, it remains an open
question how provenance at the level of individual data
items may be captured and rendered useful for other types
of processes. For instance, in data cleaning or data inte-
gration processes, a typical problem is to find the right set
of algorithms, parameters, or set of rules to forge the de-
sired high-quality output. Enabling fine-grained provenance
capture for these requires defining what provenance is rel-
evant for the process (e.g.,for identified partial functional
dependencies, it may be interesting to know which tuples
violate the functional dependency, while for entity resolu-
tion rules, the information on the responsibility of each part
of the rules for the duplicate classification is more interest-
ing). This provenance then needs to be modelled, efficiently
computed, managed, and queried In addition, provenance of
missing results has so far not been considered beyond struc-
tured queries over relational data, offering plenty of research
opportunities (both for further data models and processes).
Challenge 3: Exploration and analysis of provenance
data. The abundance of provenance data that can be cap-
tured poses the new challenge of making use of these
data. While querying provenance data has been studied to-
gether with data models for provenance, there exists only
little work on properly visualizing, exploring, and analyzing
provenance data in a user-friendly way. Interesting research
questions to be answered are for instance how to adequately
visualize different types of provenance for the various ap-
plications we have discussed, how to effectively support vi-
sual and interactive provenance data exploration, and how
the abstraction and information loss caused by the visual en-
coding may impact on the provenance capture optimization
and management, e.g., in terms of incremental computation
or necessary granularity to be computed.

The challenges mentioned above are only some of the
many questions that remain to be answered in the field of
provenance. These challenges also have a high practical
value so that overall, we believe that in the years to come,

A survey on provenance 21

provenance research will remain an attractive research field
both for foundational researchers and practitioners.
Acknowledgements. The authors thank the German Re-
search Foundation (DFG) for financial support within
project D03 of SFB/Transregio 161.

References

1. U. Acar, P. Buneman, J. Cheney, J. Van Den Bussche, N. Kwas-
nikowska, and S. Vansummeren. A graph model of data and
workflow provenance. In Workshop on Theory and Practice of
Provenance (TAPP), 2010.

2. E. Ainy, P. Bourhis, S. B. Davidson, D. Deutch, and T. Milo.
Approximated Summarization of Data Provenance. In Con-
ference on Information and Knowledge Management (CIKM),
pages 483–492, 2015.

3. S. Akoush, R. Sohan, and A. Hopper. HadoopProv: Towards
Provenance As a First Class Citizen in MapReduce. In Workshop
on Theory and Practice of Provenance (TAPP), 2013.

4. A. Alkhaldi, I. Gupta, V. Raghavan, and M. Ghosh. Leveraging
Metadata in No SQL Storage Systems. In IEEE Conference on
Cloud Computing (CLOUD), pages 57–64, 2015.

5. P. Alper, K. Belhajjame, C. A. Goble, and P. Karagoz. Enhancing
and abstracting scientific workflow provenance for data publish-
ing. In EDBT/ICDT Workshops, pages 313–318, 2013.

6. I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance collec-
tion support in the Kepler scientific workflow system. In Interna-
tional Provenance and Annotation Workshop (IPAW), pages 118–
132, 2006.

7. P. Alvaro, J. Rosen, and J. M. Hellerstein. Lineage-driven Fault
Injection. In ACM Conference on the Management of Data (SIG-
MOD), pages 331–346, 2015.

8. B. Amann, C. Constantin, C. Caron, and P. Giroux. Weblab prov:
Computing fine-grained provenance links for xml artifacts. In
EDBT/ICDT Workshops, pages 298–306, 2013.

9. Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoy-
anovich, and V. Tannen. Putting Lipstick on Pig : Enabling
Database-style Workflow Provenance. Proceedings of the VLDB
Endowment (PVLDB), 5:346–357, 2011.

10. Y. Amsterdamer, D. Deutch, and V. Tannen. On the limitations of
provenance for queries with difference. In Workshop on Theory
and Practice of Provenance (TAPP), 2011.

11. Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for ag-
gregate queries. In ACM Symposium on Principles of Database
Systems (PODS), pages 153–164, 2011.

12. M. K. Anand, S. Bowers, and B. Ludäscher. Techniques for effi-
ciently querying scientific workflow provenance graphs. In Con-
ference on Extending Database Technology (EDBT), pages 287–
298, 2010.

13. M. K. Anand, S. Bowers, and B. Ludäscher. Provenance browser:
Displaying and querying scientific workflow provenance graphs.
In IEEE International Conference on Data Engineering (ICDE),
pages 1201–1204, 2010.

14. M. K. Anand, S. Bowers, T. McPhillips, and B. Ludäscher. Ef-
ficient provenance storage over nested data collections. In Con-
ference on Extending Database Technology (EDBT), pages 958–
969, 2009.

15. E. Angelino, D. Yamins, and M. I. Seltzer. Starflow: A script-
centric data analysis environment. In International Provenance
and Annotation Workshop (IPAW), pages 236–250, 2010.

16. B. S. Arab, D. Gawlick, V. Krishnaswamy, V. Radhakrishnan,
and B. Glavic. Reenactment for read-committed snapshot isola-
tion. In Conference on Information and Knowledge Management
(CIKM), pages 841–850, 2016.

17. N. Balakrishnan, T. Bytheway, L. Carata, R. Sohan, and A. Hop-
per. Towards secure user-space provenance capture. In Workshop
on Theory and Practice of Provenance (TAPP), 2016.

18. R. S. Barga and L. A. Digiampietri. Automatic capture and effi-
cient storage of e-Science experiment provenance. Concurrency
Computation Practice and Experience, 20(5):419–429, 2008.

19. C. Batini and M. Scannapieco. Data Quality: Concepts, Method-
ologies and Techniques. Springer-Verlag New York, Inc., 2006.

20. L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Schei-
degger, C. T. Silva, and H. T. Vo. Vistrails: enabling interactive
multiple-view visualizations. In IEEE Visualization (VIS), pages
135–142, 2005.

21. E. Bertino, G. Ghinita, M. Kantarcioglu, D. Nguyen, J. Park,
R. Sandhu, S. Sultana, B. Thuraisingham, and S. Xu. A roadmap
for privacy-enhanced secure data provenance. Journal of Intelli-
gent Information Systems, 43(3):481–501, 2014.

22. D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An
annotation management system for relational databases. The
VLDB Journal, 14(4), 2005.

23. N. Bidoit, M. Herschel, and A. Tzompanaki. Efficient computa-
tion of polynomial explanations of why-not questions. In Con-
ference on Information and Knowledge Management (CIKM),
pages 713–722, 2015.

24. N. Bidoit, M. Herschel, and K. Tzompanaki. Immutably an-
swering why-not questions for equivalent conjunctive queries. In
Workshop on Theory and Practice of Provenance (TAPP), 2014.

25. N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based why-
not provenance with NedExplain. In Conference on Extending
Database Technology (EDBT), pages 145–156, 2014.

26. N. Bidoit, M. Herschel, and K. Tzompanaki. EFQ: why-not an-
swer polynomials in action. Proceedings of the VLDB Endow-
ment (PVLDB), 8(12):1980–1983, 2015.

27. O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara.
Querying and managing provenance through user views in sci-
entific workflows. In IEEE International Conference on Data
Engineering (ICDE), pages 1072–1081, 2008.

28. M. A. Borkin, C. S. Yeh, M. Boyd, P. Macko, K. Z. Gajos,
M. Seltzer, and H. Pfister. Evaluation of filesystem provenance
visualization tools. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2476–2485, 2013.

29. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline op-
erator. In IEEE International Conference on Data Engineering
(ICDE), pages 421–430, 2001.

30. P. Bourhis, D. Deutch, and Y. Moskovitch. POLYTICS:
provenance-based analytics of data-centric applications. In IEEE
International Conference on Data Engineering (ICDE), pages
1373–1374, 2017.

31. S. Bowers, T. M. McPhillips, and B. Ludäscher. Provenance in
collection-oriented scientific workflows. Concurrency and Com-
putation: Practice and Experience, 20(5):519–529, 2008.

32. S. Bowers, T. M. McPhillips, S. Riddle, M. K. Anand, and
B. Ludäscher. Kepler/pPOD: Scientific workflow and prove-
nance support for assembling the tree of life. In International
Provenance and Annotation Workshop (IPAW), pages 70–77,
2008.

33. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In International Conference
on Database Theory (ICDT), pages 316–330, 2001.

34. P. Buneman, S. Khanna, and W. C. Tan. On propagation of dele-
tions and annotations through views. In ACM Symposium on
Principles of Database Systems (PODS), pages 150–158, 2002.

35. T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thurais-
ingham. A language for provenance access control. In ACM
Conference on Data and Application Security and Privacy (CO-
DASPY), pages 133–144, 2011.

36. T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thurais-
ingham. Transforming Provenance Using Redaction. In ACM

22 Melanie Herschel et al.

Symposium on Access Control Models and Technologies (SAC-
MAT), pages 93–102, 2011.

37. S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, T. Vo, and
H. T. Silva. VisTrails : Visualization meets Data Management.
ACM Conference on the Management of Data (SIGMOD), pages
745–747, 2006.

38. D. Calvanese, M. Ortiz, M. Simkus, and G. Stefanoni. Reason-
ing about explanations for negative query answers in DL-Lite.
Journal on Artificial Intelligence Research (JAIR), 48:635–669,
2013.

39. B. Cao, B. Plale, G. Subramanian, E. Robertson, and
Y. Simmhan. Provenance information model of Karma version 3.
In Congress on Services - I (SERVICES), pages 348–351, 2009.

40. Y. Cao, C. Jones, T. Mcphillips, M. B. Jones, B. Ludäscher,
P. Missier, C. Schwalm, P. Slaughter, D. Vieglais, L. Walker, and
Y. Wei. DataONE: A Data Federation with Provenance Support.
In International Provenance and Annotation Workshop (IPAW),
pages 230–234, 2016.

41. C. Caron, B. Amann, C. Constantin, and P. Giroux. WePIGE:
The Weblab provenance information generator and explorer. In
Conference on Extending Database Technology (EDBT), pages
664–667, 2014.

42. A. Chapman, H. Jagadish, and P. Ramanan. Efficient provenance
storage. ACM Conference on the Management of Data (SIG-
MOD), pages 993–1006, 2008.

43. A. Chapman and H. V. Jagadish. Why not? In ACM Conference
on the Management of Data (SIGMOD), pages 523–534, 2009.

44. A. Chebotko, S. Lu, S. Chang, F. Fotouhi, and P. Yang. Secure
abstraction views for scientific workflow provenance querying.
IEEE Transactions on Services Computing, 3(4):322–337, 2010.

45. J. Cheney. A formal framework for provenance security. In IEEE
Computer Security Foundations Symposium (CSF), pages 281–
293, 2011.

46. J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases,
1(4), 2009.

47. J. Cheney and R. Perera. An analytical survey of provenance san-
itization. In International Provenance and Annotation Workshop
(IPAW), pages 113–126, 2014.

48. S. Chester and I. Assent. Explanations for skyline query re-
sults. In Conference on Extending Database Technology (EDBT),
pages 349–360, 2015.

49. K. Cheung and J. Hunter. Provenance explorer - customized
provenance views using semantic inferencing. In International
Semantic Web Conference (ISWC), pages 215–227, 2006.

50. F. Chirigati, D. Shasha, and J. Freire. ReproZip: Using Prove-
nance to Support Computational Reproducibility. In Workshop
on Theory and Practice of Provenance (TAPP), pages 1–4, 2013.

51. L. Chiticariu and W. C. Tan. Debugging schema mappings with
routes. In Conference on Very Large Data Bases (VLDB), pages
79–90, 2006.

52. Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe. Explain-
ing outputs in modern data analytics. Proceedings of the VLDB
Endowment (PVLDB), 9(12):1137–1148, 2016.

53. E. Commission. Horse meat: one year after - Actions announced
and delivered!, 2014 (accessed March 15, 2016).

54. K. Cranmer, L. Heinrich, R. Jones, and D. M. South. Analysis
preservation in ATLAS. Journal of Physics, 664, 2015.

55. D. Crawl and I. Altintas. A provenance-based fault tolerance
mechanism for scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), pages 152–159, 2008.

56. D. Crawl, J. Wang, and I. Altintas. Provenance for mapreduce-
based data-intensive workflows. In Workshop on Workflows in
Support of Large-Scale Science (WORKS), pages 21–30, 2011.

57. Y. Cui and J. Widom. Lineage tracing for general data ware-
house transformations. In Conference on Very Large Data Bases
(VLDB), pages 471–480, 2001.

58. Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM Transactions on
Database Systems (TODS), 25(2):179 – 227, 2000.

59. F. Curbera, Y. N. Doganata, A. Martens, N. Mukhi, and
A. Slominski. Business provenance - A technology to increase
traceability of end-to-end operations. In On the Move to Mean-
ingful Internet Systems OTM, pages 100–119, 2008.

60. C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu. An approach to
evaluate data trustworthiness based on data provenance. In Work-
shop on Secure Data Management (SDM), pages 82–98, 2008.

61. S. B. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludäscher, T. M.
McPhillips, S. Bowers, M. K. Anand, and J. Freire. Provenance
in scientific workflow systems. IEEE Data Engineering Bulletin,
30(4):44–50, 2007.

62. S. B. Davidson and J. Freire. Provenance and scientific work-
flows: Challenges and opportunities. In ACM Conference on the
Management of Data (SIGMOD), pages 1345–1350, 2008.

63. T. De Nies, I. Taxidou, A. Dimou, R. Verborgh, P. M. Fischer,
E. Mannens, and R. de Walle. Towards Multi-level Provenance
Reconstruction of Information Diffusion on Social Media. Con-
ference on Information and Knowledge Management (CIKM),
pages 1823–1826, 2015.

64. E. Deelman, G. B. Berriman, A. L. Chervenak, Ó. Corcho, P. T.
Groth, and L. Moreau. Metadata and provenance management.
In A. Shoshani and D. Rotem, editors, Scientific Data Man-
agement: Challenges, Technology, and Deployment. Chapman &
Hall/CRC, 2009.

65. E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. C. Laity, J. C.
Jacob, and D. S. Katz. Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems. Scientific
Programming, 13(3):219–237, 2005.

66. E. Dellis and B. Seeger. Efficient computation of reverse skyline
queries. In Conference on Very Large Data Bases (VLDB), pages
291–302, 2007.

67. D. Deutch, A. Gilad, and Y. Moskovitch. selP: Selective tracking
and presentation of data provenance. In IEEE International Con-
ference on Data Engineering (ICDE), pages 1484–1487, 2015.

68. D. Deutch, Y. Moskovitch, and V. Tannen. A provenance frame-
work for data-dependent process analysis. Proceedings of the
VLDB Endowment, 7(6):457–468, feb 2014.

69. S. Dey, K. Belhajjame, D. Koop, M. Raul, and B. Ludäscher.
Linking prospective and retrospective provenance in scripts. In
Workshop on Theory and Practice of Provenance (TAPP), 2015.

70. S. C. Dey, D. Zinn, and B. Ludäscher. Propub: Towards a declar-
ative approach for publishing customized, policy-aware prove-
nance. In Conference on Scientific and Statistical Database Man-
agement (SSDBM), pages 225–243, 2011.

71. T. Ellkvist, D. Koop, E. W. Anderson, J. Freire, and C. T. Silva.
Using provenance to support real-time collaborative design of
workflows. In International Provenance and Annotation Work-
shop (IPAW), pages 266–279, 2008.

72. S. Fehrenbach and J. Cheney. Language-integrated provenance.
In Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP), pages 214–227, 2016.

73. J. N. Foster, T. J. Green, and V. Tannen. Annotated XML: queries
and provenance. In ACM Symposium on Principles of Database
Systems (PODS), pages 271–280, 2008.

74. J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for
computational tasks: A survey. Computing in Science and Engi-
neering, 10(3):11–21, 2008.

75. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger,
and H. T. Vo. Managing rapidly-evolving scientific workflows.
In International Provenance and Annotation Workshop (IPAW),
pages 10–18, 2006.

76. L. M. R. Gadelha, B. Clifford, M. Mattoso, M. Wilde, and I. Fos-
ter. Provenance management in Swift. Future Generation Com-
puter Systems, 27(6):775–780, 2011.

A survey on provenance 23

77. Y. Gao, Q. Liu, G. Chen, B. Zheng, and L. Zhou. Answering
why-not questions on reverse top-k queries. Proceedings of the
VLDB Endowment (PVLDB), 8(7):738–749, 2015.

78. D. Garijo, Ó. Corcho, and Y. Gil. Detecting common scientific
workflow fragments using templates and execution provenance.
In International Conference on Knowledge Capture (K-CAP),
pages 33–40, 2013.

79. A. Gehani and D. Tariq. SPADE: Support for Provenance Audit-
ing in Distributed Environments. In Proceedings of the Interna-
tional Middleware Conference, pages 101–120, 2012.

80. B. Glavic and G. Alonso. The perm provenance management
system in action. In ACM Conference on the Management of
Data (SIGMOD), pages 1055–1058, 2009.

81. B. Glavic, G. Alonso, R. J. Miller, and L. M. Haas. TRAMP:
understanding the behavior of schema mappings through prove-
nance. Proceedings of the VLDB Endowment (PVLDB),
3(1):1314–1325, 2010.

82. B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul. Ariadne:
managing fine-grained provenance on data streams. In Confer-
ence on Distributed Event-Based Systems (DEBS), pages 39–50,
2013.

83. C. Goble. Position Statement: Musings on Provenance, Work-
flow and (Semantic Web) Annotations for Bioinformatics. In
Workshop on Data Derivation and Provenance, pages 152–159,
2002.

84. J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a comprehen-
sive approach for supporting accessible, reproducible, and trans-
parent computational research in the life sciences. Genome biol-
ogy, 11(8):R86, 2010.

85. T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semir-
ings. In ACM Symposium on Principles of Database Systems
(PODS), pages 31–40, 2007.

86. T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G.
Ives, and V. Tannen. ORCHESTRA: facilitating collaborative
data sharing. In ACM Conference on the Management of Data
(SIGMOD), pages 1131–1133, 2007.

87. P. Groth, Y. Gil, J. Cheney, and S. Miles. Requirements for
Provenance on the Web. International Journal of Digital Cu-
ration, 7(1):39–56, 2012.

88. P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and
L. Moreau. Recording and using provenance in a protein com-
pressibility experiment. In IEEE Symposium on High Perfor-
mance Distributed Computing (HPDC), pages 201–208, 2005.

89. P. Groth and L. Moreau. PROV-Overview: An Overview of the
PROV Family of Documents, 2013 (accessed March 15, 2016).

90. Grust and Rittinger. Observing sql queries in their natural habitat.
ACM Transactions on Database Systems (TODS), 2012.

91. O. Hartig and J. Zhao. Using web data provenance for quality
assessment. In Workshop on the Role of Semantic Web in Prove-
nance Management (SWPM), 2009.

92. Z. He and E. Lo. Answering why-not questions on top-k queries.
In IEEE International Conference on Data Engineering (ICDE),
pages 750–761, 2012.

93. Z. He and E. Lo. Answering why-not questions on top-k
queries. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), 26(6):1300–1315, 2014.

94. M. Herschel. A hybrid approach to answering why-not questions
on relational query results. ACM Journal on Data and Informa-
tion Quality (JDIQ), 5(3):10:1–10:29, 2015.

95. M. Herschel and H. Eichelberger. The Nautilus Analyzer: under-
standing and debugging data transformations. In Conference on
Information and Knowledge Management (CIKM), pages 2731–
2733, 2012.

96. M. Herschel and T. Grust. Transformation lifecycle management
with Nautilus. In Workshop on the Quality of Data (QDB), 2011.

97. M. Herschel and M. A. Hernández. Explaining missing an-
swers to SPJUA queries. Proceedings of the VLDB Endowment
(PVLDB), 3(1):185–196, 2010.

98. M. Herschel and M. Hlawatsch. Provenance: On and behind the
screens. In ACM Conference on the Management of Data (SIG-
MOD), pages 2213–2217, 2016.

99. M. Hlawatsch, M. Burch, F. Beck, J. Freire, C. Silva, and
D. Weiskopf. Visualizing the evolution of module workflows.
In International Conference on Information Visualisation (IV),
pages 40–49, 2015.

100. R. Hoekstra and P. Groth. Prov-o-viz - understanding the role of
activities in provenance. In International Provenance and Anno-
tation Workshop (IPAW), pages 215–220, 2014.

101. J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the prove-
nance of non-answers to queries over extracted data. Proceedings
of the VLDB Endowment (PVLDB), 1(1):736–747, 2008.

102. M. R. Huq, P. M. G. Apers, and A. Wombacher. Provenance-
curious: a tool to infer data provenance from scripts. In Con-
ference on Extending Database Technology (EDBT), pages 765–
768, 2013.

103. J. Hussein, L. Moreau, and V. Sassone. Obscuring provenance
confidential information via graph transformation. In Conference
on Trust Management (IFIP), pages 109–125, 2015.

104. R. Ikeda, H. Park, and J. Widom. Provenance for Generalized
Map and Reduce Workflows. In Conference on Innovative Data
Systems Research (CIDR), pages 273–283, 2011.

105. T. Imieliński and W. Lipski, Jr. Incomplete information in rela-
tional databases. Journal of the ACM, 31(4):761–791, 1984.

106. M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo,
M. Kim, T. Millstein, and T. Condie. Titian: data provenance sup-
port in Spark. Proceedings of the VLDB Endowment (PVLDB),
9(3):216–227, 2015.

107. M. S. Islam, C. Liu, and R. Zhou. Flexiq: A flexible interactive
querying framework by exploiting the skyline operator. Journal
of Systems and Software, 97:97–117, 2014.

108. M. S. Islam, R. Zhou, and C. Liu. On answering why-not ques-
tions in reverse skyline queries. In IEEE International Confer-
ence on Data Engineering (ICDE), pages 973–984, 2013.

109. L. Karsai, A. Fekete, J. Kay, and P. Missier. Clustering prove-
nance facilitating provenance exploration through data abstrac-
tion. In Workshop on Human-In-the-Loop Data Analytics
(HILDA), pages 6:1–6:5, 2016.

110. G. Karvounarakis and T. J. Green. Semiring-annotated data:
Queries and provenance? SIGMOD Record, 41(3):5–14, 2012.

111. G. Karvounarakis, T. J. Green, Z. G. Ives, and V. Tannen. Collab-
orative data sharing via update exchange and provenance. ACM
Transactions on Database Systems (TODS), 38(3):19:1–19:42,
2013.

112. G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data
provenance. In ACM Conference on the Management of Data
(SIGMOD), pages 951–962, 2010.

113. R. K. L. Ko and M. A. Will. Progger: An efficient, tamper-
evident kernel-space logger for cloud data provenance tracking.
In IEEE Conference on Cloud Computing (CLOUD), pages 881–
889, 2014.

114. S. Köhler, B. Ludäscher, and D. Zinn. First-order provenance
games. In In Search of Elegance in the Theory and Practice of
Computation, pages 382–399, 2013.

115. S. Köhler, S. Riddle, D. Zinn, T. M. McPhillips, and
B. Ludäscher. Improving workflow fault tolerance through
provenance-based recovery. In Conference on Scientific and Sta-
tistical Database Management (SSDBM), pages 207–224, 2011.

116. V. Korolev and A. Joshi. PROB: A tool for Tracking Provenance
and Reproducibility of Big Data Experiments. In Reproduce,
HPCA, pages 264–286, 2014.

117. S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and T. Kraska.
Privateclean: Data cleaning and differential privacy. In ACM
Conference on the Management of Data (SIGMOD), pages 937–
951, 2016.

24 Melanie Herschel et al.

118. D. Kulkarni. A Provenance Model for Key-value Systems. Work-
shop on Theory and Practice of Provenance (TAPP), pages 12:1–
12:4, 2013.

119. N. Kwasnikowska and J. Van den Bussche. Mapping the NRC
Dataflow Model to the Open Provenance Model. In Workshop on
Theory and Practice of Provenance (TAPP), pages 3–16, 2008.

120. B. Lerner and E. R. Boose. RDataTracker: Collecting provenance
in an interactive scripting environment. In Workshop on Theory
and Practice of Provenance (TAPP), pages 1–4, 2014.

121. H. R. Lipford, F. Stukes, W. Dou, M. E. Hawkins, and R. Chang.
Helping users recall their reasoning process. In IEEE Conference
on Visual Analytics Science and Technology (VAST), pages 187–
194, 2010.

122. D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for
debugging DISC analytics. In Symposium on Cloud Computing
(SOCC), pages 1–15, 2013.

123. P. Macko and M. Chiarini. Collecting provenance via the xen
hypervisor. In Workshop on Theory and Practice of Provenance
(TAPP), 2011.

124. P. Macko and M. Seltzer. Provenance map orbiter: Interactive
exploration of large provenance graphs. In Workshop on Theory
and Practice of Provenance (TAPP), 2011.

125. A. Martens, A. Slominski, G. T. Lakshmanan, and N. Mukhi.
Advanced case management enabled by business provenance. In
International Conference on Web Services (ICWS), pages 639–
641, 2012.

126. T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific
workflow design for mere mortals. Future Generation Computer
Systems, 25(5):541–551, 2009.

127. T. M. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Bel-
hajjame, K. Bocinsky, Y. Cao, F. Chirigati, S. C. Dey, J. Freire,
D. N. Huntzinger, C. Jones, D. Koop, P. Missier, M. Schildhauer,
C. R. Schwalm, Y. Wei, J. Cheney, M. Bieda, and B. Ludäscher.
YesWorkflow: A user-oriented, language-independent tool for re-
covering workflow information from scripts. International Jour-
nal of Digital Curation, 10(1):298–313, 2015.

128. A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers and
non-answers. Proceedings of the VLDB Endowment (PVLDB),
4(1):34 – 45, 2010.

129. A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. Service
provenance in qos-aware web service runtimes. In International
Conference on Web Services (ICWS), pages 115–122, 2009.

130. P. Missier, K. Belhajjame, and J. Cheney. The W3C PROV fam-
ily of specifications for modelling provenance metadata. In Con-
ference on Extending Database Technology (EDBT), pages 773–
776, 2013.

131. P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. A. Goble.
Data lineage model for taverna workflows with lightweight anno-
tation requirements. In International Provenance and Annotation
Workshop (IPAW), pages 17–30, 2008.

132. P. Missier, J. Bryans, C. Gamble, V. Curcin, and R. Danger. Prov-
Abs: Model, Policy, and Tooling for Abstracting PROV Graphs.
In International Provenance and Annotation Workshop (IPAW),
pages 3–15, 2014.

133. P. Missier, S. Dey, K. Belhajjame, V. Cuevas-Vicenttín, and
B. Ludäscher. D-prov: Extending the prov provenance model
with workflow structure. In Workshop on Theory and Practice of
Provenance (TAPP), pages 9:1–9:7, 2013.

134. P. Missier and C. Goble. Workflows to open provenance graphs,
round-trip. Future Generation Computer Systems, 27(6):812–
819, 2011.

135. P. Missier, N. W. Paton, and K. Belhajjame. Fine-grained and
efficient lineage querying of collection-based workflow prove-
nance. In Conference on Extending Database Technology
(EDBT), pages 299–310, 2010.

136. L. Moreau. The foundations for provenance on the web. Foun-
dations and Trends in Web Science, 2(2-3):99–241, 2010.

137. L. Moreau. Provenance-based reproducibility in the semantic
web. Journal of Web Semantics, 9(2):202–221, 2011.

138. L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and
P. Paulson. The Open Provenance Model. Future Generation
Computer Systems, 27(6):743–756, 2011.

139. T. Müller and T. Grust. Provenance for SQL through abstract
interpretation: Value-less, but worthwhile. Proceedings of the
VLDB Endowment (PVLDB), 8(12):1872–1875, 2015.

140. K. Muniswamy-Reddy, P. Macko, and M. I. Seltzer. Provenance
for the cloud. In USENIX Conference on File and Storage Tech-
nologies (FAST), pages 197–210, 2010.

141. K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor. Layering in
provenance systems. In USENIX Annual Technical Conference,
2009.

142. K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systems. In USENIX An-
nual Technical Conference, pages 43–56, 2006.

143. L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire.
noWorkflow: Capturing and analyzing provenance of scripts.
In International Provenance and Annotation Workshop (IPAW),
pages 71–83, 2014.

144. A. C. Myers. JFlow: Practical Mostly-Static Information Flow
Control. In Proceedings of the Symposium on Principles of Pro-
gramming Languages (POPL), number January, pages 228–241,
1999.

145. M. Nagappan and M. a. Vouk. A Model for Sharing of Con-
fidential Provenance Information in a Query Based System. In-
ternational Provenance and Annotation Workshop (IPAW), pages
62–69, 2008.

146. S. New. The transparent supply chain. Harvard Business Review,
2010.

147. Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han. An access
control language for a general provenance model. In Workshop
on Secure Data Management (SDM), pages 68–88, 2009.

148. T. D. Nies, S. Coppens, R. Verborgh, M. V. Sande, E. Mannens,
R. V. D. Walle, D. Nies, V. Sande, V. D. Walle, L. E. Access, and
S. Towards. Easy Access to Provenance: an Essential Step To-
wards Trust on the Web. In Computer Software and Applications
Conference Workshops (COMPSACW), 2013.

149. X. Niu, R. Kapoor, B. Glavic, D. Gawlick, Z. H. Liu,
V. Krishnaswamy, and V. Radhakrishnan. Interoperability for
provenance-aware databases using PROV and JSON. In Work-
shop on Theory and Practice of Provenance (TAPP), 2015.

150. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M.
Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat, and
P. Li. Taverna: a tool for the composition and enactment of bioin-
formatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

151. T. M. Oinn, R. M. Greenwood, M. Addis, M. N. Alpdemir, J. Fer-
ris, K. Glover, C. A. Goble, A. Goderis, D. Hull, D. Marvin, P. Li,
P. W. Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and
C. Wroe. Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice
and Experience, 18(10):1067–1100, 2006.

152. W. Oliveira, P. Missier, K. Ocaña, D. de Oliveira, and V. Bragan-
holo. Analyzing Provenance Across Heterogeneous Provenance
Graphs. In International Provenance and Annotation Workshop
(IPAW), pages 57–70, 2016.

153. C. Olston and B. Reed. Inspector gadget: A framework for cus-
tom monitoring and debugging of distributed dataflows. Pro-
ceedings of the VLDB Endowment (PVLDB), 4(12):1237–1248,
2011.

154. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A Not-So-Foreign Language for Data Processing. In
ACM Conference on the Management of Data (SIGMOD), pages
1099–1110, 2008.

A survey on provenance 25

155. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and pro-
gressive algorithm for skyline queries. In ACM Conference on
the Management of Data (SIGMOD), pages 467–478, 2003.

156. J. Park, D. Nguyen, and R. Sandhu. A provenance-based ac-
cess control model. In Conference on Privacy, Security and Trust
(PST), pages 137–144, 2012.

157. Q. Pham, T. Malik, and I. Foster. Using provenance for re-
peatability. In Workshop on Theory and Practice of Provenance
(TAPP), 2013.

158. J. a. F. Pimentel, J. Freire, L. Murta, and V. Braganholo. Fine-
Grained Provenance Collection over Scripts Through Program
Slicing. In International Provenance and Annotation Workshop
(IPAW), pages 199–203, 2016.

159. J. F. Pimentel, S. Dey, T. McPhillips, K. Belhajjame, D. Koop,
L. Murta, V. Braganholo, and B. Ludäscher. Yin & Yang:
Demonstrating Complementary Provenance from noWorkflow
& YesWorkflow. In International Provenance and Annotation
Workshop (IPAW), pages 161–165, 2016.

160. J. F. Pimentel, J. Freire, V. Braganholo, and L. Murta. Tracking
and analyzing the evolution of provenance from scripts. In In-
ternational Provenance and Annotation Workshop (IPAW), pages
16–28, 2016.

161. A. Prabhune, A. Zweig, R. Stotzka, M. Gertz, and J. Hesser.
Prov2ONE: An Algorithm for Automatically Constructing
ProvONE Provenance Graphs. In International Provenance and
Annotation Workshop (IPAW), pages 204–208, 2016.

162. E. D. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing
provenance in visualization and data analysis: An organizational
framework of provenance types and purposes. In IEEE Trans-
actions on Visualization and Computer Graphics, pages 31 – 40,
2015.

163. S. Riddle, S. Köhler, and B. Ludäscher. Towards constraint
provenance games. In Workshop on Theory and Practice of
Provenance (TAPP), 2014.

164. S. Roy, L. Chiticariu, V. Feldman, F. Reiss, and H. Zhu.
Provenance-based dictionary refinement in information extrac-
tion. In ACM Conference on the Management of Data (SIG-
MOD), pages 457–468, 2013.

165. A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IIEEE Journal on Selected Areas in Communications,
21(1):5–19, 2006.

166. Y. Simmhan, B. Plale, and D. Gannon. A survey of data prove-
nance in e-science. SIGMOD Record, 34(3):31–36, 2005.

167. Y. L. Simmhan, B. Plale, and D. Gannon. Karma2: Provenance
Management for Data Driven Workflows. International Journal
of Web Services Research, 5(10):1–23, 2008.

168. Souilah, Francalanza, and Sassone. A formal model of prove-
nance in distributed systems. In Workshop on Theory and Prac-
tice of Provenance (TAPP), 2009.

169. H. Stitz, S. Luger, M. Streit, and N. Gehlenborg. AVOCADO:
Visualization of Workflow-Derived Data Provenance for Repro-
ducible Biomedical Research. In European Conference on Visu-
alization (EuroVis), pages 481–490, 2016.

170. C. H. Suen, R. K. L. Ko, Y. S. Tan, P. Jagadpramana, and B. Lee.
S2logger: End-to-end data tracking mechanism for cloud data
provenance. In IEEE International Conference on Trust, Secu-
rity and Privacy in Computing and Communications (TrustCom),
pages 594–602, 2013.

171. R. Szablocs, S. Aleksander, and D. Yurdaer. Large-Scale Dis-
tributed Storage Systems for Business Provenance. IBM Re-
search Report, RC25154, 2011.

172. W. Tan, P. Missier, I. Foster, R. Madduri, D. De Roure, and
C. Goble. A comparison of using Taverna and BPEL in building
scientific workflows: The case of caGrid. Concurrency Compu-
tation Practice and Experience, 22(9):1098–1117, 2010.

173. W. C. Tan. Provenance in databases: Past, current, and future.
IEEE Data Engineering Bulletin, 30(4):3–12, 2007.

174. Y. S. Tan, R. K. L. Ko, and G. Holmes. Security and data account-
ability in distributed systems: A provenance survey. In IEEE
Conference on High Performance Computing and Communica-
tions (HPCC), 2013.

175. D. Tariq, M. Ali, and A. Gehani. Towards automated collection
of application-level data provenance. In Workshop on Theory and
Practice of Provenance (TAPP), 2012.

176. B. ten Cate, C. Civili, E. Sherkhonov, and W.-C. Tan. High-level
why-not explanations using ontologies. In ACM Symposium on
Principles of Database Systems (PODS), pages 31–43, 2015.

177. Y. Theoharis, I. Fundulaki, G. Karvounarakis, and
V. Christophides. On provenance of queries on semantic
web data. IEEE Internet Computing, 15(1):31–39, 2011.

178. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: A warehousing solu-
tion over a map-reduce framework. Proceedings of the VLDB
Endowment (PVLDB), 2(2):1626–1629, 2009.

179. Q. T. Tran and C.-Y. Chan. How to ConQueR why-not ques-
tions. In ACM Conference on the Management of Data (SIG-
MOD), pages 15 – 26, 2010.

180. Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query reverse en-
gineering. The VLDB Journal, 23(5):721–746, 2014.

181. Tylissanakis and Cotroni. Data provenance and reproducibility
in grid based scientific workflows. In IEEE Workshop on Grid
and Pervasive Computing Conference, pages 42–49, 2009.

182. R. Y. Wang and D. M. Strong. Beyond accuracy: What data qual-
ity means to data consumers. Journal of Management Informa-
tion Systems, 12(4):5–33, 1996.

183. Y. R. Wang, S. E. Madnick, et al. A polygen model for hetero-
geneous database systems: The source tagging perspective. In
Conference on Very Large Data Bases (VLDB), pages 519–538,
1990.

184. T. White. Hadoop: The Definitive Guide. O’Reilly Media, 4th
edition, 2015.

185. A. Woodruff and M. Stonebraker. Supporting fine-grained data
lineage in a database visualization environment. In IEEE Interna-
tional Conference on Data Engineering (ICDE), pages 91–102,
1997.

186. M. Wylot, P. Cudré-Mauroux, and P. T. Groth. Tripleprov: ef-
ficient processing of lineage queries in a native RDF store. In
World Wide Web Conference (WWW), pages 455–466, 2014.

187. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark : Cluster Computing with Working Sets. In
USENIX conference on Hot topics in cloud computing (Hot-
Cloud), 2010.

188. J. Zhang and H. V. Jagadish. Lost source provenance. In Con-
ference on Extending Database Technology (EDBT), pages 311–
322, 2010.

189. J. Zhang and H. V. Jagadish. Revision provenance in text doc-
uments of asynchronous collaboration. In IEEE International
Conference on Data Engineering (ICDE), pages 889–900, 2013.

190. W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and
M. Sherr. Secure network provenance. In ACM Symposium on
Operating Systems Principles (SOPS), pages 295–310, 2011.

191. W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T.
Loo, and M. Sherr. Distributed time-aware provenance. Proceed-
ings of the VLDB Endowment (PVLDB), 6(2):49–60, 2012.

192. W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
querying and maintenance of network provenance at internet-
scale. In ACM Conference on the Management of Data (SIG-
MOD), pages 615–626, 2010.

