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Abstract—Entity resolution (ER) is the problem of finding
which digital representations of entities correspond to the same
real-world entity. In many Big Data scenarios, in addition to the
problems of volume and variety that are commonly addressed
in ER, data is continuously generated, which requires novel
solutions to address the velocity problem.

This paper presents a framework for end-to-end ER that
incrementally and efficiently produces results as heterogeneous
data streams in. These characteristics are achieved by proposing
a novel functional model for ER on incremental or streaming
data, and adopting task-based parallelization. Our evaluation
demonstrates that even without parallelization, our framework
outperforms state-of-the-art (batch) ER in terms of runtime and
quality. We also validate that it can achieve high throughput and
low latency on streaming data, paving the way to real-time ER.

Index Terms—entity resolution, streaming data, parallelization

I. INTRODUCTION

Entity resolution (ER) is the problem of identifying so called
matches, i.e., digital representations of entities that correspond
to the same real-world entity. The problem is well-known in
data cleaning and integration [6]. It finds further application in
the Internet domain where entities need to be resolved in large
volumes of heterogeneous and semi-structured data. A classical
example of large-scale ER targeting these heterogeneous data
are meta-engines matching product descriptions from many
web shops to provide price comparisons [16].

Figure 1 illustrates a typical ER pipeline for heterogeneous
data. It divides ER into data reading, blocking, comparison,
and classification. Essentially, data reading standardizes entity
descriptions, e.g., applying word stemming, consistently using
same abbreviations, etc. The standardized entity descriptions
are then clustered into blocks during blocking. The idea of
blocking is to reduce the quadratic complexity of comparing
all entity descriptions to each other during the classification
step. Indeed, when entity descriptions are divided into a block
collection as a result of blocking, only those within a same
block are paired together for further processing. Comparison
assigns to each pair of considered entity descriptions a similarity
score. Based on these, classification determines if the pairs of
entity descriptions are matches or non-matches.

When processing heterogeneous data, the blocking step
actually divides into block building, block cleaning, and
comparison cleaning [20], as illustrated in the bottom part of
Figure 1. Block building constructs an initial block collection.
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Fig. 1. Traditional workflow of ER in heterogeneous domain.

Blocks or entity descriptions within blocks are pruned during
block cleaning. From these blocks, pairwise comparisons are
generated and subjected to comparison cleaning to further
reduce the number of pairs entering the comparison step.

Existing methods that implement (parts of) the ER pipeline
primarily focus on batch processing large volumes of hetero-
geneous data. This means that they assume complete (static)
datasets to run the ER pipeline once. In this paper, we study the
problem of ER when dealing with large volumes of dynamic
data. We consider both the case of (1) incremental ER where
a finite dataset changes periodically so we aim at maintaining
the full ER result incrementally and (2) streaming ER where a
possibly infinite stream of entity descriptions is processed.

Solutions for incremental and streaming ER over large
volumes of heterogeneous data have many potential practical
applications [6], [11]. For instance, the previously mentioned
meta-engines clearly handle dynamic data. Another application
arises when digitizing and streamlining data across multiple
phases of manufacturing or building processes, such as in digital
design and construction for the building industry. In this context,
ER needs to be applied among frequently changing or newly
added representations of architectural designs, prefabricated
building components, or construction site characteristics.

Clearly, there is a need for ER that supports dynamic data,
a gap this paper fills by presenting an end-to-end framework
for ER over dynamic data. Its definition targets efficiency and
quality for incremental ER, and additionally optimizes latency
and throughput for streaming ER.

To improve the efficiency when performing ER on large
volumes of data, different solutions explore parallelizing ER.
These mostly focus on data parallel solutions that parallelize
steps of the ER pipeline [7], [13], [14], [17]. These solutions
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all target batch processing. To the best of our knowledge, the
only work that parallelizes the single step of blocking when
processing increments of data is [1]. Overall, end-to-end ER
of dynamic data using task parallelism is an open problem. In
general, task-based parallel approaches allow different segments
of the stream to be executed in parallel, typically improving
runtime and throughput by keeping low latency.
Contributions. We propose a task-based parallel framework
for end-to-end ER targeting heterogeneous data and supporting
incremental and streaming ER. Achieving task-parallelism
requires us to pipeline entity descriptions through the existing
and necessary steps of ER summarized in Figure 1. To this
end, we model each ER step as a function. The ER pipeline
is then defined as a function combination. Functions apply
on a single entity description at a time. That is, our first
contribution is a functional model for ER on dynamic data.
Next, we investigate how to incorporate task parallelism into an
ER framework for dynamic data that conforms to our model. In
particular, this requires the definition of alternative algorithms to
those traditionally implementing block cleaning and comparison
cleaning, as these do not fit the parallelization paradigm. It
further requires careful balancing of the different (parallel) steps
of ER to mitigate bottlenecks. Extensive evaluation validates
that our framework successfully allows efficient and effective
ER on dynamic data, reaching close to real-time latency and
high throughput. It further scales to large sizes of ER problems
where it has comparable or improved ER quality while running
up to 100 times faster than state-of-the-art approaches.

This paper has its roots in a vision paper [10]. The present
paper significantly extends this vision paper, which did not
focus on streaming data, had no implementation and evaluation,
did not formalize a clear functional model for ER on dynamic
data, and did not investigate several adaptations of algorithms to
dynamic data and optimizations for good overall performance.
Structure. Section II discusses preliminaries on the state-
of-the-art ER pipeline shown in Figure 1 and summarizes
relevant related work. Section III describes our functional
model for ER on dynamic data. Section IV describes the task-
parallel framework. Section V presents our implementation
and experimental evaluation. We conclude with Section VI.

II. PRELIMINARIES AND RELATED WORK

This section first presents the different ER steps that compose
the pipeline depicted in Figure 1. It then reviews related work.

A. General ER pipeline

Data reading (DR) consists in retrieving data from one or
multiple sources, typically applying some preprocessing to ease
the subsequent steps (e.g., tokenization or data standardization).
Depending on the number and quality of sources input to
DR, different variants of the ER problem arise: (1) dirty ER
considers that any of the input sources may itself include
matches, whereas (2) clean-clean ER assumes that matches can
only arise across sources. Figure 2(a) illustrates dirty ER data
in various formats that could coexist in a data lake integrating
heterogeneous data from the building sector. We assume that
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Fig. 2. Illustrative example for different ER steps

standardization transforms e4’s “fiber” token to British English
and changes e5’s material to the more general term “wood”.
Block building (BB) aims at reducing the total number of
comparisons by grouping pairs of representations in blocks
according to a set of features (as surveyed in [3], [20]), to
then only compare entity representations that fall in a same
block. When entity representations highly vary in their structure
(e.g., no fixed schema and thousands of attributes that may
be scarcely used), classical attribute-based blocking used for
relational data does not apply. A simple and commonly used
method to deal with this high schema-heterogeneity is token
blocking [20] that creates a block bk for each token k appearing
in the preprocessed values of at least two entities. Essentially,
this gives each pair of entity descriptions that share at least
one standardized token the chance to be compared, despite
missing or contradictory data. Figure 2(b) (disregarding the
blue annotations) shows the block collection after applying
token blocking on the full dataset comprising e1 to e5 of
Figure 2(a). Note that previous standardization allows e4 (resp.
e5) to appear in the block with token “fibre” (resp. “wood”).

Even in this small example, the main problem of token
blocking shows: indeed, “naive” ER would simply compare all
five entity representations shown in Figure 2(a) with each other,
resulting in 6 pairwise comparisons (assuming a symmetric
similarity measure). Using the block collection depicted in
Figure 2(b) would require 23 comparisons. In real ER scenarios,
the total number of comparisons after token blocking (or any
other method that use schema-free keys for block building)
easily exceeds the theoretical worst-case quadratic number of
comparisons by orders of magnitude [9]. To re-establish the
rationale of using blocking, i,e., significantly reduce the number
of pairwise comparisons, further post-processing methods are
integrated as part of the blocking step of the ER pipeline.
These methods pursue the following goals: (1) avoid redundant
comparisons, for instance compare e1 and e3 at most once,
instead of the three times the block collection of Figure 2(b)
would require and (2) reduce superfluous comparisons that are
unlikely to result in a match (e.g., e2 and e3).
Block cleaning (BC). Among the block post-processing
methods, block cleaning prunes the block collection to reduce
the number of comparisons. Two main approaches for BC are
block purging and block filtering.

Block purging (BPu) removes blocks that are considered



oversized and thus too general, yielding many superfluous
and also likely redundant comparisons. Oversized blocks are
identified using a parameter r (0 < r < 1) and bmax, largest
block in the block collection B. More specifically, BPu removes
all the blocks b ∈ B with size |b| > r · |bmax|.

Block filtering (BF) removes entity descriptions from blocks.
For an entity description ei, it first retrieves the set of blocks
Bei within B that ei has been assigned to during block building.
Given a parameter s, where 0 < s < 1, BF retains ei in the
bs · |Bei |c smallest blocks, deleting it from the remaining larger
blocks. The rationale is to remove ei from blocks where it is
more likely that the comparisons are superfluous.

As indicated by the blue annotations in Figure 2(b), BPu
would for instance remove the block defined by token “pavil-
ion”, assuming r = 0.8. Subsequently applying BF removes e1
from the block “panel”, assuming, s = 0.8 (other descriptions
are removed too, for conciseness and better readability we do
not report them).
Comparison cleaning (CC). The second post-processing step
to further reduce the number of pairwise comparisons resulting
from a block collection is comparison cleaning. For this
step, meta-blocking is commonly used [18], [19]. The ideas
underlying meta-blocking are illustrated in Figure 2(c). First it
builds a blocking graph from a block collection, where each
node represents an entity description ei and an edge (ei, ej)
between two nodes exists only if ei and ej co-occur in at least
one block. Each edge is weighted according to a weighting
scheme. Then, meta-blocking prunes the low-weighted edges
according to a pruning scheme. In [18], five general weighting
schemes, as well as four pruning schemes are proposed. For the
graph shown in Figure 2(c), we consider the block collection
given in Figure 2 (without performing BC) as input and we
use the Common Blocks Scheme (CBS) as weighting scheme. It
simply counts the number of blocks in which ei and ej co-occur.
Each edge in the graph is considered a pairwise comparison.
So clearly, at this stage, building the graph has already pruned
redundant comparisons. To also prune superfluous comparisons,
further edges are pruned from the graph. The dashed blue edges
in Figure 2(c) illustrate which edges the Weight Node Pruning
(WNP) scheme removes. In essence, given a node ei, it first
computes a local threshold defined as the average edge weight
of its adjacent edges. It then retains only the adjacent edges
having a weight higher than the local threshold.
Comparison (CO). The result of the blocking step, which
comprises BB, BC, and CC, is used to form the pairs of
entity descriptions input to the comparison step. In this step,
each pair of entity descriptions (e.g., (e1, e2), (e1, e3), (e1, e5),
(e2, e4), (e2, e5) and (e3, e5)) is compared based on a similarity
measure.
Classification (CL). The computed similarities form the basis
for the final classification of entity descriptions as matches
or non-matches, which is the task of the classification step.
A common strategy is to classify pairs as matches if their
similarity is above a given threshold. In our example, we
assume that both (e1, e3) and (e2, e4) are identified as matches.

B. Related Work

We now summarize work related to scaling ER through
parallelization and seminal work in ER for dynamic data.
ER parallelization. To scale to large volumes of data, paral-
lelism in ER has been explored, as surveyed in [2]. In particular,
data parallel solutions (map-reduce based) have been proposed
for meta-blocking [8], [17]. These parallelization strategies do
not naturally support incremental or streaming ER. Therefore,
we shift to a task-based parallel solution able to process a high
number of entity descriptions in a given time.

To the best of our knowledge, besides our vision paper [10]
previously mentioned, only [25] explores task-based paralleliza-
tion in ER. [25] focuses only on relational data and does not
integrate blocking techniques necessary for heterogeneous data.
That is, this paper is the first to propose a practical end-to-end
parallel framework for ER able to process dynamic data.
ER for dynamic data. To cope with dynamic data, approaches
have been proposed to perform (parts of) ER incrementally [11],
[12], [22]–[24]. However, they target relational data and do not
trivially extend to ER on heterogeneous data, in particular to
the different blocking steps it requires. Once matching pairs are
found, approaches to incrementally cluster these to form groups
of descriptions of the same entity have been proposed [5], [11],
[24]. We consider these complementary to our approach, as
they typically consume pairs as output by our framework.

The research most similar to ours is a schema-agnostic
blocking technique, named PI-Block [1]. it is based on meta-
blocking and supports both heterogeneous data and incremental
processing, leveraging parallelization using Apache Spark. PI-
Block operates on large increments of data and does not apply
to “real-time” stream processing. In contrast to PI-Block, we
provide an end-to-end ER approach for dynamic data rather than
focusing on a single step. We further consider the timeliness of
results to effectively support streaming data, where each input
entity description should be processed as fast as possible.

III. A FUNCTIONAL MODEL FOR ER ON DYNAMIC DATA

This section presents the formalization of a functional model
for ER on dynamic and heterogeneous data. We have seen in
the introduction that two variants of ER are often distinguished,
namely dirty ER and clean-clean ER. We also target two types
of dynamic data: incremental data considers a finite dataset that
is incrementally updated, whereas streaming data is a possibly
endless stream of individual entity descriptions.

The discussion of our functional model first elaborates on
dirty ER and incremental data in Section III-A. We then extend
the functional model for clean-clean ER and streaming data
in Sections III-B and III-C, respectively. Table I summarizes
notations that we frequently use in the paper.

A. Model for incremental dirty ER

As input, we consider an entity description ei of a dataset
D = {e1, ..., en}. We denote with pi the profile of entity
description ei that is the result of standardization as performed
by the data reading step. An entity description ei (and profile
pi) is uniquely identified by i that can be an identifier or a URI.



TABLE I
SUMMARY OF NOTATIONS

Notation Meaning
ei, pi An entity description and its standardized profile
D = {e1, . . . , en} A finite set of entity descriptions
DS = [e1, e2, . . .] A possibly infinite stream of entity descriptions
Ki the set of blocking keys of ei (pi)
bk A block grouping all profiles that share blocking key k
B = {bk1 , . . . bkn} A block collection
||B′

i|| The number of pairwise comparisons B would result in
cij = 〈i, pi, j, pj〉 A pair of profiles pi and pj with their identifiers i and j
M a set of profile pairs cij considered to be matches
σi = 〈Mi, Bi〉 State maintained when processing ei

We further define a state σi = 〈Mi, Bi〉 where Mi is the set
of discovered matches found before processing ei, while Bi is
the block collection built before processing ei. We denote by
fer the function returning an updated state σi+1 based on ei
and σi; that is σi+1 = fer(ei, σi). The state σi+1 updates σi
with a new set of discovered matches Mi+1 ⊇Mi and a new
blocking collection Bi+1. Let σ1 be an initial state. It can either
be empty or be filled with the state resulting from applying ER
on another dataset, which D is updating. Then, we define an
incremental ER computation by the fold computation of fer for
each ei in D, that is: σn+1 = fer(en, ...fer(e2, fer(e1, σ1))...).

We model fer as the following combination of functions, that
adapt the different steps of the general ER pipeline depicted
in Figure 1 to support dynamic data:

fer(ei, σi) = (fcl ◦ fco ◦ fcc ◦ fcg ◦ fbc ◦ fbb ◦ fdr)(ei, σi)

All functions take as input a single tuple, denoted within 〈. . .〉,
and return a single tuple. Their input tuple generally includes
a state σi = 〈Mi, Bi〉 and the output tuple either comprises
the identity of the state σi or a new updated state where Mi or
Bi may have changed depending on the function. In this case,
we denote the changed state as σ′i and its changed components
as M ′i or B′i. We now discuss the individual functions.
Data reading: Let fdr be a function returning a tuple
〈i, pi,Ki, σi〉 given as input 〈ei, σi〉. In addition to the un-
changed state σi, the tuple specifies a unique identifier i, the
standardized representation pi of ei, and the set of associated
blocking keys Ki resulting from tokenizing the values in pi.
Block building: We denote by fbb the function returning a
tuple 〈i, pi,Ki, σ

′
i〉, given as input a tuple 〈i, pi,Ki, σi〉. The

updated state consists in σ′i = 〈Mi, B
′
i〉, where B′i updates all

the blocks bk ∈ Bi where k ∈ Ki by adding the tuple 〈i, pi〉.
Block cleaning: We denote by fbc the function returning a tuple
〈i, pi,Ki, σ

′
i〉 from input 〈i, pi,Ki, σi〉. The new state consists

in σ′i = 〈Mi, B
′
i〉 where B′i is the “cleaned version” of the

block collection Bi. Essentially, block cleaning removes tuples
of the form 〈i, pi〉 from Bi, targeting a significant reduction of
||Bi||, the number of comparisons block collection Bi would
result in. That is, block cleaning achieves ||B′i|| � ||Bi||.
This property models both block purging and block filtering,
the main methods used for block cleaning.
Comparison generation: While block cleaning considers
individual entity descriptions assigned to blocks, comparison
cleaning reasons on pairs of entity descriptions. Therefore, we

introduce the comparison generation function, denoted fcg . It
takes as input 〈i, pi,Ki, σi〉 and returns 〈Ci, σi〉, where Ci is a
sequence of pairwise comparisons. Each comparison cij ∈ Ci
is a tuple cij = 〈i, pi, j, pj〉, constructed as follows. Essentially,
for the “newly incoming” profile pi identified by i and that
matches the blocking keys Ki, we retrieve each k ∈ Ki to
then lookup the full blocks of the block collection with that
key, i.e., bk ∈ B. We then retrieve tuples from these blocks as
〈j, pj〉 ∈ bk and emit the pair cij = 〈i, pi, j, pj〉.
Comparison cleaning: We denote by fcc the function that
reduces the comparisons compared to the list of comparisons
provided by the input in form of a tuple 〈Ci, σi〉. That is, it
returns 〈C ′i, σi〉 such that the number of pairwise comparisons
is significantly reduced, i.e., |C ′i| � |Ci|. This property models
the same rationale as meta-blocking.
Comparison: We denote by fco the function returning a set
Si as part of its output 〈Si, σi〉, upon receiving 〈Ci, σi〉 as
input. Essentially, for all cij ∈ Ci, we add an si to Si, where
si = 〈cij , simij〉 and simij is a similarity value measuring
the similarity of the profiles in cij .
Classification: As last function, we introduce fcl, the function
that returns the final result of entity resolution (i.e., of fer) by
returning σi+1, which is updated based on the input 〈Si, σi〉.
The new state is defined as σi+1 = 〈Mi+1, Bi+1〉. Mi+1

updates M with new matches found by classifying each si ∈ Si
as match or non-match. Bi+1 is the same as in the function’s
input σi. It has been previously updated in the ER pipeline
during block building and block cleaning.

B. Modeling clean-clean ER

The above model for incremental dirty ER can be easily
specialized for clean-clean ER. First, we introduce a function
fcombine that takes as input two datasets Dx and Dy that are
assumed to be clean. The function combines the two datasets
in a dataset Dx,y where each entity description ei from dataset
Dx (or Dy) is mapped as exi (or eyi ). In this way, we can
use the same functions we defined before, just using both
i and the dataset identifier combined in a tuple 〈i, x〉 (or
〈i, y〉) as identifier. The only exception is fcg , which is adapted
to generate comparisons only among profiles with a dataset
identifier different to the dataset identifier of the input tuple.

C. Extending to streaming data

We define a streaming ER computation as a higher order
function. It takes as input (1) a data stream of entity descriptions
DS = [e1, e2, ..., en] possibly unbounded with n→ +∞ and
entity descriptions arriving in sequence at times t1 < t2 < ... <
tn and (2) the function fer with an initial state σ1. The output
of this higher order function is a stream [M1,M2, ...,Mn],
possibly unbounded with n → +∞, which represents a
sequence of matches returned at times t′1 < t′2 < ... < t′n
such that ti < t′i and 〈Mi, Bi〉 = σi = fer(ei−1, σi−1) is
computed at t′i.

In summary, this section covered a functional model of
the general ER pipeline that updates a global state of blocks
and found matches when a new entity ei is processed. This
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Fig. 3. Entity resolution pipeline

inherently supports incremental and streaming entity resolution
and is amenable to both dirty ER and clean-clean ER. It
further enables us to introduce task-based parallelization, as
we describe in the next section.

IV. TASK-BASED PARALLELIZATION FOR ER

The functional model for ER on dynamic and heterogeneous
data described in the previous section is suitable to be pipelined
in multiple parallel stages. This allows different and indepen-
dent tasks or segments of the stream to execute in parallel
to improve the overall performance. In our context, tasks
are entity descriptions, which can be individually processed
as our functional model considers an individual ei (or its
corresponding pi) in the functions’ input. In this section, we
study more closely how to map the functions of our model to
multiple parallel processes or stages.

In Section IV-A, we discuss a mapping of the functional
model to a pipeline of processes running in parallel, which
mostly follows our functional model. As we shall see, this
pipeline framework incurs some bottlenecks. To resolve
these bottlenecks, we present an optimized framework in
Section IV-B that carefully allocates computing resources to
different steps of the ER pipeline, such that all ER steps achieve
comparable latency.

A. Pipeline framework

Figure 3 shows a pipeline that maps all functions of the
functional model discussed in Section III to a separate stage,
with the exception of block building and block cleaning. These
are split differently, resulting in two functions fbb+bp and fbg
further introduced below. We further introduce a function flm
for load management. This pipeline mapping is the result of
the following design choices.

1) General design choices: In principle, we could faithfully
follow the functional model to implement our framework.
However, we opt for some adaptations, explained as follows.
Avoiding shared state. Our functional model passes σi =
〈Mi, Bi〉 across the different steps in a pure functional style.
However, in our framework, for efficiency reasons, we decide to
“locally” maintain the state as part of a blocking function fbb+bp,
that exclusively summarizes the blocking steps that modify
the state. Consequently, we “outsource” our stream-enabled
variant of block filtering, called block ghosting, to a separate
stage fbg. This separation gives us more opportunity for task
parallelization by also replicating fbg to run different and
independent tasks in parallel. Indeed, for functions changing the
state, the more suited choice is data parallelism by partitioning
the state. We further assume that fcl does not update any state
and just delivers the results, i.e., the matches found that involve
the processed ei, to a consumer or stores the result on disk.
We further maintain a state for flm, described next.

Profile maintenance. We reduce the size of the block col-
lection maintained by fbb+bp by only storing identifiers 〈j〉
rather than both the identifier and the corresponding profile, i.e.,
〈j, pj〉. We recover the profiles once needed, meaning prior to
the comparison stage. To this end, flm maintains a profile map
PM . PM serves as an index to lookup a full profile pj of an
entity ej identified by j, which has been determined to require
comparison to the currently processed entity description.

2) Implementing individual stages: We now discuss details
on the implementation of individual stages. The algorithms
underlying data reading, comparison generation, comparison,
and classification simply adapt existing solutions from batch ER
processing, incorporating the design choices described above.
The algorithm implementing flm performs a simple lookup of
a profile to implement. Due to space constraints, our discussion
focuses on the remaining steps that need more adaptation, i.e.,
blocking using fbb+bp and fbg and comparison cleaning fcc.
Block building (part of Algorithm 1) is the first part of
the algorithm for fbb+bp. It only requires to add each key
among the keys associated with ei, that is, each k ∈ Ki, to
the corresponding block bk of the block collection Bi. This
corresponds to the first two lines of the for-loop in Algorithm 1.
We assume that Bi.getOrInit(bk) returns an empty set if no
block exists for key k.

Figure 4 shows how the block collection local to fbb+bp
evolves as the entities e1 through e5 of our previous example
are incrementally processed. At first, data reading for e1
yields a standardized and tokenized representation p1 of
attribute values of e1, and the associated set of blocking keys
is K1 = {top, panel, wood, pavillion, John}. Thus, block
building results in B1 having 5 blocks, each referring to e1.
As further entities are processed, state Bi gradually grows. In
comparison to the block collection of Figure 2(b), once e5
is processed, we continue to maintain blocks of size 1 (e.g.,
block “Jane”) as they may grow in the future.

Let us now focus on block cleaning. As we have seen in
Section IV-A, block cleaning integrates both block purging and
block filtering. For dynamic data where the final sizes of blocks
are a priori unknown, we cannot leverage existing techniques
that rely on maximum or minimum size blocks. Therefore,
in our framework, we propose block pruning that similarly
to block purging removes complete blocks from the block
collection, and block ghosting as a variant of block filtering
where individual profiles in a block are ignored.
Block pruning (part of Algorithm 1) relies on a parameter
α > 1. It can be set based on the estimated size of a dataset
to be processed, or to a user-defined maximum admissible
block size. We further maintain a blacklist K of key values
that have been encountered when processing entity descriptions
eh, h < i and already pruned as the corresponding blocks have
grown too large. In the algorithm, after adding i to bk, we
verify if bk is oversized by checking if its size |bk| ≥ α. An
oversized block bk is removed from the block collection Bi and
the corresponding k is added to K. This blacklist is consulted
when new keys are processed, i.e., in the for loop, we check if
a key k 6∈ K to proceed. The non-oversized blocks to which i



Algorithm 1: fbb+bp
Input: 〈i, pi, Ki〉
Output: 〈i, pi, Ki〉
Bi : the block collection
α: a parameter
Bei : a subset of Bi, initially empty
K: blacklist of keys
foreach k ∈ Ki ∧ k 6∈ K do

bk ← Bi.getOrInit(k)
bk.add(〈i〉)
if |bk| ≥ α then

K ← K ∪ {k}
Bi.remove(k)

else
Bi.put(k, bk)
Bei .put(k, bk)

return 〈i, pi, Ki, removeSingletons(Bei )〉
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Fig. 4. Example execution of incrementally processing e1 to e5 using pipelined framework.

Algorithm 2: fbg
Input: 〈i, pi, Ki, Bei 〉
Output: 〈i, pi, K′

i, B
′
ei
〉

β: a parameter
bmin ← the minimum

size block in Bei
foreach k ∈ Ki do

bk ← Bei .get(k)

if |bk| >
|bmin|
β

then
Ki ←
Ki \ {k}
Bei .remove(k)

return 〈i, pi, Ki, Bei 〉

Algorithm 3: fcc
Input: 〈Ci〉
Output: 〈C′

i〉
G← ∅, a map maintaining a count

for each cij
foreach cij ∈ Ci do

newCount← G.get(cij) + 1
G.put(cij , newCount)

avg ← get average of counts in G
C′
i ← ∅

foreach 〈cij , count〉 ∈ G do
if count ≥ avg then

C′
i ← C′

i ∪ {cij}

return 〈C′
i〉

is added are updated both in the global block collection Bi and
a temporary block collection Bei that only includes the blocks
relevant to processing ei. The function removeSingletons
removes blocks of size 1 of Bei before, which becomes part
of the output of fbb+bp.

In the example shown in Figure 4, we assume α = 5.
When processing e1 through e4, blocks continuously grow
but obviously, none reaches size 5. When processing e5,
data reading gives K5 = {panel, wood, pavilion, Jane, side}.
Adding e5 to the “pavilion” block makes it oversized. Thus,
“pavilion” is added to the blacklist K to ensure the block is
discontinued. This prunes four comparisons of e5 to other entity
descriptions. After removing the singleton block “side”, block
building passes on only 3 blocks as Be5 for further processing.
Block ghosting (Algorithm 2) In a dynamic ER scenario
where Bi changes over time, it is not wise to actually remove
individual profiles from each block, especially in the early
phases of the resolution process. Indeed, the distribution of
block sizes may change and shift the decision of whether
to generate comparisons for an entity description from one
block or another. Therefore, block ghosting retains all entity
descriptions (more precisely, their identifiers) in blocks, but
adapts the set of keys Ki to only include keys of blocks to
be considered by the next stage, i.e., comparison generation.
This effectively ignores blocks whose keys have been removed
from Ki. To determine the keys to be ignored, block ghosting

first finds the smallest block bmin present in Bei . For each
key k ∈ Ki, we then check if the corresponding block is
significantly larger than bmin, where significant is determined
by the parameter β, 0 < β < 1. Intuitively, β indicates at which
point we discard comparisons to ei because it is in a block too
general and likely to generate many superfluous comparisons.
Currently, β is set statically. Changing it dynamically is an
interesting avenue for future research. If bk is considered too
large, it is removed from Ki. In fcg , we will then only generate
comparisons cij from blocks with a key contained in Ki.

In our example and assuming β = 0.6, block ghosting
prunes nothing when incrementally processing e1 through e3.
When reaching e4, among the three blocks in Be4 , the smallest
block size is 2 (e.g., block “fibre”). This discards the “pavilion”
block, which has reached size 4 at this point, because 4 > 2

0.6 ,
effectively pruning comparisons (e4, e1), (e4, e2), and (e4, e3).

When processing ei, comparison generation fcg simply
builds, for each remaining block in Bei all pairwise com-
parisons cij between ei and any ej present in a same
block. The collection of all such comparisons, denoted Ci
is passed on to comparison cleaning. For instance, after block
cleaning for e4 as described above, comparison generation
creates C4 = {(e4, e1), (e4, e2), (e4, e2)}, where the first two
comparisons originate from the “panel” block and the last one
from the “fibre” block.
Comparison cleaning (Algorithm 3) prunes pairwise com-
parisons, for which we propose a variant for dynamic data
of the CBS weighting scheme and the WNP pruning scheme
introduced in Section IV-A. Essentially, we group the tuples
in Ci by i (that is fixed) and j and count the number of
tuples in each group. The grouping effectively prunes redundant
comparisons. To further prune superfluous comparisons, we
determine a threshold avg, computed as the average count per
group. We then only keep comparisons with a count equal to
or larger than avg, as these co-occur in more blocks and thus
are more likely to be actual matches. Note that this approach
does not rely on a blocking graph and only depends on the
comparisons Ci generated by the previous stage.

In our example, when processing C4 given above, compari-
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son cleaning creates the following groups and associated count:
(e4, e1) → 1 and (e4, e2) → 2. Only (e4, e2) has a count
higher than the average count of 1.5. So fcc relays only one
comparison C ′4 = {(e4, e2)}.

3) Discussion: When implementing the pipeline for ER on
dynamic data as described above, we can support both incre-
mental ER and streaming ER. However, theoretical speedup
is limited by the number of the stages. Indeed, assuming that
all stages are busy processing an entity description at the
same time, we can at most process eight entity descriptions
simultaneously. This assumes that each stage uses comparable
time to process an entity description. However, this optimal
performance is not achieved due to some stages being slower
than others, i.e., they are bottleneck stages. As experiments
show, the pipeline solution, even with careful design choices,
is slowed down by the bottleneck stages of comparisons,
comparison cleaning, and comparison generation, yielding only
a moderate speedup of at most 2 compared to a sequential
execution that does not incorporate task-paralellism through
pipelining. The optimized framework described in the next
section studies and addresses these bottlenecks.

B. Optimized framework

To identify bottleneck stages, we resort to both a theoretical
and an experimental analysis of time required by the algorithms
underlying each stage.
Theoretical analysis. We estimate similar and low runtime for
fdr, fbb+bp, and fbg as they all iterate over a similar number
of tokens or token keys Ki. Opposed to that, comparison
generation has a complexity of O(|Ki| × α). This is also true
for comparison cleaning, however, we expect it to run twice
as long. The next stage is load management flm. Assuming
comparison cleaning is effective in reducing the number of
comparisons (experiments show a reduction by an order of
magnitude), flm performs a simple lookup for far less pairs
than originally generated and input to comparison cleaning.
It is fair to assume that this will take less time than fcg
and fcc. Opposed to that, while fco also processes the same
(reduced) number of pairs as flm, we have to take into account
the potentially complex similarity measure that compares two
(possibly large) profiles with each other. Depending on the size
of profiles, similarity measure used, and the effectiveness of
pruning comparisons through blocking, fco may or may not be
more time consuming than fcc or fcg . As for fcl, it should be
faster than fcg . While both have comparable theoretical worst
case complexity, effective pruning should keep fcl below fcg .

100

80

60

40

20

0

Ti
m

e 
pe

rc
en

ta
ge

Dataset
Dcora Dcddb Dag Dmovies Ddbpedia

Fig. 6. Computation bottlenecks (β = 0.05, α = 0.005|D| for Ddbpedia,
otherwise α = 0.05|D|.

From the above discussion, we expect the main bottlenecks
to be fcc, fco, and fcg, while flm and fcl are expected to be
more efficient and comparable in runtime. The fastest stages
are likely fdr, fbb+bp, and fbg . From this observation, we now
formulate the problem of assigning processing resources, i.e.,
P processes, for parallel execution such that all stages complete
in similar times. Intuitively, this requires us to allocate most
resources to parallelize the bottleneck stages, while we can
discard parallelization for the cheapest stages.

This amounts to solving the following problem. Let Tf be
the “target” runtime for completing each stage, which is equal
to the (comparable) time of stages not requiring parallelization,
i.e., Tf = Tdr = Tbb+bp = Tbg . We want to assign x processes
to fcc such that Tcc

x = Tf . Analogously, we assign y and z

processes to fco and fcg such that Tcoy = Tf and Tcg
z = Tf . The

number of processes assigned to the comparable flm and fcl
can be set to v such that Tlm = Tcl = v× Tf . Having in total
P processes at our disposal, and requiring at least one process
for each stage, we have P = 1+ 1+ 1+ z+ x+ v+ y+ v =
3 + 2v + x+ y + z, such that v < z, x > z, and y > z.

The optimized framework thus no longer resembles a pipeline
of successive stages. Instead, it follows the general scheme
of parallelizing different stages by different degrees (v, x, y,
and z) as illustrated in Figure 5.
Experimental analysis. Given the setup and data we describe
in detail in Section V, we further conduct an experiment to
measure the actual times per stage. For different datasets,
Figure 6 shows how much each stage contributes to the overall
runtime for processing the full dataset when using the pipeline
in Figure 3 using parameter settings offering good efficiency-
quality balance as established in Section V.

We see that in practice, fco and fcc are the main bottlenecks,
which is in accord with our theoretical analysis. They are
followed by fcg if we consider Ddbpedia, the biggest dataset,
which again matches our theoretical analysis. On smaller
datasets however, fbb+bp is the third most expensive. One
explanation may be that for the smaller datasets, processing
a potentially large number of tokens in |Ki| is actually more
expensive than generating the moderate number of comparisons
in fcg due to generally small block sizes and effective pruning.
Also, absolute runtimes on the small datasets are low (between
600 ms and 15 s), while rising to 54 minutes on Ddbpedia.

Considering Ddbpedia, all phases except fco and fcc have
comparable times, which are between 100 and 200s. We further



TABLE II
DATASETS CHARACTERISTICS

Name Type Number of Number of Average Number
entity matches of name-value

descriptions pairs per profile

Dcora cora dirty ER 1.29k 17.1k 5.5
Dcddb cddb dirty ER 9.76k 299 17.8
Dag amazon-google dirty ER 4.39k 1,10k 3.3

Dmovies movies clean-clean ER 27.6k - 23.1k 22.8k 5.6
Ddbpedia dbpedia clean-clean ER 1.19M - 2.16M 892k 14.2

observe that Tco ≈ 2 · Tcc and that Tcc ≈ 3 · Tcg. Based on
this analysis, we set the number of parallel processes run for
the different phases. For instance, when using P = 15, we set
v = 1, x = 3, y = 6 and z = 1.

V. EVALUATION

In this section, we evaluate experimentally our solutions
for ER on dynamic data. (1) We first study how our adapted
techniques for block cleaning and comparison cleaning, which
reduce the number of expensive pairwise comparisons to
be performed, compare to existing techniques that do not
support dynamic data. We then show how this affects the
overall performance of our pipeline, compared to the overall
performance of existing batch ER. For a fair comparison, we
run all approaches in a batch setting where the task is to
perform ER on a fixed dataset once. We also do not yet leverage
parallelism, effectively implementing a sequential ER pipeline
that implements the algorithms presented in Section IV-A.
(2) Next, we evaluate ER performance in an incremental setting,
where we compare our approach to adapted batch solutions
and a pipeline incorporating PI-Block [1]. (3) Next, we focus
on the effect of parallelization by studying speedup. (4) Finally,
for streaming data, we evaluate the throughput and latency.
Datasets. Table II summarizes characteristics of the datasets
we used. They have been extensively used in the ER literature
(e.g., in [11], [15], [26]). While the datasets suited for dirty ER
do not exhibit significant schema heterogeneity (Dcora, Dcddb,
Dag), the large datasets for clean-clean ER are heterogeneous
and semi-structured (Dmovies, Ddbpedia). A ground truth file
of matches accompanies each datasets1.
Metrics. We evaluate incremental ER solutions in terms of
quality and runtime efficiency. We quantify quality using pair
completeness (PC), an established measure defined as the
number of matches that can be detected after BC and CC,
divided by the total number of matches |MD| in the input
dataset D. To assess the effectiveness of pruning techniques,
we rely on the number of comparisons generated by a block
collection (i.e., the cardinality of the block collection ||B||)
after BB, BC, or CC. To evaluate the benefits of parallelization,
we rely on speedup sp(n) = RT (SEQ)

RT (n) that puts in relation
the time for sequential ER to complete, denoted RT (SEQ)
with the resolution time RT (n) of the parallel implementation
with parallelism degree of n. For ER on streaming data, we
measure the latency defined as the time to process a single

1Available at: https://github.com/scify/JedAIToolkit

input entity description end to end and the throughput defined
as the number of entity descriptions processed per second.
Baselines. For comparison to state-of-the-art solutions, we first
leverage the methods available via the JedAI framework [21].
These allow us to build an ER pipeline for batch processing that
includes token blocking, block purging relying on a parameter r,
block filtering configured using parameter s, meta-blocking for
comparison cleaning, pairwise comparison (employing Jaccard
similarity), and classification via lookup in the ground truth
data (thereby assuming a perfect classifier). Such a workflow
represents the state-of-the-art to perform batch ER for larger
volumes of heterogeneous data [4]. Given that our work focuses
on efficiently supporting dynamic data, we use a standard
configuration for the steps mostly affecting ER quality without
significantly changing the runtime (i.e., comparison using
Jaccard and classification using lookup). Opposed to that,
we test different parametrizations for block purging where
we vary r ∈ {0.05, 0.005} and block filtering, where we
vary s ∈ {0.1, 0.5, 0.8}. For meta-blocking, we use CBS as
weighting scheme, as it is closest to the weighting scheme used
in our approach, whereas we vary the pruning scheme, using
either WEP, WNP, Reciprocal WNP (RWNP), CEP, CNP, and
Reciprocal CNP (RCNP) [18], [19]. Considering efficiency-
intensive applications we follow the suggestion of [19] and we
consider also the combinations of Reciprocal WNP with JS
scheme (RWNP+JS) for clean-clean ER and Reciprocal CNP
with ARCS scheme (RWNP+ARCS) for dirty ER.

For incremental ER, we consider three baselines: (1) the
best batch ER configuration that recomputes the blocking steps
over the whole collected data for each increment without
recomputing again previously processed comparisons; (2) an
ER pipeline that integrates the incremental blocking solution
PI-Block (substituting fbb+bp, fbg , fcg , and fcc; (3) a degraded
version of our ER framework that skips block cleaning, because
PI-Block essentially performs comparison cleaning.
Implementation. We implemented our methods as well as
baseline pipelines in Scala. Baselines use methods provided
by the JedAI framework (version 3.0) that is implemented
in Java 8. The only exception is our re-implementation of
PI-Block. We reimplemented it because it was originally
developed in Apache Spark and as acknowledged in the original
paper (and verified by us), this implementation is unable
to complete, e.g, on the moderately sized dataset Dmovies,
without the use of substantial computing resources (in their
case a distributed infrastructure with at least 12 nodes) as it
requires a large amount of memory. For parallelization and
support of streaming data, we leverage the Akka Streams
API, which allows programmers to build scalable applications
on streaming data. All experiments were performed on an
OpenStack virtualized server with Ubuntu 18.04 (16 processors
at 2.30GHz, 50GB RAM).

A. Comparative evaluation: Batch setting

We first consider a sequential implementation of our func-
tions by comparing a non-parallel version of our pipeline of
Figure 3 to different baseline configurations for batched ER.



TABLE III
COMPARATIVE EVALUATION OF THE NUMBER OF COMPARISONS RESULTING FROM BLOCK CLEANING

block purging + block filtering block pruning + block ghosting

r 0.05 0.005 α 0.05 ×|D| 0.005 ×|D|

s 0.1 0.5 0.8 0.1 0.5 0.8 β 0.1 0.05 0.01 0.1 0.05 0.01

(a) Parameter configurations for baseline block cleaning (left) and stream-enabled block cleaning (right)

Dcora 2.68E+03 3.94E+04 8.95E+04 4.30E+01 7.94E+02 1.32E+03 3.01E+05 3.44E+05 3.54E+05 9.92E+03 9.92E+03 9.92E+03
Dcddb 2.05E+04 8.11E+05 4.48E+06 8.58E+03 8.58E+03 4.63E+05 1.57E+06 3.39E+06 1.61E+07 1.38E+06 1.38E+06 2.36E+06
Dag 1.61E+04 5.21E+05 2.02E+06 3.25E+03 4.12E+04 1.16E+05 1.43E+06 3.01E+06 8.50E+06 5.81E+05 5.86E+05 5.86E+05
Dmovies 1.97E+05 8.32E+06 4.92E+07 1.11E+05 2.41E+06 9.72E+06 7.85E+06 1.51E+07 5.14E+07 4.47E+06 7.28E+06 1.18E+07
Ddbpedia // // // 1.15E+07 1.92E+09 1.21E+10 // // // 1.29E+09 3.25E+09 1.16E+10

(b) Number of pairwise comparisons that would result from the cleaned block collection for different parameter configurations

This series of experiments validates that, in a batch setting, our
approach, which incorporates alternative blocking techniques,
is comparable or even better than well-established algorithms
for batched ER, both in terms of efficiency and quality.

We start with a study of how block cleaning, as implemented
in our framework using block pruning (BP) and block ghosting
(BG), performs compared to batched block cleaning that is
based on block purging (BPu) and block filtering (BF). We
use the baseline configurations described above. For our BP
and BG algorithms, we vary the parameters α ∈ {0.05 ×
|D|, 0.005× |D|} and β ∈ {0.1, 0.05, 0.01}.

Table III reports the results in terms of pairwise comparisons
that would be performed when using the cleaned block
collection as returned by block cleaning. For Ddbpedia we
consider only the more aggressive (in terms of pruning)
configurations of r = 0.005 (respectively α = 0.005 × |D|)
for block purging (respectively block pruning). The other
configurations would take too long.

From the numbers reported in Table III, we first observe
that the most aggressive baseline configuration (r = 0.005
and s = 0.01) is more effective in pruning comparisons than
the most aggressive configuration for stream-enabled block
cleaning (α = 0.005×|D| and β = 0.1). Indeed, the difference
in number of pairwise comparisons is regularly more than two
orders of magnitude. As we move towards less aggressive
configurations, we observe that this gap between baseline
solutions for batch ER and our approach diminishes to less
than an order of magnitude. Nevertheless, our block cleaning
for streaming ER is generally less effective in pruning pairwise
comparisons than its counterpart in batch ER.

We now evaluate the effectiveness of the next step that
prunes pairwise comparisons, i.e., comparison cleaning. We
consider different baselines for CC as described above. We
refer to our CC method as I-WNP (for incremental weighted
node pruning). Figure 7 plots the number ||B|| of pairwise
comparisons resulting from (different configurations of) block
cleaning on the x-axis, and the number of pairwise comparisons
after CC on the y-axis, denoted as ||B′||. We report results
for Dcddb in Figure 7(a), which are representative of results
obtained on the other datasets with the exception of Ddbpedia,
which we therefore report in Figure 7(b).

Overall, on most datasets, we observe a trend similar to the
trend seen in Figure 7(a). That is, most baseline approaches
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Fig. 7. Effectiveness of comparison cleaning

reduce the number of pairwise comparisons between one
and two orders of magnitude. Our I-WNP is at the more
conservative end of the spectrum by reducing the number of
comparisons by roughly one order of magnitude. The picture
changes when we look at the largest dataset Ddbpedia. First,
note that Figure 7(b) reports results for less configurations
(i.e., less points), as some failed after hours of computation as
they ran out of memory. For the configurations still running,
we see that RCNP can achieve a reduction of comparisons of
up to three orders of magnitude, while I-WNP maintains its
one order of magnitude. We conclude that the effectiveness
of our comparison cleaning method I-WNP is stable and
reduces the number of comparisons by an order of magnitude.
This is comparable to some baseline approaches, while it is
significantly less than the best baseline CC techniques.

However, the number of comparisons to be performed after
BC and CC is not yet an indicator of the overall end-to-
end performance of ER. In particular, the generally expensive
comparison step CO still lies ahead. Remember that the primary
goal of putting so much effort into BB, BC, and CC is to
perform less expensive comparisons. So an interesting question
is how the effectiveness and cost of reducing comparisons
balances with the cost of CO. Furthermore, the reduction in
performed comparisons needs to be put in perspective to the
quality of the returned result. In practice, the most aggressive
parametrizations obtaining the highest pruning do not yield
good quality results. To study the end-to-end performance of
different configurations of our approach with respect to different
baseline configurations, we measure the overall runtime (RT)



0 200 400 600
RT

Dcora

0.00

0.25

0.50

0.75

1.00
1-

PC

0 10000 20000
RT

Dcddb

0 10000 20000
RT

Dag

0 20000 40000 60000
RT

Dmovies

0 2 4
RT

Ddbpedia

1e7

CEP CNP RCNP RCNP+ARCS RCNP+JS RWNP WEP WNP I-WNP

Fig. 8. I-WNP configurations against the Pareto frontier of the baseline configurations to evaluate the tradeoff between overall ER runtime and quality.

of each configuration as well as the quality of the ER result
as pair completeness (PC). We use PC instead of recall and
precision, because, as mentioned before, we assume a perfect
classifier. Then, PC equals recall while precision is 1.

Figure 8 plots the runtime (in ms) against 1 − PC (such
that both axis represent better results with smaller values) for
each tested configuration and dataset. Grey points represent
results for baseline end-to-end ER for different CC approaches
and varying BC configurations (left in Table III). Blue points
summarize results for I-WNP coupled with the different
configurations of BP and BG (right in Table III). In each graph,
we trace the Pareto frontier of the baseline configurations, in
other words the best compromises between RT and 1− PC.

On all datasets, we see that at least one configuration of
our end-to-end ER solution with I-WNP is on or “ahead” of
the Pareto frontier. This shows that even in batch mode, our
solution is either comparable or better than the state-of-the-
art. From these results, we conclude that our solution actually
designed for ER on dynamic data is comparable or outperforms
batch ER solutions in terms of overall runtime and quality,
despite the individual functions used to reduce the number of
comparisons (BC and CC) being less effective.

To understand how we obtain this overall performance, we
further investigate the performance of different ER steps using
both the baselines and our solution. For the representative

Fig. 9. Runtime for blocking steps (BT), comparison cleaning (CCT), and
end-to-end ER (RT) for both Dccdb and Ddbpedia.

datasets Dcddb and Ddbpedia, Figure 9 reports (1) the time
BT that summarizes the time needed for data reading, block
building, and block cleaning (plus comparison generation and
load managing for our solution), (2) the time for the subsequent
comparison cleaning (CCT), and (3) the overall runtime RT,
which adds to the time BT and CCT the time for pairwise
comparisons and classification. All results (on the y-axis) are
reported with respect to the number of comparisons reported in
Table III after applying different block cleaning configurations.
The shaded area within the dashed lines in the graphs puts the
results in perspective with the results of Figure 8 on overall
ER quality. The area covers the optimal configurations on the
Pareto frontier for the baselines, and the configurations of our
solution that are comparable or better than these baselines.

As mentioned before, the overall runtime RT is comparable
for all approaches on smaller datasets such as Dcddb for
comparable quality. On this dataset, we see that while BT
is comparable for all configurations, our approach compensates
its reduced “pruning power” by being significantly faster during
comparison cleaning. The reason lies in the low scalability that
meta-blocking has, since it needs to materialize and process
an increasingly large graph, resulting in the main computation
bottleneck of batch ER. This effect is exacerbated when looking
at the results of Ddbpedia, the largest dataset. Here, we actually
see that even though BT for our approach is significantly higher
than baselines, our comparison cleaning method outperforms
all baseline CC approaches. In the baseline batch ER pipelines,
we observe that CC is more than 10 times slower than its
predecessor steps summarized by BT, whereas CC is actually
faster or comparable to blocking when using the solutions
proposed in this paper to run sequential ER. This gain is not
lost during comparison and classification, as the overall runtime
RT on Ddbpedia shows. That is, our approach outperforms all
others in terms of runtime (and quality, cf. Figure 8).

B. Comparative evaluation: Incremental setting

For incremental processing, we divide a dataset into a
varying number of equally sized partitions to be incrementally
processed. We then compare the following approaches: I-WNP
is the best configuration of our solution (the blue point closest to
the origin in Figure 8); Batch denotes the best configuration of
batch ER; PI-Block is the ER pipeline integrating PI-Block; and
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I-WNP (No BC) excludes block cleaning from our approach,
as PI-Block does not feature this blocking step.

Figure 10 reports the runtime used to process all increments
(number varies on x-axis) of Dmovies. It is the sum of end-to-
end time needed to process each increment, starting from the
moment when it arrives. We also measure quality in terms of
PC. For approaches using both BC and CC, PC is consistently
around 0.90 whereas those limiting to CC exhibit PC ≈ 0.97.

Clearly, I-WNP outperforms all baselines in an incremental
setting in terms of runtime. Independently of the number of
increments, its runtime is stable (around 11s). Opposed to
that, runtime of Batch to process Dmovies increases with the
number of increments. The results also show the importance
of applying both block cleaning and comparison cleaning, as
the baselines without block cleaning, i.e., PI-Block and I-WNP
(No BC), perform worst. Note that the best blocking time
using the original PI-Block implementation based on Spark
reported in [1] is around 1200 s when using 12 nodes and
10 increments. It could not run with less nodes because the
internal state needs to be partitioned across many nodes before
fitting in available memory). In contrast, our approach is 100
times faster while using less resources. Therefore, we do not
consider PI-Block in the next section, where we focus on how
parallelization affects the performance of our solution.

C. Parallel evaluation
We implement and configure the parallel optimized frame-

work, subsequently referred to as parallel pipeline (PP) as
discussed in Section IV. We further implement a variant of
PP that leverages micro-batching when passing data between
stages. This variant, called micro-batched parallel pipeline
(MPP) introduces an aggregation stage before each stage of the
framework. Its task is to collect multiple profiles that are then
passed on as a micro-batch to be processed sequentially. We
configure these aggregation stages to generate micro-batches
of at most 100 profiles in at most 10 milliseconds. We report
experiments on the largest dataset Ddbpedia.

In terms of quality, the sequential implementation SEQ as
well as PP and MPP reach the same high PC = 0.85. As
for runtime, SEQ takes 54 minutes, PP runs in 360 s, and
MPP finishes after 340 s. Clearly, both approaches that use
parallelization are roughly 10 times faster than the non-parallel
solution, MPP being the fastest.

For PP and MPP, we further study the speedup with respect
to SEQ when we vary the number of processes from 8 (meaning
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Fig. 13. Output throughput over time for source rates of (A) 5000, (B) 10000,
(C) 50000, and (D) 100000 descriptions/s.

no parallelization as each function requires at least one process)
to 25, where processes are distributed among the bottleneck
stages using the previously mentioned proportions. Figure 11
reports the results.

First, we observe that when using 8 processes, our results
for PP are consistent with the results reported for our non-
optimized pipeline that suffers from communication overhead
and bottleneck stages. Indeed, the speedup for PP is then only
1.12. Looking at the performance of MPP, we see that micro-
batching attenuates the effect of non-negligible communication
overhead and we reach a speedup of 1.67. MPP consistently
outperforms PP also when we increase the number of processes.
The peak speedup is around 8 for PP and 9.5 for MPP. Note that
this peak is reached when using 19 processes (as a reminder,
we have a 16 core machine). We explain the stagnation of
speedup thereafter by the saturation of computing resources.

In summary, we see that parallelization can significantly
speed up batched and non-parallel ER (we reached a factor of
100). However, the allocation of processing power to individual
functions needs to be carefully balanced to avoid bottleneck
stages, which is integrated in our optimized framework. Micro-
batching further improves the performance.

D. Streaming evaluation

Our final set of experiments focuses on dynamic data. We
validate that our framework indeed supports streaming data
and study both throughput and latency. We report results
when using PP configured as described in Section IV-B
and using 25 processes. We simulate a source sending a
stream of entity descriptions at given rate. We vary the



rate from (A) 5000 descriptions/s, (B) 10000 descriptions/s,
(C) 50000 descriptions/s, and (D) 100000 descriptions/s. Entity
descriptions are retrieved from Ddbpedia.

Figure 12 reports the latency (only extreme cases A and D for
conciseness, B and C are similar). The latency is measured per
entity description for a stream of 3 million entity descriptions.
We observe that the latency is quite robust to different input
stream rates, indicating that no significant bottleneck builds
up. However there are latency peaks that may degrade overall
performance, which we will further investigate in the future.

Figure 13 shows the output throughput of our optimized
framework in terms of descriptions processed end-to-end
per second, given the four different stream rates. We first
observe that when the source generates descriptions at a
rate that is lower than the effective execution rate of the
framework, the maximum output throughput is the same as the
maximum input throughput (case A). We notice some drops in
throughput, which we attribute to segments of the streams that
are particularly CPU-intensive as we measured high latency
peaks (see below).When the source generates descriptions at a
rate that is comparable to the effective average execution rate
within the framework (determined as RT (SEQ)

|Ddbpedia| ), the throughput
is approximately stable over time (case B). When the source
generates profiles at a rate higher than the effective execution
rate of the framework, the output throughput is high at the
beginning when the system is not overloaded, and then tends
to stabilize (case C, D).

To summarize, the above results demonstrate that our
optimized framework enables “real-time” ER processing of
dynamic data, as latency is typically in the range of 10 to 100
ms. While throughput can match even high incoming stream
rates during early stages of processing, the throughput tends to
stabilize around a system-dependent throughput, in our cases
around 7500 to 8000 descriptions per second.

VI. CONCLUSION

This paper introduced a novel framework for end-to-end ER
of dynamic and heterogeneous data. We described in detail a
functional model, which forms the theoretical foundation for
task parallel ER processing. We discussed how to optimally
map the functional model into a parallel ER framework to avoid
that bottlenecks arise. As experiments validated, this framework
allows to efficiently and effectively perform ER, improving the
efficiency of state-of-the-art approaches by up to two orders
of magnitude. For dynamic data, our experiments showed
that good speedup can be reached through well designed
parallelization, ultimately resulting in high throughput and
low latency that pave the way to real-time ER. Ideas for future
research include devising a self-tuning framework and studying
end-to-end ER with service guarantees.
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