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Abstract—While the Internet of Things (IoT) is a key driver for
Smart Services that greatly facilitate our everyday life, it also
poses a serious threat to privacy. Smart Services collect and
analyze a vast amount of (partly private) data and thus gain
valuable insights concerning their users. To prevent this, users
have to balance service quality (i. e., reveal a lot of private data)
and privacy (i. e., waive many features). Current IoT privacy
approaches do not reflect this discrepancy properly and are often
too restrictive as a consequence. For this reason, we introduce
VAULT, a new approach for the protection of private data. VAULT
is tailored to time series data as used by the IoT. It achieves
a good tradeoff between service quality and privacy. For this
purpose, VAULT applies five different privacy techniques. Our
implementation of VAULT adopts a Privacy by Design approach.
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I. INTRODUCTION

The ever-increasing popularity of the Internet of Things
(IoT) is both, a blessing and a curse. On the one hand, sensors
built into everyday objects enable to monitor entities (e. g., a
machine or a person) permanently and very precisely. Since the
gathered data are always tagged with a time stamp, the data of
different sources can be combined to obtain a comprehensive
chronological profile of the monitored entity. Subsequent
analyses can provide even more profound knowledge about
the entity. The IoT is therefore an enabler for Smart Services
from a wide variety of domains, including Smart Homes, Smart
Cars, and Smart Health. Such services are a great benefit for
the users as they facilitate their daily life [1].

On the other hand, these great capabilities of such services
pose a great danger at the same time. In particular, if the
monitored entity is a natural person, his or her privacy is at
risk. Users are often not even aware of the coherences between
gathered data and insights derivable them. However, Smart
Services not only have access to the data of a single user but
to the data of a vast number of users. This even enables them
to learn from the behavior of these users and to predict future
behavior patterns of different users [2].

For this reason, the General Data Protection Regulation of
the EU (GDPR, see [3]) tries to provide guidance to meet the
interests of both, service providers (in terms of data quality)
and users (in terms of privacy requirements) [4]. Nevertheless,
the user is faced with the difficult task of balancing service
quality and privacy. The more data a user shares with a service,
the better is its service quality, as it is thereby able to perform

more precise analyses and thus establish a more profound
knowledge base. Its users, however, are fully exposed in the
process. Whereas, if a user conceals all data that could reveal
private information, his or her privacy is protected effectively—
yet, the service is practically useless as a result [5].

Today’s privacy approaches for the IoT contribute little to
solve this dilemma, as they suffer from three critical flaws.
a) Users are often overwhelmed by these approaches, as the
coherences between gathered data and derivable knowledge are
not comprehensible. That is, if the user grants a service access
to two seemingly harmless data sources, the combination of
these two sources might provide new insights. b) These privacy
approaches completely ignore service quality. They focus solely
on concealing certain, possibly private data, and as a result
the service quality is often considerably, yet unnecessarily
impaired. c) These privacy approaches are only applicable to
certain application scenarios and analysis methods. As a result,
users need a variety of different privacy solutions to make all
of their Smart Services privacy-aware.

To this end, we make the following three contributions:
(1) We introduce a privacy approach towards high-utility
time series data, called VAULT . VAULT is a concept for the
protection of personal data, which achieves a good compromise
between service quality and privacy and optimizes both of these
aspects. Furthermore, specifying privacy requirements is still
very simple for the user. (2) We present five different privacy
techniques that are applied in VAULT. These techniques are
tailored to the analysis methods applied to time series data as
Smart Services mainly handle such data. (3) We describe an
implementation of VAULT based on InfluxDB [6]. Yet, VAULT
is completely independent from its data source, i. e., InfluxDB
can be replaced by any data source providing time series data.

The remainder of this paper is as follows: In Section II, we
introduce a sample use case from the Ambient Assisted Living
(AAL) domain. Using this example, we identify requirements
a privacy system has to meet in order to be effective for
Smart Services. Section III discusses whether the related
work meets these requirements. We introduce our concept
for VAULT and the applied privacy techniques in Section IV.
An implementation of this concept is given in Section V. In
Section VI, we assess VAULT according to our identified
requirements. Finally, Section VII concludes this paper.

II. RUNNING EXAMPLE

An application field, in which the IoT facilitates the users’
daily routines by having access to highly sensitive data, is
the healthcare domain. Sensors enable patients to monitor
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themselves permanently, while their physicians and other parties
involved obtain the processed data tailored to their requirements.
In the following, we illustrate this using an AAL use case.

Due to an aging population, the World Health Organization
has introduced the paradigm of active ageing to enable elderly
people to remain involved in social life. A key aspect in this
respect is, that they are not pulled from their familiar surround-
ings (e. g., by accommodating them in a care facility) and that
there is no loss of autonomy. AAL achieves this via sensors
acting as permanently present but invisible caregivers [7].

An AAL platform offers wide-ranging monitoring services.
Special metering devices are capable to monitor medical data
continuously (e. g., blood glucose or weight). Physicians are
informed about them and are then able to adjust the medication
remotely. For some of these health parameters, they require the
chronological progression with high accuracy (e. g., blood glu-
cose), while for others an approximate progression is sufficient
and single values are negligible (e. g., weight). It is also possible
to check remotely, whether the required medication has been
taken. Yet, this information is not required to be transferred
permanently. It is sufficient to inform physicians if the medicine
is not taken several times in a row. Fall detection is realized
via wearables. This enables to alert a caregiver immediately
if a senior has fallen and needs help. For this purpose, the
data from the gyroscope, the accelerometer, and the position
sensor are analyzed. In addition, the location where the fall
occurred has to be determined, e. g., if the “fall” occurred in
bed, it may have been a false alarm and the senior just went
to sleep. Although location data has to be analyzed for this
purpose, the caregiver must not be allowed to access this data.
However, relatives with guardianship should be informed of the
senior’s whereabouts (e. g., if s/he is suffering from dementia
and wander around confused and disoriented) [8].

This example illustrates that Smart Services gather a variety
of private data. The GDPR must thus be observed in such
use cases [9]. For instance, it requires data minimization [Art.
5(1)(c)]. Caregivers only have to be informed when a senior
has fallen, whereas permanent access to the his or her location
is not required for them. Yet, relatives need access to this
data, if they are the senior’s guardian. This is regulated by
the purpose limitation [Art. 5(1)(b)]. Service providers have
to ensure the accuracy of the processed data [Art. 5(1)(d)].
To make this feasible, privacy measures must not arbitrarily
manipulate sensor data. Especially when particularly sensitive
data, such as health data, is involved, the data subject must give
explicit consent to their processing [Art. 9(2)(a)]. A solution
with respect to these legal obligations is given in Article 25:
Technical measures are postulated to ensure privacy compliance,
i. e., Smart Services monitor and regulate themselves by default
(Privacy by Design). To be effective, such a technical privacy
solution has to meet the following five requirements:
R1 Individual Privacy Enhancement. Each user has differ-

ent privacy requirements. While some people have no
concerns about sharing their location data, others consider
this kind of data as highly sensitive. Thus, every user has
to be able to decide individually what information s/he
wants to reveal, i. e., make available to a service.

R2 Utility Preservation. However, not only privacy require-
ments need to be considered. Users also have to decide
which services they want to use and what data the
respective service requires in order to operate. Only if the

service receives these data in a sufficient accuracy and
quantity, the user receives the expected service quality.

R3 Privacy and Data Quality Harmonization. Privacy and
service quality, however, are by no means independent
objectives. Enhancing privacy significantly impairs service
quality and vice versa. A privacy system therefore has to
consider both aspects equally to achieve Pareto optimality.

R4 Privacy Method Adaption. To make this possible, a
privacy system has to be able to adapt its privacy methods
to the service quality requested by a user. That is, the
privacy system has to select a method which matches a
service’s specific data quality and quantity requirements.

R5 Dynamic Policy Application. The application of the
privacy requirements has to be dynamic, i. e., before a
service gets access to data, its properties must be checked
(e. g., a relative only gets access to a senior’s location if
s/he is his or her guardian at the time of the request).

III. RELATED WORK

In the following, we review current privacy approaches for
the IoT and assess them with regard to our running example.

Access Control: The most basic approach to ensure
privacy is access control. In role-based access control, each
involved party is assigned to a specific role (e. g., physician). A
party can be assigned to several roles at the same time. Access
rights to certain data sources are granted to these roles instead
of individual users. Although this approach sounds promising at
first as there are few roles (compared to the number of parties),
and thus the number of access rights which have to be specified
is reduced, it is not flexible enough for the IoT due to its
fixed pre-defined roles [10]. Assigning access rights to certain
attributes is significantly more dynamic. Attribute-based access
control validates any kind of attribute at runtime (e. g., attributes
that describe the party requesting data access or that party’s
current context). Data access is only granted if these attributes
meet the data subject’s authorization requirements [11]. This
way, it is possible to model that relatives only have access to a
senior’s location data if they currently have the guardianship.

Nevertheless, pure access control approaches are far too
restrictive and thus severely limit service quality. The user
can only make a binary decision—either s/he grants or denies
access to a data source. A fine adjustment, however, is not
possible (e. g., reduce accuracy of the data or add mock data).

Attribute-based Privacy: To address this problem, a filter
can be integrated into a data source. So, particular attributes
of the data provided by that source can be filtered out, if they
reveal private information. This enables users to specify, e. g.,
that their medical metering device still provides access to their
blood glucose level, but not the blood oxygen level. Each filter
can optionally be linked to a spatiotemporal context to specify
when it should be active [12]. Such a filter can also be tailored
to the respective data source. Instead of fully filtering out
certain attributes, they can be replaced by mocked but realistic
data, in terms of, e. g., value range and distribution [13].

A fundamental problem of these approaches is that they
do not take chronological aspects inherent in this kind of data
into account. Often, isolated data values do not pose a privacy
threat. Only a sequence of single values results in a privacy-
relevant pattern (e. g., a sequence of singular gyroscope and
acceleration data results in an activity pattern). Yet, users have
to filter all data of the concerning attribute in these approaches



to ensure that such patterns are concealed. As a result, services
depending on this type of data become non-functional.

Pattern-based Privacy: The intent of pattern-based
privacy approaches is to conceal complex private information
from a Smart Service without unnecessarily restricting its
service quality. For this purpose, Complex Event Processing
(CEP) is used. In CEP, no individual sensor values are
considered, but higher-order events represented by a sequence of
values within a given time window [14]. For instance, the event
“senior leaves home” is a sequence of location data representing
a motion vector heading away from the house. That way, users
specify private patterns that must not be revealed and public
patterns that are critical in terms of service quality. CEP is
able to recognize these patterns and then private patterns are
concealed by chronologically reordering some of the sensor
values. A utility metric identifies the best permutation in terms
of maximizing both, privacy and service quality [15].

Pattern-based privacy approaches are therefore particularly
effective for maximizing service quality. They can also conceal
patterns of any complexity consisting of sequences of individual
values. However, such an approach is ineffective with respect to
the principle of data minimization. By reordering, all individual
values are still sent to the Smart Service. As it is known what
kind of information is required by the service (via the public
patterns), data could be pre-processed accordingly (e. g., by
aggregating or tampering it) without affecting its service quality.
For instance, to detect the pattern “senior leaves home”, a
Boolean statement whether this event occurred is sufficient—
the whereabouts prior to this event are not required. Yet, this
is not considered by pattern-based privacy approaches.

Statistical Privacy: Differential privacy is applicable to
the IoT, e. g., in the context of Smart Grids [16]. There, data
remains on each user’s Smart Meter, while energy suppliers
only receive aggregated data. It is ensured that no information
about an individual user can be derived from the statistical
analysis of this data. Yet, this kind of anonymization is only
useful when information about a large group of users is required.
It is not applicable to a use case like AAL, as in such a scenario
sensor data must be evaluated for each user individually.

IV. VAULT CONCEPT

Our review of related work shows that none of these
approaches is by itself effective in ensuring both, privacy and
service quality. So, we combine and extend these concepts to
provide a privacy concept that is tailored to IoT time series
data, called VAULT. Figure 1 shows its concept and workflow.

To ensure service quality, a service has to define its quality
requirements (1). These include, e. g., which data a service
requires and with what accuracy these data are required. Thus,
the quality requirements correspond to the basic idea of the
public pattern. In addition, a service description is mandatory
that identifies the service, e. g., the service name, its execution
environment, or the service owner (1). This description is used
to authenticate to VAULT. Like attribute-based access control,
permissions in VAULT are not linked to a specific service, but
to a set of its attributes. For instance, different permissions
may apply to the same service depending on the country where
it is hosted. The data subjects specify which permissions are
assigned (2). To this end, s/he provides a high-level description
of his or her privacy requirements in natural language. Similar to
the privacy patterns, s/he only has to describe which knowledge
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Figure 1. Concept of and Workflow for Data Access via VAULT.

must not be disclosed. A model in VAULT indicates from which
data this knowledge can be derived (e. g., ACCESSORS [17]
can be used to model these correlations). Based on this model,
machine learning can automatically derive permissions from
these privacy requirements [18]. As VAULT provides different
privacy techniques depending on the respective service (i. e., in
accordance with its quality and privacy requirements), the time
series data has to be initially prepared accordingly (3). (1) to
(3) are independent tasks and can be carried out in any order.

If a service requests data access, VAULT first checks its
service description (i. e., attributes of the service) and which
permissions (i. e., privacy requirements) are linked to it. They
are then consolidated with its quality requirements (4). Based
on these two requirement specifications, an appropriate VAULT
privacy technique is selected (5). Subsequently, the request is
executed, and the results are sent back to the service (6).

VAULT relies on existing techniques, which are already
used for processing and analyzing time series data, to ensure
privacy. As a result, the impact on service quality should be
negligible. We discuss the following five privacy techniques:

Projection, Selection, and Aggregation: The most basic
privacy technique used in VAULT is the application of relational
algebra operators. A projection constrains the number of
attributes whereas a selection filters out certain tuples of
a data source entirely. As the data sources we consider
in VAULT provide time series data, a selection operator is
therefore synonymous with specifying a specific time frame.
An aggregation can be used to consolidate the analyzed data
(e. g., via set operators such as average or sum). Smart Services
use these operators anyway to select the data that is relevant
to them and thus reduce the huge amount of available data.
VAULT is therefore able to restrict the available data according
to the quality requirements of a service via theses operators in
order to ensure privacy. For instance, a service gets only access
to certain sensor values, certain days, or summarized data.

Data Interpolation: When dealing with sensor data, one
has to reckon that sensors occasionally deliver no or incorrect
values due to technical problems. To ensure that the data are
still processed correctly, strategies must be implemented to deal
with these missing and incorrect readings. For this purpose,
these incorrect readings have to be substituted with artificial, yet
realistic data. On the one hand, interpolation techniques can be
used to smooth the temporal progression of the values, assuming
that the sensor signal describes a continuous function [19]. On
the other hand, it is possible to use machine learning to make
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Figure 2. Application of a Spline Interpolation to Time Series Data.

predictions regarding the progression of the values. Missing
values or outliers (in terms of values exceeding or falling below
a threshold) can then be substituted with these predictions.
We use these data cleansing techniques in VAULT to ensure
privacy. In certain situations, outliers have a particularly high
information value and are therefore considered as particularly
sensitive data. Figure 2 shows the time course of a senior’s
whereabouts indicated as the distance to his or her home (blue
line). S/he walks the same distance every day. One day, however,
s/he changes this routine, which is a decisive information. For
instance, if a service only needs to monitor that a senior takes
a walk every day, VAULT first uses outlier detection to identify
data points with high information value, deletes them, and then
fills the resulting gap via spline interpolation (red line).

Data Smoothing: While data interpolation is well-suited
for eliminating a few isolated outliers, sensor data can also
be noisy as a total. Analyzing noisy data is often difficult and
leads to poor results. So, the noise component is removed
from the data by means of filters. Especially if the examined
data contains some periodicity, which is often the case with
AAL data due to regular daily routines, Fourier transforms are
well-suited for noise reduction. This creates a band filter effect,
i. e., certain interference frequencies can be attenuated [20].
Figure 3 shows the effect of a Discrete Cosine Transform on
a noisy signal (blue line). The output is a smoothed signal
(red line). However, this data cleansing method can also be
used to protect private data. The transform removes details
from the time series data and less information is shared with
requesting services. Nevertheless, the actual data progression
is still available to them with great accuracy.

Information Emphasization: Using wavelet transform,
noise can even be filtered out to such an extent that only data
with a high information value remains in the signal (e. g., peaks
or turning points). For this purpose, the data progression is
compared with a basic function, the so-called wavelet. This
window function defines the weighting of each signal value
in subsequent analyses. The Continuous Wavelet Transform
constantly varies the parameters of this mother wavelet to obtain
a band of daughter wavelets. This facilitates a particularly
selective filtering and compression of the data [20]. In Figure 4,
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Figure 3. Application of a Fourier Transform to Time Series Data.

Figure 4. Time-Frequency Representation of Noisy Time Series Data.

the noisy sensor signal (upper half of the figure) is converted
into a time-frequency representation (lower half of the figure)
using the Mexican Hat Wavelet as mother wavelet. Relevant
data segments are exposed in this representation (light and dark
zones). For instance, if the signal represents blood glucose
levels, these zones indicate hypoglycemia or hyperglycemia,
respectively. The information about the occurrence of these
events is sufficient to generate appropriate recommendations
concerning medication and treatment schedule. The exact
glucose values need not be disclosed to a caregiver for this
purpose. This increases privacy as no details in the data are
available to third parties.

Adding Noise: A completely different privacy approach
is adding noise to a signal on purpose. In Figure 5, Gaussian
noise is added to formerly noise-free sensor data (blue line).
That is, the noise in the resulting data is Gaussian-distributed
(red line). So, actual values are concealed in a set of corrupted
values. Although the general data progression is still noticeable,
details and characteristics of the data are hidden by the noise.
For instance, activity patterns are thus still recognizable despite
the noise, whereas characteristics on how a senior performs
that activity are concealed. While this initially sounds like a
deterioration in data quality, it can even have a positive effect
on certain data analyses. For instance, noise can cause chaotic
dynamics within data. Therefore, if deterministic chaos is to be
expected in a data set (e. g., data on the course of a disease), but
it is not noticeable as too little data are available, adding noise
can be useful in this regard to improve analysis results [21].

V. VAULT IMPLEMENTATION

There are three implementation strategies for the realization
of the VAULT concept, which are shown in Figure 6.

Query pre-processing rewrites queries before execution and
adds further constraints to eliminate private information from
the result set. This is well-suited for simple privacy techniques
such as projection or selection. Yet, these query adaptations
become complex for more advanced privacy techniques. Then,
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Figure 5. Adding Gaussian Noise to Time Series Data.
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errors are likely to occur when automatically rewriting queries.
These errors compromise privacy as well as service quality.

Result post-processing enables a thorough control of a
query’s result set. That way, it can be filtered before forwarding
it to the data consumer. However, a query can add hidden
information to its result set. For instance, if the weight must
not be revealed, a data consumer could query all data entries
where the weight is 𝑥 kg (without including the weight itself
in the result set). Then, s/he repeats the query and increases
𝑥 successively. Thus, s/he knows the weight for each entry
implicitly, although it never explicitly appeared in the result
set. Result post-processing is not able to detect and prevent
this.

Due to the shortcomings of those strategies, we use data
pre-processing in VAULT. This strategy pre-processes all data
by removing or obscuring private data. Queries are not executed
on the original data, but on this purged data. However, this data
pre-processing increases the runtime. Yet, as Smart Services
often use recurring queries, which are known due to their
service descriptions, the runtime can be improved by using
materialized views to persist the pre-processed data in advance.

Figure 7 shows how we realized the VAULT concept
following the data pre-processing strategy. VAULT introduces
a database abstraction layer to strictly isolate services from
data sources. From a service’s perspective, it therefore seems
that it directly interacts with a data source and it is not aware
of the privacy techniques applied to the data [22], [23].

Before using a service for the first time, it must define
its quality requirements and the user must specify the privacy
requirements. As this needs to be done only once (unless
requirements change), these steps are not shown in Figure 7.

A registered service authenticates to VAULT with its
attributes (a). To prevent a service from getting too many
permissions by falsifying its attributes, Gritti, Önen, and Molva
[24] introduce a process for verifying these attributes. This
approach takes into account that the privacy of the service
has to be ensured as well, as the attributes might contain
private information about the service provider. This approach
is therefore a valuable supplement to the authentication process
of a data provisioning platform, such as VAULT [25]. If a
service is authorized to use VAULT, its queries are temporarily
stored in a query buffer (b). VAULT checks in the access
policy which quality requirements this service has, and which
permissions are granted to its attributes (c). Then, a utility
metric is used to search for privacy techniques that maximize
both, privacy and service quality (d). Basically, it compares
how much information relevant to the service is concealed and
how much private data is disclosed when a particular privacy
technique is applied. Additionally, the user can determine via a
weight, whether his or her focus is more on privacy or service
quality [26]. We implemented each of the privacy techniques
presented in Section IV as Python scripts. These scripts are
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made available to VAULT in an archive. Further scripts and
thus privacy techniques can be added to the archive to extend
the functionality of VAULT. The utility metric selects the most
suitable scripts and forwards them to the Obfuscator (e). The
Obfuscator merges the scripts and adjusts them according to the
service (f). It then applies the resulting script to the affected time
series data (g). In our prototype, we use InfluxDB. However,
due to the database abstraction any other time series database
can be used as well. The privacy-purged data are made available
in materialized views (h) and the queries stored in the query
buffer are executed on them (i). Then, the database abstraction
layer—which, in analogy to the result post-processing strategy,
performs a final audit (j)—returns the results to the service (k).

Without any loss of generality, a time series database is
used in VAULT. Yet, VAULT can also be applied to a stream
processing system for time series data, such as Kapacitor [6].

VI. ASSESSMENT

Having presented VAULT’s concept and implementation,
we now need to evaluate whether it meets the requirements
towards a privacy system for Smart Services (see Section II).

In VAULT, each user is able to specify his or her individual
privacy requirements. Since this is done in natural language and
the mapping to actual data sources can be realized automatically,
the configuration is also user-friendly. That way, users are
enabled to specify their privacy requirements very precisely
and VAULT fulfills these requirements as good as possible (R1).

VAULT also preserves the utility of a service when it is
compatible with the privacy requirements. This is made possible
by the specification of the service’s quality requirements. This
ensures that the service receives usable data in terms of quantity
and quality. That is not the case with approaches working only
with data suppression or mock data, which have a sustainably
negative impact on these two parameters (R2).

The utility metric applied in VAULT balances privacy and
quality requirements against each other and determines the
best configuration. It aims to maximize both, the amount
of concealed private data as well as the amount of revealed
information, which is relevant to the service. As it might not
be possible to maximize both of these values at the same time,
at least Pareto optimality is achieved. The user can also weight,
which of these objectives should be preferred by VAULT (R3).



To this end, VAULT provides five different privacy tech-
niques that are tailored to IoT time series data. Each of these
techniques deals with different privacy aspects. Furthermore,
these techniques can be extended and combined so that a
suitable technique can be found for every use case (R4).

In VAULT, permissions (and thus the applied privacy
techniques) are not assigned to a service, but to a specific
combination of its attributes. This enables a considerably more
dynamic permission assignment (R5).

Thus, VAULT fulfills all requirements towards a privacy
system for time series data as processed by Smart Services.

VII. CONCLUSION

The tremendous progress that IoT-enabled devices have
made in recent years in terms of computing power, transmission
speed, and sensor technology provides the technical foundation
for a wide range of IoT applications. Such Smart Services
affect all aspects of our daily lives (e. g., Smart Homes, Smart
Cars, and Smart Health). In order to enjoy the benefits of these
services, however, users have to disclose a lot of data, some of
which revealing highly sensitive information. However, current
privacy approaches are not adapted to the specific characteristics
of time series data as processed by Smart Services, making them
unnecessarily restrictive. As a result, users have to disclose too
much private information in order to prevent that the service
quality deteriorates too much.

In this paper, we therefore introduce VAULT, a new privacy
concept for time series data. If data are queried by a service,
VAULT considers besides privacy requirements also quality
requirements of this service towards the data. This includes,
among other things, what data is required, what accuracy this
data must have, and how the data is pre-processed by the service.
VAULT then selects a privacy technology fitting to this pre-
processing. For instance, projection, selection, and information
emphasization are suitable for data reduction, whereas data
interpolation and data smoothing can be used as noise filters
or for outlier suppression. Thus, VAULT can find a good ratio
between privacy and service quality. In our prototype, five
privacy techniques are implemented as Python scripts. However,
these scripts can be combined, and more scripts can be added
if needed. As a result, the service quality can be increased for
any type of service and the privacy can be enhanced. VAULT
can be applied to time series databases (e. g., InfluxDB) as
well as stream processing systems for time series data (e. g.,
Kapacitor). That is, VAULT meets the request of the GDPR
for a manageable Privacy by Design solution for the IoT.

As part of future work, the performance of the VAULT
prototype has to be evaluated thoroughly in terms of processing
time and data throughput.
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