
© 2018 ACM. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/sac_18_curator.pdf
by permission of ACM for your personal use. Not for redistribution. The definitive version was published in In: Haddad, H. M. et al. (Eds.) The 33rd ACM/SIGAPP
Symposium on Applied Computing (SAC ’18), April 9-13, 2018, Pau, France. ACM, New York, NY, USA, pp. 533–540, 2018, doi: 10.1145/3167132.3167190.

CURATOR—A Secure Shared Object Store
Design, Implementation, and Evaluation of a Manageable, Secure, and Performant Data Exchange

Mechanism for Smart Devices

Christoph Stach
University of Stuttgart, IPVS / AS

Stuttgart, Germany
stachch@ipvs.uni-stuttgart.de

Bernhard Mitschang
University of Stuttgart, IPVS / AS

Stuttgart, Germany
mitsch@ipvs.uni-stuttgart.de

ABSTRACT
Nowadays, smart devices have become incredibly popular—literally
everybody has one. Due to an enormous quantity of versatile apps,
these devices positively affect almost every aspect of their users’
lives. E. g., there are apps collecting andmonitoring health data from
a certain domain such as diabetes-related or respiration-related
data. However, they cannot display their whole potential since
they have only access to their own data and cannot combine it
with data from other apps, e. g., in order to create a comprehensive
electronic health record. On that account, we introduce a secure
shared object store called CURATOR. In CURATOR apps cannot
only manage their own data in an easy and performant way, but
they can also share it with other apps. Since some of the data is
confidential, CURATOR has several security features, including
authentication, fine-grained access control, and encryption. In this
paper, we discuss CURATOR’s design and implementation and
evaluate its performance.

CCS CONCEPTS
• Information systems → Data exchange; Database design and
models; Data encryption; Database performance evaluation; • Secu-
rity and privacy → Security services; Access control.

KEYWORDS
Data exchange, smart devices, shared object store, security

ACM Reference Format:
Christoph Stach and Bernhard Mitschang. 2018. CURATOR—A Secure
Shared Object Store: Design, Implementation, and Evaluation of a Manage-
able, Secure, and Performant Data Exchange Mechanism for Smart Devices.
In SAC 2018: SAC 2018: Symposium on Applied Computing , April 9–13, 2018,
Pau, France. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3167132.3167190

1 INTRODUCTION
Smartphones and similar smart devices have become increasingly
popular over the past decade. The reason for this phenomenal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167190

approval on behalf of general public is their rich sensing capabilities.
While these devices approximate more and more to desktop PCs in
terms of computational power, their ability to gather knowledge
about the users is what really stands out. This leads to millions
of apps being developed and used. These apps are not just toys
for technical enthusiasts, but assist their users in various domains,
such as healthcare [30] or at their workplace [18].

However, the rise of such apps has not only created many new
opportunities and innovative cases of application, but it also has
led to novel challenges. Contrary to operating systems for desktop
PCs, mobile platforms such as Android or iOS execute apps in
strictly isolated sandboxes. iOS applies this application isolation
on several execution layers. On the one hand, this makes it almost
impossible for malicious apps to intercept data from another app.
On the other hand, also a legitimate data exchange between apps
is severely limited [19]. Android is one of the few mobile platforms
enabling a flexible data exchange between apps to a certain extent.
However, the provided data exchange techniques cause a significant
programming overhead for app developers [20].

Moreover, the applied data exchange mechanisms are highly
insecure [7]. Even Android’s private databases pose a threat for the
stored data as there are many documented weak spots in the imple-
mentation of these databases [14]. Since smart devices hold a lot of
sensitive data (e. g., private data such as health data or confidential
data such as business data) additional security challenges come
along as such data require special protection measures [17]. The
security mechanisms applied in Android are insufficient for this
purpose [29]. Thus, a data exchange mechanism for smart devices
must not only focus on usability but also on data security.

The flash memory used to store data in smart devices is princi-
pally very fast. Nevertheless, disk accesses are often the bottleneck
in apps [15]. Thus, a data exchange mechanism also has to keep
performance issues in mind—especially its impact on the runtime
and the battery drain of an app. For data management, Android
supports only relational databases (namely SQLite1) out of the box.
However, relational databases are tailored to frequent but small
transactions or huge batch processing with rare writing operation.
On the contrary, multiple concurrent data requests and frequent
data changes are less efficient in such a database system [1]. It has
to be clarified whether a relational database is a sound foundation
for a data management and data exchange mechanism.

For all of the reasons above, we introduce a novel secure shared
object store for smart devices called CURATOR. CURATOR is a
shared data container which can be used by any kind of app. In

1see https://www.sqlite.org

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/sac_18_curator.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/sac_18_curator.pdf
https://doi.org/10.1145/3167132.3167190
https://orcid.org/0000-0003-3795-7909
https://doi.org/10.1145/3167132.3167190
https://doi.org/10.1145/3167132.3167190
https://doi.org/10.1145/3167132.3167190
https://www.sqlite.org

SAC 2018, April 9–13, 2018, Pau, France Christoph Stach and Bernhard Mitschang

CURATOR apps can store objects and specify for each object indi-
vidually which other apps may have access to it. Wrapper classes
deal with the (de)serialization of the stored objects in order to keep
the overhead for developers marginally. All stored data is fully en-
crypted and an access control system ensures data security. The
concept of CURATOR is abstracted from a specific storage. Thereby,
the best suited storage technology can be selected.

In this paper, we yield the following five contributions: (I)We
study data exchange mechanisms applied in today’s mobile plat-
forms. (II)We introduce a concept for a manageable, secure, and
performant data exchange mechanism for smart devices, called
CURATOR. (III)We analyze the usage of relational databases, key–
value stores, and document stores for smart devices. (IV) We im-
plement CURATOR using each of the three analyzed database tech-
nologies. (V) We evaluate CURATOR and identify performance
characteristics for each of the three database technologies.

The work at hand focuses on Android and the CURATOR proto-
types run on Android. This is due to two reasons: Only Android
enables apps to exchange data with apps in other sandboxes. More-
over, Android is by far the prevalent mobile platform according to
IDC Research [2] and it also reaches out for the Internet of Things
(IoT) [9]. So, the gained insights can be transferred to any mobile
or IoT platform.

The remainder of this paper is structured as follows: Section 2
attends to related work. This comprises both, state of the art as
well as current research work. Then, we introduce our approach in
Section 3. We detail on CURATOR’s implementation in Section 4:
Section 4.1 discusses the applicability of key-value stores, document
stores, as well as relational databases in CURATOR and Section 4.2
describes its technical realization. Finally, we perform a compre-
hensive evaluation of three different CURATOR implementations
in Section 5, before Section 6 concludes this paper.

2 RELATEDWORK
In the context of this work, we look at both, Android’s built-in
data exchange mechanisms and third-party approaches. We mainly
consider usability and security aspects. A performance analysis is
given as part of the evaluation (Section 5).

Android Data Exchange Mechanisms. The most basic data
exchange mechanism supported by Android is the public file sys-
tem. Files saved on the External Storage are available to any app2.
The data owner, i. e., the app that created the file initially, cannot
specify which app should have access to its files or what an app
is allowed to do with a file. These files can be read, modified, and
deleted unrestrictedly. Android also allocates a private partition on
the Internal Storage for each app. By default, files saved on the In-
ternal Storage are only available to the data owner. The owner can
attach special flags to a file at creation time to indicate that this file
should be accessible for any app. The sole advantage of the Internal
Storage compared to the External Storage in terms of security is,
that the owner specifies whether a file can only be read or also
modified by other apps [13]. This approach causes a huge overhead
for developers since they have to mind the (de)serialization of the
data. Also, each developer has to know the file formats used by
other apps, as there is no predefined formatting standard. Android

2A permission to access the External Storage is required.

supports full disk encryption (FDE) to secure its file system. Yet,
Android’s FDE does not operate on the whole storage and this
protection is maintained only until the device is unlocked [6].

A data exchange mechanism that allows to pass data from one
app to another at runtime are the so-called Explicit Intents. The data
owner has to call a certain app explicitly which should have access
to its data. Then, the affected app is started and it has to process
the passed data instantly. The data owner has to indicate a distinct
Intent for every app it wants to exchange data with. Also, each
called app has to know how to process these Intents. Since only
primitive data types and composite data types such as arrays or
lists are supported, higher-order data types have to be decomposed
apriori [12]. This leads to high efforts for developers. Nevertheless,
a data owner is able to restrict which other apps have access to its
data. Yet, an encryption of the shared data is not provided. This
is aggravated by the fact, that this data exchange mechanism is
downright insecure [3].

An approach with a focus on simple usability is the Clipboard
Framework. Apps can temporary clip data on the Clipboard to make
it available to any other app. Any data type is supported. Each
object is annotated with its type, in order to facilitate the integration
of the data into an app. However, the Clipboard holds only one
clip object at a time and subsequently added objects overwrite
previous ones [11]. To enable a simplified accessibility, security
is neglected. No permissions are required to use the Clipboard, a
data owner cannot restrict access to its data, and data encryption
is not supported. That is why several malware apps misuse the
Clipboard either to steal private data or manipulate the clipped
data [40]. Moreover, the lifetime of the clipped data is not linked to
the one of its owner, i. e., if an app is uninstalled, its data remain
on the Clipboard [41].

The most promising built-in data exchange mechanism are the
so-called Content Providers. Content Providers constitute interfaces
to an app’s data. Regardless of the format the provided data is kept
internally, the interface provides standardized query, insert, up-
date, and delete functions. The data owner has to implement these
functions for each of its Content Provider. In this way, the owner
is able to exclude certain data or even obfuscate the data before
releasing it via the Content Provider. When another app uses a
Content Provider, the data owner is called, performs the actual data
access, and forwards the data to the caller. Basically, any app is
able to use a Content Provider, but the data owner may specify a
custom permission restricting the usage [10]. However, any app is
able to request this permission and it is automatically granted at
installation time since users are overchallenged by Android’s per-
mission mechanism [8]. Apart from this, also the Content Provider
mechanism itself is vulnerable towards various attacks [28, 42].

Third-party Data Exchange Mechanisms. Mobius [5] intro-
duces an infrastructure that enables to exchange data between both,
apps and smart devices. Each app has access to a private virtual
database which is realized as a partition of a system-wide physical
database. Data can be shared with other apps by transferring it to
the respective partitions. The central database is synchronized with
a cloud database to make the data available for other devices. The
focus of Mobius is on need-based data provisioning and intelligent
caching strategies. Access control or data security is not addressed.

CURATOR—A Secure Shared Object Store SAC 2018, April 9–13, 2018, Pau, France

Moreover, neither privacy nor controlling mechanisms for data lo-
cation are considered, although all data is transferred to an external
resource.

Kynoid [26] is a security mechanism for every Android data
source, e. g., Content Providers. The system introduces fine-grained
access rights which are audited at runtime. Thereby, a user is able to
specify which app is allowed to access what data. Moreover, a spatio-
temporal context can be added to the access rights to limit their
scope. Yet, Kynoid is only applicable to Android’s data exchange
mechanisms—thus it also suffers from their weak spots in terms of
operability.

MetaService [4] is an enhanced but easy to use Clipboard mecha-
nism. While Android’s Clipboard is not able to operate with higher-
order data objects and has to decompose each object into its at-
tributes, MetaService directly processes objects. It introduces a meta
data management to handle various data types and deal with their
casting. However, data security is completely out of scope and the
exchange capacity is limited to one object at a time.

Poscha [22] introduces a digital rights management system for
Android. Any kind of data can be annotated by context-sensitive
policies specifying who (i. e., which app) is allowed to do what
(e. g., read or modify) with which data. Poscha controls any kind
of data usage and ensures that it complies with the policies. Yet, it
provides no data management mechanism and data exchange has
to be realized manually.

The Secure Data Container (SDC) [36] is a shared database with
several security features. For instance, the database is fully en-
crypted and the SDC introduces an authorization mechanism as
well as a fine-grained access management system. Due to this sys-
tem, a data owner is able to specify for each tuple independently
which apps are allowed to access the data. The data is stored in a re-
lational database. By default, it offers a key-value database schema.
Yet, this basic schema can be extended (see Figure 2). However, data
objects have to be split into attributes in order to store them. This
causes an overhead because of the (de)serialization.

SeSQLite [21] extendsAndroid’s SQLite implementation by adding
security features. It is based onAndroid’s implementation of SELinux3.
That way, fine-grained mandatory access control at both, schema
and row level is introduced in SeSQLite. Still, developers have to
mind how to share their data with other apps. Moreover, in order
to use SeSQLite, the Android system has to be modified manually
which is why this approach is not appropriate for common users.

3 CURATOR’S ARCHITECTURE
Since none of the available approaches towards a data exchange
mechanism is entirely satisfying in terms of usability, security, and
performance, we come up with our own approach called CURATOR.
For this purpose, we combine the easy usability of MetaService
with the data management and security features of the SDC. I. e.,
CURATOR is a shared object store which operates with any data
type. Opposed toMetaService, CURATOR has no limitation in terms
of storage capacity. CURATOR adopts security features from SDC
including authentication, authorization, access control, and data
encryption. We address the following issues:

3see https://source.android.com/security/selinux/

App 2 (Receiver)

CURATOR
Wrapper Library

App 1 (Data Owner)

CURATOR
Wrapper Library

Data

CURATOR Service
Authentication
Authorization

Encryption

Storage

Figure 1: CURATOR’s Architecture (Data Storage Process
Depicted in Green; Querying Process Depicted in Red).

Simple Usability. The key aspect of CURATOR is its usabil-
ity. That is, the inclusion of CURATOR into apps has to be easy
and data management (including data sharing) has to be facili-
tated. Necessary to that end is a simplified interface and perma-
nent availability—the latter is achieved by realizing CURATOR as a
background service that is called at system startup. The interface
includes generic functions for inserting, updating, sharing, and
deleting objects. At that, CURATOR supports higher-order data
types. An app developer passes an object to CURATOR and the
(de)serialization is realized automatically. That way, storage ab-
straction can be achieved. I. e., the applied database technology and
schema remains transparent towards apps.

Data Security.Analogous to the SDC, an app has to authenticate
to CURATOR before it is able to use its services. CURATOR has also
an authorization mechanism that enables users to specify which
app is allowed to use which functions of CURATOR. For each stored
object one of four release levels (private, readable, updatable, and
deletable) is declared. Additionally, a list of apps can be specified for
which this release level is applied—by default, all data is private and
only the data owner has full access to it. An access control system
enforces these rules. All stored data is fully encrypted. That way,
the data is secured, even in case of a compromised smart device. By
deleting the corresponding key, data can also be deleted reliably.
Finally, the scope of the stored data is linked to its owner’s lifetime.
I. e., data is automatically deleted when its owner is uninstalled.

Performance. Despite of the security features, CURATOR is
performant due to its storage abstraction. The best suited database
technology can be applied depending on the respective use case
(see Section 4.1 for the available technologies).

Figure 1 shows the onion architecture of CURATOR, i. e., it con-
sists of several nested layers. Apps can only interact with the CURA-
TOR Service Layer (read, insert, update, or delete). For each function
call, the Authentication Layer verifies the caller’s identity. Then,
the Authorization Layer checks, whether the call is legitimate. The
Encryption Layer deals with the (de)ciphering of the corresponding
data. The actual operations are executed at the Storage Layer.

The data storage process is shown on the left side. An app using
CURATOR has to include the CURATOR Wrapper Library. A data
owner sends its data to this wrapper. The wrapper handles the
serialization of the data and forwards it to the CURATOR service.
An app using CURATOR for the first time has to register at the
service. Subsequently, this registration data is used for authentica-
tion. For data storage, CURATOR only has to check, whether an
app is allowed to use the service. Then, the data is encrypted and
stored. The querying process (right side) also verifies the caller’s
identity initially. During authorization, CURATOR also has to check
whether the caller is the data owner or whether the affected data
is shared with the caller explicitly. If the caller has the required

https://source.android.com/security/selinux/

SAC 2018, April 9–13, 2018, Pau, France Christoph Stach and Bernhard Mitschang

apps

_id (INTEGER)

appname (TEXT)

app (INTEGER)
entry (INTEGER)

share

1

1..*1..*

1

1..*

1

sdc

_id (INTEGER)

key (TEXT)

value (DATA)

owner (INTEGER)

sharable (INTEGER)

Foreign Key

Primary Key

Extension Point

Figure 2: Database Schema Applied in the SDC (cf. [33]).

permissions, the data is queried, decrypted, and forwarded to the
caller’s wrapper which handles the deserialization. Then, the object
is available for the caller.

For the access control and the automatic deserialization, CURA-
TOR requires additional maintenance data similar to the meta data
of the SDC and MetaService.

4 IMPLEMENTATION
The schema applied in the SDC is shown in Figure 2. For each
key-value entry, the owner and the release level (shared) are stored.
In share, the tuple-based access rights are managed. This basic
schema can be specialized towards a certain data type by adding
further value columns—one column per attribute of the data type.
Since SDC’s schema does not provide meta data required for auto-
matic deserialization, we extend it by MetaService’s type casting
maintenance data.

4.1 Technology Discussion
Since SDC’s relational data schema is not flexible enough to handle
heterogenous data types—either the SDC has to store several at-
tributes in a single value column or a specialized schema is required
for every data type—we consider three alternatives for CURATOR.
Relational databases have performance issues when handling big
data objects [38]. So, the usage of NoSQL databases seems to be a
better strategy. We assess the two best NoSQL database types in
terms of flexibility and performance, namely key-value stores (1)
and document stores (2) [27]. For comparison, we also introduce
also a relational approach storing data as BLOBs (3). The perfor-
mance of the three approaches is evaluated in Section 5.

(1) Key-Value Store. The most obvious approach is the usage of
a key-value store. Unlike the relational key-value schema of the
SDC, a key-value store supports values of any data type, whereas
the SDC has to declare a fixed type for the value column and any
stored data has to be decomposed accordingly.

WaspDB [25] is one of the fastest and most resource-efficient key-
value stores for Android. It accepts any kind of Java object as both,
key and value. The serialization is handled by the Kryo framework4.
WaspDB creates on-disk hashmaps, the so-calledWasp Hashes, in
which the key-value pairs are stored. Additionally, WaspDB sup-
ports AES256 encryption.

Despite the high similarity to the SDC’s relational approach, cru-
cial adaptations are required concerning the data schema. WaspDB
4https://github.com/EsotericSoftware/kryo/

apps

_id (INTEGER)

appname (TEXT)

Foreign Key

Primary Key

app (INTEGER)
entry (INTEGER)

share

1

1..*1..*

1

1..*

1

entry (TEXT)

curator_waspdb

owner (INTEGER)

class (TEXT)
sharable (INTEGER)

wasp_hash

key (TEXT)

value (OBJECT)
1

1

Figure 3: Schema for the WaspDB-based CURATOR.

is incapable to store additional meta data for each key-value pair.
However, this is necessary for CURATOR, on the one hand for the
access rights management and on the other hand for registering the
data types, which is required by the CURATOR Wrapper Library
for deserialization. Figure 3 shows the adapted schema. Thus, this
meta data has to be stored separately, e. g., in a SQLite database. In
curator_waspdb, the WaspDB’s key is used as a foreign key to link
the two databases. The maintenance data is managed analogous to
the one of the SDC.

(2) Document Store. As CURATOR operates on Java objects, also
the storage as JSON documents seems reasonable. In a benchmark
test, the document store Couchbase outperforms Cassandra and
MongoDB in terms of latency and throughput [39]. There is a mobile
version called Couchbase Lite [23]. It works either standalone (i. e.,
data is stored on the smart device) or it syncs with a remote back-
end. Data is passed to Couchbase as a hashmap, i. e., objects have
to be decomposed into its attributes apriori. Indexes can be created
to enable querying for certain attributes. Data is encrypted using
AES256.

Listing 1 shows CURATOR’s data schema for Couchbase. Main-
tenance data is stored directly in the document. It comprises the
same information as the WaspDB-based schema. This data is at-
tached (or removed respectively) by the Wrapper Library during
(de)serialization. The actual payload is given as a key-value pair for
each of the object’s attributes.

(3) Relational Database. As studies show that NoSQL databases
for smart devices perform poorly compared to Android’s SQLite
database in some cases [24], we also consider a SQLite-based im-
plementation. Figure 4 shows its data schema. It is quite similar to
the SDC’s schema with two key differences. Objects are stored as
serialized BLOBs (payload) and the maintenance data is extended

1 CuratorDocument {
2 //Maintenance Data for CURATOR
3 _id (long): Internal Identifier,
4 _class (String): Data Type,
5 _owner (String): Document Owner,
6 _sharable (boolean): is Sharable?,
7 _share (List): Apps with Access Rights,
8 //Actual Payload
9 attribute_1 (any): First Attribute,
10 ...
11 }

Listing 1: Schema for the Couchbase-based CURATOR.

https://github.com/EsotericSoftware/kryo/

CURATOR—A Secure Shared Object Store SAC 2018, April 9–13, 2018, Pau, France

class (TEXT)

curator_sqlite

_id (INTEGER)

id (INTEGER)
payload (BLOB)

owner (INTEGER)
sharable (INTEGER) apps

_id (INTEGER)

appname (TEXT)Foreign Key

Primary Key

app (INTEGER)
entry (INTEGER)

share

1

1..*1..*

1

1..*

1

Figure 4: Schema for the SQLite-based CURATOR.

by a class column for object’s data type. Based on this, an object
can be processed directly without having to decompose it into its
attributes. As SQLite supports no encryption by default, we store
each object as SealedObject5.

4.2 Technical Realization
The SDC is implemented as an extension of the Privacy Manage-
ment Platform (PMP) [35, 34]. The PMP is a privacy-aware data
provisioning system. Any kind of data source can be included as
so-called Resources. The PMP enables apps to query these Resources.
This includes also authentication and fine-grained authorization
features. PMP Resources are implemented as Android apps, i. e., the
Android platform does not have to be manipulated in order to add
further Resources. For details on the PMP, please refer to literature
(see [35, 34]). Because of the PMP’s data provisioning and security
features proved beneficial for the SDC, we decided to implement
CURATOR as a PMP Resource likewise.

Figure 5 outlines how CURATOR is implemented. Apps need to
include the PMP Library in order to use the PMP. Among others,
this library contains the registration function which is required for
authorization towards the PMP. We included the Wrapper Library
into this library (𝑎). When a new Resource is added, the PMP notifies
all apps about the available Resources and their APIs (𝑏). An app
puts its queries directly to the PMP and the PMP verifies whether
the app has the required permissions (𝑐). Only valid requests are
forwarded to CURATOR. For these, a second authorization check is
executed within the CURATOR Resource. The Access Management
verifies for each query, whether the inquiring app is allowed to
access the requested objects—i. e., is the app the data owner or is
the data shared explicitly with this app (𝑑). Legit queries are passed
to Storage Abstractionwhich translates the query into an expression
that is evaluable by the data stores (𝑒). There, the query is executed
and the PMP forwards the results to the inquiring app (𝑓).

5see https://goo.gl/FPPQev

App

PMP
Library

PMP

(Authentication)

PolicyCURATOR
API

CURATOR API

Access
Management

(Authorization)

Storage
Abstraction
(Encryption)

a b

b

c d e
f

f

f

Figure 5: PMP-based Implementation of CURATOR.

HealthRecord

_id : long
activity : Activity <Enum>
breadUnits : float
bsl : int
condition : Condition <Enum>
location : Location
mood : Mood <Enum>
patient : Patient
timestamp : long
freeText : String

Location

accuracy : float
altitude : double
bearing : float
latitude : double
longitude : double
provider : String
time : long

Patient

_id : long
contact : long <FK>
name : String
physician : long <FK>

Figure 6: eHealth Data Model Used for Evaluation.

Moreover, the PMP monitors Android’s uninstall process [31].
That way, the PMP informs CURATOR whenever an app is unin-
stalled, whereupon CURATOR deletes all data owned by this app.
So, the stored data cannot outlive its owner.

5 EVALUATION
For the performance evaluation, we chose a use case from the
health domain. Secure Candy Castle [37, 32] is a mobile health game
for children suffering from diabetes. The game motivates young
patients to carry out the required measurements regularly. Each
reading is augmented by the location the measurement took place.
These data are stored in conjunction with details about the patient’s
condition and his or her eating behavior in an electronic diabetes
diary. Figure 6 shows the applied data model for a single diary
entry. The actual health data are stored in the HealthRecord class.
For activity, condition, andmood a selection of predefined values are
given in separated enumeration classes. The measurement location
and patient details are stored as nested classes. If these entries are
also available for other apps, users benefit from positive side effects.
Since the surrounding has an impact on a patient’s condition (e. g.,
air pollution or noise-based stress), a navigation app could consider
the user’s current condition in order to find the healthiest way [16].
Thus, the management of HealthRecord objects is a realistic use
case.

We compare the performance of CURATOR with the perfor-
mance of Android’s Content Provider approach (with a SQLite
database) and the SDC (with AES256). On behalf of CURATOR,
we differentiate between its WaspDB-based, Couchbase-based, and
SQLite-based implementation. For the Content Provider’s data-
base and the SDC, we mapped each HealthRecord attribute (and
its nested objects) to separate database columns. Our benchmark
suite consists of two separated benchmarks which are executed
mutually: The writing benchmark creates 𝑛 random HealthRecord
objects (with 𝑛 ∈ {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000}).
Each entry is allocated with a different location and patient. Then,
the objects are stored in the respectively evaluated data store and
shared with the reading benchmark app6. Following this, the read-
ing benchmark requests the 𝑛 objects in random order. After each
writing-reading cycle, the database and its cache is cleared in order
to prevent any influences by warm caches. This cycle is repeated

6By default, Content Providers share data with any app.

https://goo.gl/FPPQev

SAC 2018, April 9–13, 2018, Pau, France Christoph Stach and Bernhard Mitschang

Table 1: Evaluation Results Overview

Writing Benchmark Reading Benchmark

Datasets AND SDC CURW CURC CURS AND SDC CURW CURC CURS

Overall Runtime in Seconds
500 Tuples 191.1 45.8 46.3 38.3 31.9 85.1 37.3 40.7 34.4 31.1

64, 000 Tuples 5, 239.1 5, 397.9 13, 449.8 4, 775.5 4, 177.5 11, 236.2 15, 196.4 12, 294.8 4, 367.4 22, 057.9

Total Battery Drain in Milliampere per Hour
500 Tuples 12.65 3.28 3.45 2.52 2.40 5.62 2.78 2.92 2.23 2.19

64, 000 Tuples 339.97 378.05 939.13 308.82 292.48 770.55 1, 123.47 851.61 292.94 1, 967.18

Average CPU Usage in Percentage Terms
500 Tuples 15.2 12.8 25.6 21.0 15.2 26.5 26.0 25.7 24.8 26.7

64, 000 Tuples 17.6 14.5 24.8 20.0 15.4 26.0 25.4 25.6 24.9 25.2

Maximum Memory Usage in Megabyte (PSS)
500 Tuples 28.58 24.26 29.29 29.39 24.02 20.74 26.69 29.09 31.78 26.39

64, 000 Tuples 72.54 68.47 69.85 70.60 72.18 54.35 67.09 71.47 71.67 67.35

Maximum Memory Usage in Megabyte (Private Dirty)
500 Tuples 25.62 20.97 25.89 25.23 21.04 18.02 23.34 25.59 27.52 23.26

64, 000 Tuples 69.00 64.85 66.03 66.87 68.21 51.39 64.42 67.79 67.76 64.34

Total Database Size in Kilobyte
500 Tuples 217 284 193 846 1, 020 217 284 193 846 1, 020

64, 000 Tuples 21, 496 28, 148 21, 507 86, 428 128, 488 21, 496 28, 148 21, 507 86, 428 128, 488

AND – Content Provider Approach; SDC – Secure Data Container ; CURW –WaspDB-based CURATOR; CURC – Couchbase-based CURATOR; CURS – SQLite-based CURATOR.

for 10 times and the median is calculated. Then, 𝑛 is increased pro-
gressively. We record overall runtime, total battery drain, average
CPU workload, maximum memory usage7, and database sizes.

The evaluation is carried out on a Motorola Moto E2 Phone
(Qualcomm Snapdragon 410 CPU; 1 GB RAM; 2, 390 mAh battery
capacity) which is a lower class smartphone. On the phone runs a
Vanilla-Android 5.1.1 (kernel version 3.10.87).

The evaluation results for the smallest and biggest dataset are
shown in Table 1. In the following, we discuss the key findings:
[A] Concerning the overall runtime, the creation and usage of
Content Provider causes a fixed overhead. Therefore, this approach
is substantially slower for small dataset. From approximately 3, 000
datasets on, this overhead amortized by the rising encryption costs
of the other approaches in the writing benchmark. In the reading
benchmark, the amortization point is reached at approximately
32, 000 datasets. Only the Couchbase-based CURATOR is always
significantly faster. All in all, the encryption costs can be virtually
neglected. [B] The findings concerning the total battery drain are
very similar to the ones observed for the overall runtime. From a
user’s point of view, the runtime and the battery drain are the most
important qualities. The bad results of the SQLite-based CURATOR
for big 𝑛 in the reading benchmark are explainable since the mobile
version of SQLite is not fitted for working with big databases [38].

7We consider proportional set size and private dirty pages.

[C] The average CPU usage for the writing benchmark is con-
sistently low for the relational-based approaches, whereas the two
NoSQL approaches have higher costs. By contrast in the reading
benchmark, all approaches are alike. [D] Themaximummemory
usage considers memory peaks during the benchmarks, only. The
proportional set size (PSS) comprises all of a process’s RAM pages.
Private dirty calculates the fraction that is not shared with other
processes. Our benchmark shows that the approaches behave simi-
lar in both aspects. Therefore, we do not differentiate between those
twometrics in the following. In the writing benchmark, the relation-
al-based approaches consume less memory. The usage of Content
Provider causes an additional overhead in the writing benchmark,
while it requires the least memory in the reading benchmark. Apart
from that, the relational-based approaches beat the NoSQL ap-
proaches in terms of memory consumption. [E] Concerning the
database size, the SDC allocates more storage space compared to
the Content Provider approach due to its additional maintenance
data. The usage of BLOBs in the SQLite-based CURATOR leads to
the biggest database size (closely followed by Couchbase), whereas
WaspDB has the most compact storage technique.

The key figures of our evaluation for exponentially increasing
datasets concerning the overall runtime and the total battery drain
are depicted in Figure 7. Keep in mind, that the Content Provider ap-
proach does not secure its data, whereas the other four approaches
apply AES256-based data encryption. I. e., the usage of a Couchbase-
based CURATOR is not only more performant, but also more secure.

CURATOR—A Secure Shared Object Store SAC 2018, April 9–13, 2018, Pau, France

0,1

1

10

100

1000

500 1000 2000 4000 8000 16000 32000 64000

R
u

n
ti

m
e

 (
in

 M
in

u
te

s
)

Number of Datasets

Android SDC CURATOR WaspDB
CURATOR Couchbase CURATOR SQLite

(a) Overall Runtime (Writing Benchmark)

0,1

1

10

100

1000

500 1000 2000 4000 8000 16000 32000 64000

R
u

n
ti

m
e

 (
in

 M
in

u
te

s
)

Number of Datasets

Android SDC CURATOR WaspDB
CURATOR Couchbase CURATOR SQLite

(b) Overall Runtime (Reading Benchmark)

1

10

100

1000

500 1000 2000 4000 8000 16000 32000 64000

B
a

tt
e

ry
 D

ra
in

 (
in

 m
A

h
)

Number of Datasets

Android SDC CURATOR WaspDB
CURATOR Couchbase CURATOR SQLite

(c) Total Battery Drain (Writing Benchmark)

1

10

100

1000

10000

500 1000 2000 4000 8000 16000 32000 64000

B
a

tt
e

ry
 D

ra
in

 (
in

 m
A

h
)

Number of Datasets

Android SDC CURATOR WaspDB
CURATOR Couchbase CURATOR SQLite

(d) Total Battery Drain (Reading Benchmark)

Figure 7: Details on the Most Relevant Evaluation Results.

Table 2 summarizes in detail for Android’s Content Provider ap-
proach, the SDC, and CURATOR to what extent they meet the seven
essential characteristics regarding manageability, security and per-
formance. This involves (1) how easy the respective approach can
be used by an app, (2) whether heterogeneous data types are sup-
ported, (3) whether data security is taken into account, (4) whether
access to the data can be restricted, and (5) how resource-saving the
respective approaches are. This shows that only CURATOR fully
meets all these requirements. The insignificantly higher memory
consumption is a minor issue for mobile platforms.

Table 2: Feature Comparison Table

Feature AND SDC CUR

Manageability

Heterogeneous Data Support

Data Security

Access Control

Battery Efficiency

Memory Efficiency

Storage Efficiency
AND – Content Provider Approach; SDC – Secure Data Container ; CUR – CURATOR.

Lessons Learned.
§ 1 CURATOR’s security features cause no performance losses.

§ 2 The SQLite-based CURATOR is recommendable for writing
operations whereas the Couchbase-based CURATOR is best
for reading operations in terms of its runtime and battery
drain.

§ 3 NoSQL-based CURATOR implementations have a higher
CPU usage.

§ 4 NoSQL-based CURATOR implementations requiremoremain
memory.

§ 5 WaspDB has the most compact storage technique.

§ 6 Due to storage abstraction, the best database technology can
be applied according to given hardware constraints. Thereby,
CURATOR is superior in any category to both, Content Pro-
vides and the SDC.

6 CONCLUSION AND OUTLOOK
Today, smart devices are popular as never before. Due to manifold
apps, they are useful in any situation. To unlock their full potential,
a manageable, secure, and performant data exchange mechanism
is required. As no mobile platform implements such a mechanism,
we address this issue.

We come up with a concept of a secure shared object store
called CURATOR. Any app can pass their data as Java objects to
CURATOR to store them as well as share them with other apps. In

SAC 2018, April 9–13, 2018, Pau, France Christoph Stach and Bernhard Mitschang

CURATOR various security features are applied including authenti-
cation, authorization, and encryption. Storage abstraction enables
to substitute the data store applied in CURATOR. We consider
key-value stores, document stores, and relational databases. We
implement CURATOR with each of the three technologies and eval-
uate its respective performance. The evaluation results show that
CURATOR outperforms both, Android’s insecure data exchange
mechanism and the SDC [36].

In order to exchange data between smart devices, a distributed
storage infrastructure similar to Mobius [5] is required. The PA-
TRON research project8 investigates, howCURATOR can be applied
in such a setting.

ACKNOWLEDGMENTS
This paper is part of the PATRON research project which is commis-
sioned by the Baden-Württemberg Stiftung gGmbH. The authors
would like to thank the BW-Stiftung for the funding of this research.

REFERENCES
[1] Rakesh Agrawal et al. 2008. The Claremont Report on Database Research. ACM

SIGMOD Record, 37, 3, 9–19.
[2] Melissa Chau et al. 2017. Smartphone OS Market Share, 2017 Q1. International

Data Corporation (IDC). http://www.idc.com/promo/smartphone-market-
share/os. (May 2017).

[3] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing Inter-application Communication in Android. In Proceedings of
the 9th International Conference on Mobile Systems, Applications, and Services
(MobiSys ’11), 239–252.

[4] HwayoungChoe, Jihun Baek, Hoeheon Jeong, and Sangwon Park. 2011.MetaSer-
vice: An Object Transfer Platform Between Android Applications. In Proceed-
ings of the 2011 ACM Symposium on Research in Applied Computation (RACS
’11), 56–60.

[5] Byung-Gon Chun, Carlo Curino, Russell Sears, Alexander Shraer, Samuel
Madden, and Raghu Ramakrishnan. 2012. Mobius: Unified Messaging and Data
Serving for Mobile Apps. In Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services (MobiSys ’12), 141–154.

[6] Nikolay Elenkov and Yaniv Rodenski. 2014. Android Security Internals: An In-
Depth Guide to Android’s Security Architecture. No Starch Press, San Francisco,
CA, USA.

[7] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. Understanding
Android Security. IEEE Security and Privacy, 7, 1, 50–57.

[8] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
andDavidWagner. 2012. Android Permissions: User Attention, Comprehension,
and Behavior. In Proceedings of the Eighth Symposium on Usable Privacy and
Security (SOUPS ’12), 3:1–3:14.

[9] Google Inc. 2017. Android Things. Android Things. https://developer.android.
com/things. (July 2017).

[10] Google Inc. 2016. Content Providers. Android Developers. https://developer.
android.com/guide/topics/providers/content-providers.html. (Dec. 2016).

[11] Google Inc. 2017. Copy and Paste. Android Developers. https : / /developer.
android.com/guide/topics/text/copy-paste.html. (May 2017).

[12] Google Inc. 2017. Intent. Android Developers. https://developer.android.com/
reference/android/content/Intent.html. (July 2017).

[13] Google Inc. 2016. Storage Options. Android Developers. https://developer.
android.com/guide/topics/data/data-storage.html. (Nov. 2016).

[14] Behnaz Hassanshahi and Roland H.C. Yap. 2017. Android Database Attacks
Revisited. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’17), 625–639.

[15] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. 2012. Revisiting Storage
for Smartphones. ACM Transactions on Storage (TOS), 8, 4, 14:1–14:25.

[16] Martin Knöll, Yang Li, Katrin Neuheuser, and Annette Rudolph-Cleff. 2015. Us-
ing space syntax to analyse stress ratings of open public spaces. In Proceedings
of the 10th International Space Syntax Symposium (SSS ’15), 123:1–123:15.

[17] Shin-ya Nishizaki, Masayuki Numao, Jaime D. L. Caro, and Merlin Teodosia C.
Suarez, (Eds.) 2017. Securing Health Information System with CryptDB. Theory
and Practice of Computation: Proceedings of Workshop on Computation: Theory
and Practice WCTP2015. World Scientific, Singapore, Hackensack, NJ, London,
136–158.

8see http://patronresearch.de

[18] Fabio Martinelli, Paolo Mori, and Andrea Saracino. 2016. Enhancing Android
Permission Through Usage Control: A BYOD Use-case. In Proceedings of the
31st Annual ACM Symposium on Applied Computing (SAC ’16), 2049–2056.

[19] Charlie Miller. 2011. Mobile Attacks and Defense. IEEE Security and Privacy, 9,
4, 68–70.

[20] Mark L. Murphy. 2017. The Busy Coder’s Guide to Android Development. Com-
monsWare, LLC, Pennsylvania, USA.

[21] Simone Mutti, Enrico Bacis, and Stefano Paraboschi. 2015. SeSQLite: Security
Enhanced SQLite: Mandatory Access Control for Android Databases. In Pro-
ceedings of the 31st Annual Computer Security Applications Conference (ACSAC
’15), 411–420.

[22] Machigar Ongtang, Kevin Butler, and Patrick McDaniel. 2010. Porscha: Policy
Oriented Secure Content Handling in Android. In Proceedings of the 26th Annual
Computer Security Applications Conference (ACSAC ’10), 221–230.

[23] 2015. Couchbase Lite on Android. Pro Couchbase Server. Apress, Berkeley, CA.
Chap. 14, 307–317.

[24] Trevor Perrier and Fahad Pervaiz. 2013. NoSQL in a Mobile World: Benchmark-
ing Embedded Mobile Databases. Tech. rep. University of Washington.

[25] rehacktive. 2016. WaspDB. GitHub. https://github.com/rehacktive/waspdb.
(Nov. 2016).

[26] Daniel Schreckling, Joachim Posegga, Johannes Köstler, and Matthias Schaff.
2012. Kynoid: Real-time Enforcement of Fine-grained, User-defined, and Data-
centric Security Policies for Android. In Proceedings of the 6th IFIP WG 11.2
International Conference on Information Security Theory and Practice: Security,
Privacy and Trust in Computing Systems and Ambient Intelligent Ecosystems
(WISTP ’12), 208–223.

[27] Ben Scofield. 2010. NoSQL: Death to Relational Databases(?) Talk at CodeMash.
[28] Hossain Shahriar and Hisham M. Haddad. 2014. Content Provider Leakage

Vulnerability Detection in Android Applications. In Proceedings of the 7th

International Conference on Security of Information and Networks (SIN ’14),
359:359–359:366.

[29] Faisal Shahzad, Waheed Iqbal, and Fawaz S. Bokhari. 2015. On the use of
CryptDB for securing Electronic Health data in the cloud: A performance study.
In Proceedings of the 2015 17th International Conference on E-health Networking,
Application Services (HealthCom ’15), 120–125.

[30] Dan Siewiorek. 2012. Generation Smartphone. IEEE Spectrum, 49, 9, 54–58.
[31] Christoph Stach. 2015. How to Deal with Third Party Apps in a Privacy System

— The PMP Gatekeeper. In Proceedings of the 2015 IEEE 16th International
Conference on Mobile Data Management (MDM ’15), 167–172.

[32] Christoph Stach. 2016. Secure Candy Castle — A Prototype for Privacy-Aware
mHealth Apps. In Proceedings of the 2016 IEEE 17th International Conference on
Mobile Data Management (MDM ’16), 361–364.

[33] Christoph Stach and Bernhard Mitschang. 2015. Der Secure Data Container
(SDC) – Sicheres Datenmanagement für mobile Anwendungen. Datenbank-
Spektrum, 15, 2, 109–118. In German.

[34] Christoph Stach and Bernhard Mitschang. 2014. Design and Implementation
of the Privacy Management Platform. In Proceedings of the 2014 IEEE 15th

International Conference on Mobile Data Management (MDM ’14), 69–72.
[35] Christoph Stach and Bernhard Mitschang. 2013. Privacy Management for Mo-

bile Platforms – A Review of Concepts and Approaches. In Proceedings of the
2013 IEEE 14th International Conference on Mobile Data Management (MDM
’13), 305–313.

[36] Christoph Stach and Bernhard Mitschang. 2016. The Secure Data Container: An
Approach to Harmonize Data Sharing with Information Security. In Proceedings
of the 2016 IEEE 17th International Conference on Mobile Data Management
(MDM ’16), 292–297.

[37] Christoph Stach and Luiz Fernando M. Schlindwein. 2012. Candy Castle — A
Prototype for Pervasive Health Games. In Proceedings of the 2012 IEEE Inter-
national Conference on Pervasive Computing and Communications Workshops
(PerCom ’12), 501–503.

[38] Dam Quang Tuan, Seungyong Cheon, and Youjip Won. 2016. On the IO Char-
acteristics of the SQLite Transactions. In Proceedings of the International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft ’16), 214–
224.

[39] Frank Weigel. 2012. Benchmarking Couchbase. Talk at CouchConf.
[40] Sven Dietrich, (Ed.) 2014. Attacks on Android Clipboard. Detection of Intru-

sions and Malware, and Vulnerability Assessment: 11th International Conference,
DIMVA 2014, Egham, UK, July 10-11, 2014. Proceedings. Springer International
Publishing, Cham, 72–91.

[41] Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen Qiu, and Wenliang Du.
2016. Life after App Uninstallation: Are the Data Still Alive? Data Residue
Attacks on Android. In Proceedings of the Network and Distributed System
Security Symposium 2016 (NDSS ’16), 1–15.

[42] Yajin Zhou and Xuxian Jiang. 2013. Detecting Passive Content Leaks and
Pollution in Android Applications. In Proceedings of the 20th Annual Network
and Distributed System Security Symposium (NDSS ’13), 1–16.

http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
https://developer.android.com/things
https://developer.android.com/things
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/text/copy-paste.html
https://developer.android.com/guide/topics/text/copy-paste.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/guide/topics/data/data-storage.html
http://patronresearch.de
https://github.com/rehacktive/waspdb

	Abstract
	1 Introduction
	2 Related Work
	3 CURATOR's Architecture
	4 Implementation
	4.1 Technology Discussion
	4.2 Technical Realization

	5 Evaluation
	6 Conclusion and Outlook
	Acknowledgments

