
© 2016 IEEE. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_16_sdc.pdf
by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in In: Chow, C.-Y. et al. (Eds.) Proceedings of the 2016
IEEE 17th International Conference on Mobile Data Management. IEEE, Porto, Portugal, pp. 292–297, 2016, doi: 10.1109/MDM.2016.50.

The Secure Data Container:
An Approach to Harmonize Data Sharing with

Information Security
Christoph Stach† and Bernhard Mitschang

University of Stuttgart, Institute for Parallel and Distributed Systems
Universitätsstraße 38, 70569 Stuttgart, Germany

Email: Christoph.Stach@ipvs.uni-stuttgart.de, Bernhard.Mitschang@ipvs.uni-stuttgart.de

Abstract—Smart devices became Marc Weiser’s Computer of
the 21st Century. Due to their versatility a lot of private data
enriched by context data are stored on them. Even the health
industry utilizes smart devices as portable health monitors and
enablers for telediagnosis. So they represent a severe risk for in-
formation security. Yet the platform providers’ countermeasures
to these threats are by no means sufficient. In this paper we
describe how information security can be improved. Therefore, we
postulate requirements towards a secure handling of data. Based
on this requirements specification, we introduce a secure data
container as an extension for the Privacy Management Platform.
Since a complete isolation of an app is usually not practicable,
our approach also provides secure data sharing features. Finally,
we evaluate our approach from a technical point of view as well as
a security point of view and show its applicability in an eHealth
scenario.

Index Terms—smart devices; information security; data shar-
ing.

I. Introduction
Modern smart devices not only become more and more

powerful concerning computation power, stand-by times, and
built-in sensors but they are also able to interconnect with
each other. Thus, each device becomes information sink and
data source at the same time. By combining all available data
these devices are able to draw accurate conclusions about the
user’s current situation, so that apps can optimally adapt their
behavior to the user’s needs.

However, by sharing these information with any given app
on the device and other devices, this technological progress
can be the source of tremendous good but also the root of
potentially dreadful evil: By using smart devices for almost any
purpose, contact information, calendar entries, or even banking
information can be found on these devices. Due to the large
volume of sensitive data generated and stored on smart devices,
these devices are a prime target for hackers and data thieves.
The best way to prevent data thefts is to get the users on board
by winning their awareness for the threats. However, none of
the prevailing smart device platforms provides an adequate
solution for this problem and the user becomes apathetic for
security issues [1].

Hence, Wang et al. [2] claim the separation of sensitive from
nonsensitive data and a smart encryption of the data in terms

† This work was supported by a Google Research Award.

of acceptable battery consumption. We examine how these
two goals can be accomplished for the data storage within an
eHealth scenario, i. e., a use-case where a lot of really sensitive
data accrues [3]. In addition, a solution for this information
security problem also has to enable interoperability in terms
of regulated inter-app data sharing [4]. Our approach is based
on Android, yet the results are applicable to any application
platform. In this paper, we discuss the following three issues:
(𝐼) Since information security is an important and heavily

demanded yet not technically realized property, we postulate a
requirements catalog towards a data storage system. For this
purpose, we deduce 7 protective goals from literature and
discuss, how these goals can be archived.
(𝐼𝐼) We analyze how data storage as well as inter-app data

sharing can be realized in an Android app. In addition to this
standard Android approach, we introduce novel approaches,
realized as extensions for the Privacy Management Platform
(PMP) [5], [6]. The initial approach implements a simple
PMP data container that enables the user to share data with
other apps. In a second step, we enhance this basic container
by encryption features, fine-grained sharing techniques, and
data distribution. The result is called Secured Data Container
(SDC). Moreover, by identifying different users the SDC depicts
a reliable protection against unwanted physical access to the
smart device. The fundamental data model is essentially generic
but can be tailored to any use-case.
(𝐼𝐼𝐼) Finally, we evaluate the approaches in a benchmark tai-

lored to an eHealth scenario. We are interested in performance
metrics and the impact on information security.

The remainder of this paper is as follows: In Section II we
discuss key protective goals concerning information security.
The data storage approaches are introduced in Section III and
evaluated from a technical point of view and a security point of
view in Section IV. Finally, we give an overview of information
security approaches for mobile platforms in Section V, before
Section VI sums up this paper.

II. Protective Goals
Since apps often deal with sensitive data, there is a high de-

gree of information security required. Data has to be protected
against malware and the user has to be able to control how
data is processed and with whom it is shared. While the legal

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_16_sdc.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_16_sdc.pdf
https://doi.org/10.1109/MDM.2016.50


D
B

 O
w

n
e
r

D
B

 U
s
e

r

Query Result

Android 

Database

Perform 

Database 

Lookup

Query

Create 

Query

Prepare 

Database 

Access
Apply for 

Required 

Permissions

Initialize 

Database
Permission 

Granted?

No

Yes

Forward

Query

Result?

Yes

No
Process 

Data

Prepare 

Query 

Result

Apply for 

Required 

Permissions

Create 

Query

Forward 

Query
Permission 

Granted?

No

Yes
Process 

Data

Data

Query

via Content Provider via Content Provider

Figure 1. Data Access in the Android Data Container Approach

guidelines are pretty explicit, a general technical realization is
still missing. Dhillon and Backhouse [7] identify the three
traditional information security principals: Confidentiality
ensures that only authorized entities get access to information.
Integrity ensures that the information cannot be compromised
by third-parties. Availability ensures that the information is
accessible at anytime.

However, they point out that these three principles are not
sufficient. Cherdantseva and Hilton [8] add four more principles
which are especially relevant in the domain of mobile systems:
Auditability ensures that any information access is monitored.
Authenticity verifies the identity of an entity requesting
access to information. Non-repudiation attests unchallengeable
whether an entity processed the information. Privacy gives
users full control over their data.

After identifying the relevant information security principals,
we introduce the overall architecture of our approach (see
Section III-B and Section III-C) and verify whether it complies
with these principals (see Section IV-B).

III. Data Storage Approaches

In this section, we describe three different approaches how
apps can store, manage, and share their data, namely a native
Android database approach, a PMP Resource implementing a
simple data container, and the Secured Data Container.

A. Databases in Android

Basically, every Android app has its own private storage
area for its data. In this private storage SQLite databases can
be created. However, each app has to reimplement the database
integration from scratch. Only the owner of the database—
that is the app which created the database—is able to use the
database. In contrast to other mobile OS, Android enables app
developers to share the stored data with other apps. To this end,
the database owner has to implement a Content Provider that
defines an URI via which other apps can access the data. The
Content Provider has an interface which processes SQL-like
statements. An individual Content Provider is required for each
table which should be accessible for other apps. Yet, the data
owner cannot restrict the access to the data for certain apps.
Subsequently, any app knowing the URI can use the Content
Provider and therefore gets reading and writing access to the
corresponding data.

Figure 1 depicts the procedure of how data can be shared in
this approach. The user formulates a query and applies for all
permissions which are required in order to access the database.
If the permission is not granted, the calling app crashes since
in Android all permissions have to be granted when the app
is installed and a subsequent withdrawal of permissions is not
allowed. Thus usually the permission is granted and the query
is sent to the URI, i. e., the database owner. The owner then
prepares the database, which means the owner also needs to
request for permissions (e. g., to read and write the storage
content). Again, it can be assumed that the permissions is
granted. Then the database is initialized in order to perform the
lookup. The results are automatically sent back to the inquiring
app for further processing.

Apart from performance and information security issues (see
Section IV) this approach requires a lot of Content Providers
and thus URIs which have to be known by any involved app.
Moreover, the approach requires adaptations in every app which
uses the Content Providers when changes are made to the owner
app—not to mention that all of these apps can be used only
as long as the owner app is installed.

B. PMP Data Container Resource
The PMP is an intermediate layer between apps and the OS

(in the context of this work the PMP can be seen as a part of
the OS). In the following, we give a very brief overview of the
PMP. For more information please refer to the literature [5],
[6], [9], [10]. With the PMP the user is able to specify fine-
grained and context-aware privacy policy rules. The underlying
privacy policy model is based on the idea that an app requires
its permissions not all the time, but only for certain features.
These so-called Service Features cannot access private data
directly but have to query information brokers, the so-called
Resources. The user defines which Service Feature gets data
by which Resource.

A simple PMP-based data container enhances the data
sharing ability and reusability of Android-based data bases.
To this end, it provides a database accessible via an interface
similar to the SQLite interface. The data model of the database
is generic (key-value pairs) in order to be applicable to any
app and can be tailored to any use-case. A Resource can be
used by an arbitrary number of apps and an app can use an
arbitrary number of Resources. Therefore several of these data
container Resources can coexist each with a specialized data
model for a certain kind of data. The user specifies via the
PMP which app is allowed to read from and write to which
data container.

The data access procedure is as follows: Initially, each app
registers to the PMP at installation time. Thereafter the app is
able to request data from Resources. The PMP verifies whether
this request is conform to the policy. If this is not the case,
the user gets a feedback message telling him or her which
app requests data from which Resource and s/he decides how
to deal with the request. If the access is allowed the PMP
forwards the query to the Resource where it is executed. The
result is sent back to the inquiring app.



This approach provides several advantages over the Android-
based approach. The data sharing among apps is simplified,
since the data ownership is transferred to the Resource and
any app can access it via the PMP. The reusability is high,
since any app can use the Resource out of the box, i. e., the
app developer is no longer responsible for the implementation
of databases and Content Providers. Additionally, a use-case
driven tailoring of the basic data model is feasible and variants
of the data container can be operated in parallel. This is also a
step towards data separation, since for each variant different
policy rules can be applied. The applicability of the PMP policy
to the data container is also a huge step towards information
security.

C. The Secure Data Container

Based on this initial approach, the SDC focuses on informa-
tion security features. Therefore, the SDC completely encrypts
its database. Any data is only decrypted as long as necessary.
The key is randomly generated and only known to the SDC.
Thus, the data is secured against data thefts. Access privileges
can be applied to single data tuples. To achieve this, the SDC
generates two maintenance tables, one storing all registered app
ids and one specifying which app is allowed to access which
data tuple. The SDC hosts several database instances and the
stored data is divided among theses partitions. Thereby, only
the relevant parts of the data container have to be encrypted
and decrypted. As a smart device can be used by several people,
the SDC introduces a user identification feature. This provides
not only a better protection for the stored data, but also enables
a secured sharing of data not only among apps but even among
users.

The data access procedure is shown in Figure 2: The initial
steps are similar to the access procedure of the simple approach.
As soon as the PMP allows the access to the SDC, the two
procedures differ, since the PMP adds conditions to the query
before forwarding it to the SDC. These conditions comprise
lookups in the maintenance tables to ensure that only data tuples
are processed which are shared with the inquiring app. Then,
the SDC requests the user to authenticate via the PMP—no
login data is shared with the app. The data partitions containing
the relevant data are decrypted, the SDC executes the modified
query, and the partitions are encrypted again. Subsequently,
the modified query result—i. e., only data which is shared with
the inquiring app—is sent back.

In addition to the advantages of the basic PMP data
container approach, the SDC provides advantages concerning
information security. The data encryption of the database
is necessary in order to prevent information leakage as well as
unauthorized modifications [11]. Due to the smart encryption
(i. e., the data distribution and partition-based encryption) its
performance is very promising, as the evaluation results show
(see Section IV-A). Apart from the reduction of encryption
costs, thereby a distinctive separation of sensitive from
nonsensitive data is realizable.

In
q

u
ir

e
r

A
p

p

P
M

P

U
s
e
r

S
D

C

Yes

Access 

Granted?

No

Access Request

Policy Update

Decrypt 

Database

Query

Process 

Data

Data

Query Result

Yes

App 

Requests 

Access to 

the SDC

Access 

Allowed?

No

User Grants 

or Permits 

Access

Feedback

Privacy Setting Configuration

Perform 

Database 

Lookup

Check 

Access 

Rights for 

Data Sets

Conceal 

Query 

Result

App ID & Rewritten Query

Encrypt 

Database

Figure 2. Data Access in the SDC Approach (Simplified)

IV. Evaluation
In the following, we compare a conventional Android

database with a PMP-based data container and the Secure Data
Container. For our evaluation we consider technical issues as
well as security issues.

A. Technical Analysis
To carry out our measurements, we used a Motorola Moto E

Phone (2nd generation) which represents a lower middle class
Smartphone of the current generation. Thereby, the evaluation
results are representative for real world purposes.

The benchmark consisted of two separated steps: A writing
and a reading step. Both steps were executed with two datasets,
differing in their size. The small dataset (labeled as 𝑆) consisted
of 500 different health records while the big dataset (labeled as
𝐵) consisted of 16, 000 health records. We chose these sizes
based on McObject’s TestIndex benchmark for Android1. The
model of a health record is shown in Figure 3. It consists
of patient data, health values, sensor data, and answers to a
questionnaire. For the SDC, the five tables of the star schema
were stored in independent partitions.

Initially, the writing benchmark generated 500 or 16, 000
random health records and stored them in the data store
which was evaluated, namely an Android-based database
(Android), a PMP-based data container (PMP), and the Secure
Data Container (SDC). For the SDC we used an AES-256
encryption. Subsequently, after the writing benchmark the
reading benchmark accessed each health records in a random
order. Both benchmarks were repeated for 10 times. After each
run the database was deleted and the cache was cleared in
order to prevent influences by warm caches. The benchmark
results are shown in Table I. The values are the medians of
the ten runs in order to eliminate outliers.

The benchmark results provide the following findings:
(T1) Concerning the overall runtime of the writing benchmark,
it is almost indifferent which approach is used. The SDC’s AES-
256 encryption causes a minimal overhead of approximately
7%. This means, the processing of a single dataset is prolonged
by just about 5 milliseconds. When looking at the results of the
reading benchmark, the shared databases of the PMP Resource
and the SDC demonstrate their strengths. The use of Content

1see http://www.mcobject.com/android



Patients

pid

name

Health Data

pef
fev75
fev1
fev10
fef2575
fev1pers

vid

pefpers

Records

_id

pid
vid
lid
qid
timestamp

Locations

lid

lat
lon
acc

Questions

q1
q1a
q1b

…
q5

qid

Foreign Key

Primary Key

Figure 3. Exemplary Star Schema of a Health Record

Providers is not only insecure (e. g., the data owner—i. e., the
app offering the Content Providers—can hardly restrict the
set of accessing apps [12]) but also very costly. The client
app has to contact the app that owns the data. The therein
specified Content Provider automatically handles the inter-
process communication. The readings show, that the PMP with
its shared database outperforms Android’s Content Provider
approach by more than 50%. Despite the cost for the encryption,
the SDC outperforms the PMP, as the data is partitioned
in several databases whereby the access cost is reduced. In
summary it can be said, that the bigger the dataset gets, the
more the encryption costs can be neglected.

(T2) The average CPU usage is similar on all approaches for
the writing benchmark (all processes associated with the tests
are taken into account). For the reading benchmark, the costs
for the Android Content Providers and the shared PMP-based
data container are at a similar level with a slight advantage for
the PMP. The SDC encrypts and decrypts the database for each
access. Thanks to the data distribution strategy of the SDC the
amount of data which has to be encrypted is reasonable. As
a result, the CPU workload is reduced compared to the high
amount of inter-process communication used by the Content
Providers.

(T3) The total battery drain is correlated with the runtime
of an app and its accruing CPU workload. Thus, the three
approaches are dead even in this category for the writing
benchmark while for the reading benchmark the Android
approach is clearly inferior. The SDC’s battery drain is
considerably less than the half of the Android’s battery drain.
This means an app using the SDC not only benefits from its
enhanced security features but also saves energy.

(T4) The maximum memory usage considers only the
peaks that are reached while running the benchmarks. We
regard private dirty usage which counts the amount of RAM
inside the process that is not shared with any other processes.
For the PMP and the SDC the cumulative costs are taken into
account, i. e., the total memory usage of the benchmark app,
the PMP, and the required Resources. Overall the results for
the approaches are pretty close together with a slight advantage
for Android in the reading benchmark. However, a single PMP
instance can manage any number of apps in parallel. So the
memory usage of the managing tasks of the PMP (which is
more than 50% of the total memory usage) is divided equally

among all apps using the PMP. Thus, these numbers would be
in favor for the PMP-based approaches (including the SDC) if
several instances run in parallel.

(T5) By using the SDC the database size increases due to
the required auxiliary tables for maintenance and the additional
columns in the data table. This administrative overhead for the
SDC is approximately 70% for the small dataset and almost
100% for big dataset due to its data distribution and the required
meta data (e. g., authorization information, access rights, or
indices). Compared to the performance gain and the security
features, this is indeed a small price, especially since the storage
space of smart devices permanently increases with each new
model.

B. Security Analysis
A security analysis based on the 7 protective goals is done

in the following. The findings are summarized in Table II.
(S1) The confidentiality is breached when an app gets access

to data which is not intended for it. Android ensures this by
separating apps from the underlying OS layers which manage
the data. However, when using Content Providers for data
sharing, any app knowing the right URI gets full access to
the provided data. By using the PMP, the user controls which
app gets access to the shared data. With the SDC the data
is encrypted and as a consequence the confidentiality is even
guaranteed when there is a breach in the security mechanisms
of the OS. Moreover, the SDC can even define access rules
for each database entry and it fully guarantees confidentiality
by adding user accounts, i. e., it can define access rules for
different apps and users.

(S2) Due to the strictly separated OS layers, the integrity
is guaranteed in Android (and therewith in the PMP) as long
as there is no security breach. By encryption the SDC ensures
that the stored data cannot be compromised by such an attack.

(S3) Availability is guaranteed since all approaches base
on mature database technologies (e. g., transactional features
and recovery techniques). However, the Android reading app
requires certain Content Providers which are only available as
long as the writing app is installed on the device.

(S4) Android checks which permissions an app has. However,
this cannot document which actions an app actually performs.
The PMP guarantees auditability by logging any access to
PMP Resources. With the encryption, the SDC even prevents
illegal data access and therewith guarantees that the PMP’s log
is complete.

(S5) Android only checks whether an app has all permissions
required for its actions. The PMP and the SDC identify and
register all apps. The SDC even identifies the users. Thereby
the authenticity is fully guaranteed.

(S6) For the non-repudiation applies the same predicates as
for the auditability (F4). However, since Android does not track
which actions an app actually executes, the non-repudiation is
not guaranteed by Android at all.

(S7) Everybody has a different idea of the right degree of
privacy. Thereby, it is inevitably that the user is in full control
over any data which is shared with an app. Android simply



Table I. Benchmark Results

Writing Benchmark Reading Benchmark
Android PMP SDC Android PMP SDC

Runtime S 34.5 35.8 38.4 62.0 30.2 29.3

(in sec) B 1, 051.5 1, 095.1 1, 121.2 2, 011.6 972.7 936.3

CPU Workload S 32.9 31.0 30.6 34.4 31.9 18.2

(in %) B 35.2 32.7 32.6 34.9 29.9 17.9

Battery Drain S 2.55 2.87 2.80 4.59 2.41 2.06

(in mAh) B 78.19 86.62 80.84 160.76 78.35 70.49

Memory Usage S 20.90 16.05 16.81 16.84 16.96 17.64

(in MB) B 23.36 18.45 21.20 16.87 19.57 18.03

DB Size S 120 120 204 120 120 204

(in kB) B 2, 444 2, 444 4, 800 2, 444 2, 444 4, 800

informs him or her which permissions are requested by an app
and s/he has to accepts all of them. In the PMP, the user is able
to restrict any data access on a fine-grained level. In addition
to it, s/he can control the data access for each database entry
individually with the SDC.

From a technical point of view, the use of the SDC is not only
suitable when an app processes confidential data, but also when
some datasets have to be shared with other apps. In this case, a
tremendous advantage in terms of runtime, CPU workload,
battery drain, and memory consumption is generated. In
addition, less CPU-intensive cryptographic algorithms for data
which requires less protection—i. e., by introducing different
protection levels—could improve its performance even further.
However, the additional computational effort for the encrypting
and decrypting of the database is also reduced for every new
smart device generation as earlier evaluations results with a
NexusOne attest. From a security point of view, the SDC
fulfills all of the requirements towards a secure data container.
Moreover, the usage of the SDC is virtually transparent to the
user, i. e., s/he is not overburdened by it.

V. Related Work
There is currently no work fully comparable to the SDC

in terms of regulated inter-app data sharing for smart devices.
Several approaches cover certain aspects of our work:

Unlike other mobile OS, Android already supports inter-app
data sharing via its Content Providers. As soon as an app
defines a Content Provider for its data, any other app can use
the Content Provider’s SQL-like interface to access the data.
However, the data owner is able to regulate the data access
only in terms of granting reading and writing permissions
which are applied for any app [13]. The TISSA system [14]
enables the user to decide for any app using Content Providers
individually, how to deal with its data requests, i. e., whether
the data is returned accurately, anonymized, falsified, or empty.
Nevertheless, these settings apply to any data provided by the
source app and cannot be limited to certain datasets. Moreover,
data encryption is not applicable to this approach.

The encryption of the home partition is introduced in
Android 4.0 and extended to full disc encryption in Android

5.0. However, this concept secures the data only until the user
unlocks the smart device; afterwards, all data is unencrypted.
This protects against attacks on a locked device but not against
attacks during operation [15]. Each app has to secure its data
during operation individually, e. g., by using third-party libraries
such as SQLCipher [16]. This limits the interoperability
significantly and if the data is shared with an app which does
not provide a sufficient data encryption, the information security
is at stake.

Concerning the separation of sensitive from nonsensitive data,
Samsung KNOX [17] introduces a secured and an unsecured
domain on Android-based devices. In the secured domain only
accredited apps can be executed and their data must not be
shared with any unaccredited app. However, only selected apps
benefit from this protection and also the interoperability suffers
from the strict data separation.

A lot of work is done dealing with privacy issues by
introducing enhanced permission systems similar to the PMP.
Backes et al. [18] introduce such a system for Android called
AppGuard. AppGuard implants a security monitor into apps
which supervises every activity. When an operation defies
AppGuard’s policy it is not executed and is replaced by
alternative code. Yet, in-vivo bytecode instrumentation is
dangerous since it can have unforeseen side effects, e. g., app
crashes. Moreover, allowing a user to manipulate the bytecode
of any app constitutes a copyright violation. Aurasium [19]
follows a different strategy, as it does not manipulate the app
but its runtime environment by introducing secure sandboxes.
These sandboxes monitor every app and interfere into the
program flow if necessary. Conti et al. [20] add context-
sensitive policy rules to the current Android permission system.
I. e., in CRêPE the user can define a situation under which a
certain rule should be applied (e. g., the phone should only
ring after work). Another inline reference monitoring approach
is Dr. Android & Mr. Hide [21] which additionally extends the
Android permission management by context-aware and fine-
grained rules. As Android is a single user OS, its permission
system is not designed for different user. Whoever gets access
to an unlocked device has full control over the stored data.



Table II. Feature Comparison (the filling degree of the circle indicates how
well the respective feature is realized)

Android PMP SDC

Confidentiality

Integrity

Availability

Auditability

Authenticity

Non-repudiation

Privacy

Rohrer et al. [22] introduced DR BACA, which adds user roles
to permissions. Thus, a single device can be used by different
users with individual permissions. Yet, all of these approaches
aim for preexisting data providers and not for the restriction
of inter-app data sharing.

A different approach to address the problem of information
security is introduced by Neisse et al. [23]. Their framework
enforces usage control even for data which has already left the
smart device. However such an approach is out of this work’s
scope. Nevertheless, an integration of such a framework in the
PMP and the SDC is worth further researches.

VI. Conclusion
Alarmed by an increasing number of data thefts, smart

device users are becoming more and more aware of the need
for comprehensive information security mechanisms which
do not constrain the apps’ usability. The mobile platform
vendors face these threats with non-transparent app checks and
elaborated permission systems. Thus, the users are either totally
incapacitated or completely overwhelmed. Both preventing a
satisfying protection for sensitive data.

For this reason we pursue three key objectives with our
work: (𝐼) We postulate a requirements catalog towards a data
storage system containing 7 vital protective goals. (𝐼𝐼) As
these goals are not covered by the existing information security
measures, we introduce the SDC as extensions for the PMP.
(𝐼𝐼𝐼) Finally, we show that the SDC provides more than
acceptable results with respect to its performance and security
features. Although the presented prototypes of the PMP and the
SDC are implemented for Android, the underlying concept can
be applied to any application platform such as the Facebook
Platform or Chrome OS.

Acknowledgments
The PMP results from a close collaboration with Google

Munich office. Hence, we would like to thank Google for their
support and their suggestions for improvements.

This work was partially funded by the PATRON project of
Baden-Württemberg Stiftung gGmbH.

References
[1] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,

“Android Permissions: User Attention, Comprehension, and Behavior,”
in SOUPS ’12, 2012.

[2] Y. Wang, K. Streff, and S. Raman, “Smartphone Security Challenges,”
Computer, vol. 45, no. 12, pp. 52–58, 2012.

[3] R. S. H. Istepanian, S. Laxminarayan, and C. S. Pattichis, Eds., M-
Health — Emerging Mobile Health Systems. Springer US, 2006.

[4] M. Chan, D. Estève, J.-Y. Fourniols, C. Escriba, and E. Campo, “Smart
Wearable Systems: Current Status and Future Challenges,” Artif. Intell.
Med., vol. 56, no. 3, pp. 137–156, 2012.

[5] C. Stach and B. Mitschang, “Privacy Management for Mobile Platforms
— A Review of Concepts and Approaches,” in MDM ’13, 2013.

[6] C. Stach, “How to Assure Privacy on Android Phones and Devices?”
In MDM ’13, 2013.

[7] G. Dhillon and J. Backhouse, “Technical Opinion: Information System
Security Management in the New Millennium,” Commun. ACM, vol. 43,
no. 7, pp. 125–128, 2000.

[8] Y. Cherdantseva and J. Hilton, “A Reference Model of Information
Assurance & Security,” in ARES ’13, 2013.

[9] C. Stach and B. Mitschang, “Design and Implementation of the Privacy
Management Platform,” in MDM ’14, 2014.

[10] C. Stach, “How to Deal with Third Party Apps in a Privacy System
— The PMP Gatekeeper,” in MDM ’15, 2015.

[11] E. Shmueli, R. Vaisenberg, Y. Elovici, and C. Glezer, “Database
Encryption: An Overview of Contemporary Challenges and Design
Considerations,” ACM SIGMOD Record, vol. 38, no. 3, pp. 29–34,
2010.

[12] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing Inter-
application Communication in Android,” in MobiSys ’11, 2011.

[13] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android
Security,” IEEE Security and Privacy, vol. 7, no. 1, pp. 50–57, 2009.

[14] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming Information-
stealing Smartphone Applications (on Android),” in TRUST ’11, 2011.

[15] J. Götzfried and T. Müller, “Analysing Android’s Full Disk Encryption
Feature,” JoWUA, vol. 5, no. 1, pp. 84–100, 2014.

[16] Zetetic LLC, Full Database Encryption for SQLite, 2015. [Online].
Available: https://www.zetetic.net/sqlcipher/.

[17] Samsung Electronics, “Meet evolving enterprise mobility challenges
with Samsung KNOX,” Samsung Electronics, White Paper, 2014.

[18] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky, “AppGuard - Enforcing User Requirements on Android
Apps,” in TACAS ’13, 2013.

[19] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical Policy
Enforcement for Android Applications,” in Security ’12, 2012.

[20] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich, “CRêPE:
A System for Enforcing Fine-Grained Context-Related Policies on
Android,” Trans. Info. For. Sec., vol. 7, no. 5, pp. 1426–1438, 2012.

[21] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. Android and Mr. Hide: Fine-grained Permissions
in Android Applications,” in SPSM ’12, 2012.

[22] F. Rohrer, Y. Zhang, L. Chitkushev, and T. Zlateva, “DR BACA:
Dynamic Role Based Access Control for Android,” in ACSAC ’13,
2013.

[23] R. Neisse, A. Pretschner, and V. Di Giacomo, “A Trustworthy Usage
Control Enforcement Framework,” Int. J. Mob. Comput. Multimed.
Commun., vol. 5, no. 3, pp. 34–49, 2013.

https://www.zetetic.net/sqlcipher/

	I Introduction
	II Protective Goals
	III Data Storage Approaches
	III-A Databases in Android
	III-B PMP Data Container Resource
	III-C The Secure Data Container

	IV Evaluation
	IV-A Technical Analysis
	IV-B Security Analysis

	V Related Work
	VI Conclusion

