
© 2015 IEEE. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_15_gatekeeper.
pdf by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in In: Jensen, C. S. et al. (Eds.) Proceedings of the 2015
IEEE 16th International Conference on Mobile Data Management. IEEE, Pittsburgh, PA, USA, pp. 167–172, 2015, doi: 10.1109/MDM.2015.17.

How to Deal with Third Party Apps in a Privacy
System

—The PMP Gatekeeper—
Christoph Stach†

University of Stuttgart, Institute for Parallel and Distributed Systems
Universitätsstraße 38, 70569 Stuttgart, Germany
Email: Christoph.Stach@ipvs.uni-stuttgart.de

Abstract—Nowadays, mobile devices collect a lot of private
information. Therefore every vendor of a mobile platform has
to provide a sufficient mechanism to secure this data. Android
pursues a strategy to pass full control (and thus full responsibility)
over any private data to the user. However, the Android Permis-
sion System is not sufficient for that purpose. Various third party
approaches try to enhance the Android privacy policy model.
Nevertheless, these approaches have to solve the problem of how
to deal with Legacy Apps, i. e., apps that do not collaborate with
an enhanced privacy policy model.

In this paper, we analyze various alternative privacy systems
and discuss different approaches of how to deal with Legacy
Apps. Based on our findings, we introduce the so-called PMP
Gatekeeper, a best of breed approach dealing with Legacy
Apps for the Privacy Management Platform (PMP). The PMP
Gatekeeper classifies apps and deals with each class appropriately.
So the user can adjust privacy settings for every kind of app. With
our prototype we show, that the PMP in combination with the
PMP Gatekeeper becomes a holistic privacy system. Although our
prototype is for Android, our realization approach can be applied
to other application platforms in order to offer a satisfying
privacy system.

Index Terms—Android; Privacy Systems; Legacy Apps.

I. Introduction
The times in which mobile phones are used for calls or short

text messages only are long gone. The so-called smart phones
are capable to provide almost any service which is known
from a desktop PC, e. g., making appointments, managing
contacts, reading and writing emails, or accessing the Internet.
Additionally, due to the advanced technical features of these
devices, their range of services goes even beyond the one of a
PC. Thus, it is possible to use navigation services via GPS or to
make cashless payments via NFC. Moreover, almost countless
third party applications (apps) are available via online software
repositories (the so-called app stores). Due to the thereby
increasing amount of personal data stored on these devices,
such apps are a potential privacy violation. Since the scope of
available apps is broad—ranging from carpooling apps (e. g.,
vHike [1], [2]) to mHealth services (e. g., Candy Castle [3])—
also the range of stored data is manifold. Therefore, especially
apps collecting and processing sensitive data (e. g., health data)
should be monitored with extreme care by the data owner in
order to ensure that these data are not misused.

† This work was supported by a Google Research Award.

However, the users themselves cannot check what is done
with their data and with whom it is shared. For this purpose,
the users depend on the support of their mobile platform
vendor. Since the mobile platform market is dominated today
by Google’s Android with a market share of about 85%, we
only consider this OS in the following. In Android the user
is in total control over his or her private data—and therewith
full responsibility over this data is transferred to him or her at
the same time. Therefore, Android operates according to the
Principle of Least Privilege, i. e., every app can access only
data and system resources that are necessary for its legitimate
purpose. To get access to a protected content or hardware
function (e. g., the current position via GPS or the usage of
the camera) an app requires a so-called Permission. However,
the user has to grant either all of an app’s Permissions or the
app cannot be installed at all. To make matters worse, most of
the apps request a large number of Permissions—often even
totally unnecessary ones—so the users’ privacy is increasingly
at risk [4]. Therefore, a lot of different third party approaches
are developed to improve the Permission system. However,
as apps support only the original Permission system with its
policy model and are not adapted to collaborate with enhanced
models, one key problem of these approaches is the question of
how to deal with these third party apps (labeled as Legacy Apps
in the following). Basically, there are two distinct strategies
each with its own benefits and drawbacks (see Section III).

We introduce with the PMP Gatekeeper an extension to the
Privacy Management Platform (PMP) [5], making the PMP to
the first privacy system supporting both Legacy Apps strategies.
Therefore, the following three requirements are addressed:

(1) The PMP Gatekeeper allows users to specify access rights
which should be granted to an app.

(2) Virtually any kind of app can be monitored and regulated
by the PMP thanks to the PMP Gatekeeper.

(3) As system functions must not be interfered by a privacy
system, the PMP Gatekeeper is able to identify system
services and it gives them any required access right
automatically.

Especially the third issue is an important one due to stability
and performance reasons.

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_15_gatekeeper.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_15_gatekeeper.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_15_gatekeeper.pdf
https://doi.org/10.1109/MDM.2015.17

The remainder of this paper is as follows: In Section II we
give a comprehensive overview of currently existing privacy
systems and differentiate the PMP from state of the art
approaches. On the basis of this overview, we deduce two
different strategies of how to deal with Legacy Apps in
Section III (namely the extension of the privacy system in
Section III-A and the usage of Inline Reference Monitoring in
Section III-B). Subsequently, we introduce the PMP Gatekeeper
in Section IV and describe in detail how the three key issues
are realized by the PMP Gatekeeper. Section V discusses
some implementation insights of the PMP Gatekeeper. Finally,
Section VI assesses the approach before Section VII provides
a short summary of this paper.

II. Related Work
A first approach towards a better understanding for privacy

threats is to give the user a profound characterization of the
Permissions an app has and how dangerous certain Permission
combinations are [6]. It is also helping to analyze the control
flow [7] and information flow of an app [8] in order to track
down data leakage. However, despite of all of this information
the actual issue still remains, since the user has to grant an app
all requested Permissions when s/he wants to use this app, no
matter how much s/he distrusts it. For this very reason, a lot
of privacy systems are developed with the aim to give users
more control over the behavior of their apps by manipulating
their access rights.

Nauman et al. [9] introduce with Apex an enhanced version
of the Android Permission system. The user can select for each
Permission whether s/he wants to allow, deny, or constrain it.
Since Apex is embedded in the Android platform, it can control
the checkPermission method, which is responsible for granting
or denying access rights. Therefore, any app can be regulated
via Apex, but withdrawing a Permission will inevitably lead
to a crash of the app. The problem of app crashes due to
missing Permissions is addressed by MockDroid [10]. Instead
of denying a data request, MockDroid sends fake data to the
app, if the user does not want the app to know the actual
data. Jeon et al. [11] propose an entirely different strategy
with their toolset called Dr. Android & Mr. Hide. Dr. Android
is a rewriter for Dalvik bytecode and Mr. Hide is a service
which grants or denies access to certain data. First, an app is
analyzed in order to determine which access rights are really
required—keep in mind, the Android Permissions are always
a set of several access rights. Then, any method call which
requires a Permission is redirected to a similar call to the Mr.
Hide service. Thereby, Dr. Android & Mr. Hide can provide
new fine-grained access rights, applicable for any app, which is
converted by Dr. Android. However, the conversion causes that
the app can no longer be updated by the app store and the app’s
signature is changed which entails further complications [12]
(see Section III-B). However, to include the monitor component,
the code of an app has to be manipulated, which is a violation
of copyrights.

Due to our findings, there is no privacy system which
supports Permission granting or withdrawing at run-time,

App

checkPermission

Permission PID UID

Package

Manager

Permission

Request

Existing

Permission

Checks

New

Permission

Checks

Additional Information (e.g., Identifiers for the App)

1

3

2

4
5

Figure 1. Execution Steps for a Permission Request (New Parts are Green)

guarantees that apps will not crash due to missing Permis-
sions, allows context-sensitive policy rules, supports fake data,
provides feedback about the behavior of apps concerning the
usage of private data, supports automatic updates via the app
store, and supports a remote configuration of the system for
inexperienced users. Therefore, the PMP [13] was developed.
However, due to its enhanced privacy policy model (see [14]),
which is required to provide all of these features, apps have
to supply additional information. Thus, the PMP is usable by
compatible apps, only—Legacy Apps are not supported out of
the box. For this reason, we study how other privacy systems
operate with Legacy Apps and derive strategies which are used
in the PMP Gatekeeper in order to enable the PMP to deal
with any kind of app.

III. Strategies for Legacy Apps
Based on the reflection of the related work, there are two

different approaches of how to implement a new privacy system.
Either the existing privacy system is extended or a monitoring
component is implanted into every app. In the following, we
describe the characteristics of these two approaches and assess
how they can be applied in the PMP.

A. Extension of the Privacy System
By extending the original privacy system, it is possible

to introduce improved policy rules. However, the apps still
request the unaltered Permissions of the original system. So,
a component has to be interposed between the app layer and
the privacy system. The interface of this component towards
the apps has to be similar to the one of the original system.
Internally, the requests have to be replaced by extended ones
which can be processed by the new system.

This procedure is simplified depicted in Figure 1. In an
unaltered system, an app calls the checkPermission method,
whenever protected data has to be accessed ➀. This method
sends out a Permission request to the PackageManager. The
system adds more information about the app, e. g., its process
ID (PID) and its user ID (UID) ➁. As every request has to
be checked by the PackageManager, usually this component
is manipulated, in order to alter the original privacy system.
Instead of checking the request with the old mechanism, a
new component is called ➂. After the check, the PackageM-
anager sends back either a PERMISSION_GRANTED or a
PERMISSION_DENIED flag ➃. If the Permission is denied, a
SecurityException is raised in the app ➄.

Original App

Classes

Data

Manifest

Signature

Converted App

(Unsigned)

Classes*

Data*

Manifest*

Converted

App (Signed)

Classes*

Data*

Manifest*

Signature*

apktool apktool
keytool &

jarsigner

Bytecode

Rewriter

Manifest

Rewriter

classes.dex

Android

Manifest.xml

Other

Data

1 2 3 4

Figure 2. Execution Steps of an App Rewriter

That is the key problem of this implementation strategy.
Keep in mind, all Permissions have to be granted at installation
time and a subsequent revoke is not possible. So, apps usually
do not handle the SecurityException. The big advantage of this
strategy is, that every app can be regulated out of the box.
Therefore, the PMP Gatekeeper makes use of this strategy to
deal with apps which are not compatible with the PMP, i. e.,
Legacy Apps (see Section IV-C).

B. Inline Reference Monitoring
Since every Android app runs in its own sandbox, it is not

possible to implement a privacy system as an app monitoring
other apps. Therefore, every app has to collaborate with the
privacy system (in terms of sending Permission requests to
such a monitoring app). As no app innately supports such a
monitoring component, any existing app has to be manipulate.

Figure 2 depicts a toolchain with which apps can be rewritten.
As an app’s source code is not available, it has to work directly
on the apk (the Android Application Package). Initially, this
package has to be extracted and decompiled to restore the
original data structure. apktool can be used for extracting
the apk file ➀. After the extraction, any XML parser can be
used to manipulate the AndroidManifest.xml, e. g., by adding or
removing Permission requests. There are bytecode manipulation
tools for Dalvik bytecode such as ASMDEX ➁. After the
manipulation, the app’s components have to be repacked to
an apk file, again using apktool ➂. Finally, the app has to be
signed using keytool and jarsigner ➃.

This last step leads to two problems: As an app is identified
inter alia by its signature, the rewritten app is recognized
as a new app. As a consequence, automatic updates are no
longer possible, since the app cannot be identified correctly.
Moreover, as some rights are bound to the app’s signature,
such a rewriting process interferes in the rights management of
the system. On top of this, the bytecode manipulation is based
on assumptions and thus faults can occur (e. g., Permission
requests are missed or the bytecode is totally destroyed). So, the
user might get lulled into a false sense of security. Additionally,
manipulating an app constitutes a copyright violation. Thus it
is not a recommendable strategy for the end-user. However, we
can support app developers with a toolchain in order to support
them to convert their own Legacy Apps to PMP-Compatible
Apps.

IV. The PMP Gatekeeper
The Privacy Management Platform (PMP) is a context-aware

and crash-proof privacy management system in which a user
can make fine-grained adjustments to an app’s Permissions at

run-time and obfuscate or even randomize his or her private
data on demand. The user is always informed about what
impact his or her settings have upon the affected app’s scope
of service. In order to realize these features, the PMP bases
on an enhanced app model (see [14]). In this model an app
consists of several Service Features each encapsulating a certain
service. Permissions (mapped to Resources) are not directly
assigned to an app, but to its Service Features. Therefore, the
user can deny some Permissions and still use the app, since
each Service Feature can be enabled or disabled individually.
For further information about the components of the PMP and
its functionality, please refer to the literature [5].

In order to facilitate all of these features, an app has to
provide additional meta data, e. g., for the specification of its
Service Features. The key aspects of PMP-Compatible Apps
are discussed in the following. Thereafter, a description is
given of how the PMP Gatekeeper can differentiate between
PMP-Compatible Apps, Legacy Apps, and System Apps and
how it revokes Permission for Legacy Apps.

A. PMP-Compatible Apps
PMP-Compatible Apps have three characteristics:

(𝑎) PMP-Compatible Apps have to register at the PMP.
Therefore, an entry in the global AndroidManifest.xml
is required in order to evoke the PMP’s registration call.

(𝑏) Within the app’s source code, Permission requests are
sent directly to the PMP and the protected data is sent
back by the responsible Resource via IPC.

(𝑐) The Service Features have to be defined and the required
Resources have to be specified. This data is stored in the
Application Information Set (ais.xml).

In the ais.xml the app itself is described by its name and
an optional description for identification reasons. In a second
block the Service Features are defined. For each feature a
unique identifier and a feature name has to be given. Also, a
description of the feature is required, so that the user gets an
idea of how much service quality s/he loses by deactivating
a certain feature. Lastly, the required Resources and Privacy
Settings (i. e., its Permissions) for that Service Feature have to
be specified. The values of the Privacy Settings do not have to
be boolean values, only. Any given data type can be used to
describe restrictions as fine-grained as possible (Requirement
(1)).

Each of these three characteristics can be used to differentiate
between PMP-Compatible Apps and Legacy Apps.

B. Classification of Apps
The PMP Gatekeeper is a totally new PMP component which

realizes an access control mechanism for Legacy Apps, i. e.,
all apps which cannot be controlled by the PMP hitherto. For
these Legacy Apps, the PMP Gatekeeper grants or denies
data access based on fine-granular user-defined policy rules.
However, since System Apps—i. e., any app which is part of
the mobile platform—are by definition also Legacy Apps, too
restrictive policy rules could have serious consequences for
the system’s stability and performance. Accordingly, it is a key

System App or

Legacy App

GK

Identifying

Tool

Privacy Management

for Legacy Apps

Privacy

Policy Resource

Group

PMP

Legacy Apps

PMP-

Compatible

Apps

System Apps

Application
Service

Feature
PMP-Compatible App

O

S

Install, Uninstall, and Start

PMP Gatekeeper

Figure 3. Logical Inclusion of the PMP Gatekeeper into the System

task of the PMP Gatekeeper to classify PMP-Compatible Apps,
Legacy Apps, and also System Apps unfailingly.

Since the apk file does not include any source code,
the identification of PMP-Compatible Apps works via the
characteristics (𝑎) and (𝑐). Initially, the PMP Gatekeeper
requests an app’s package information. This information
contains all data from the manifest and can be accessed with
the PackageManager.getPackageInfo method. If the manifest
contains the PMP registration activity, then the PMP Gatekeeper
removes all Permission tags, since they are not needed for
PMP-Compatible Apps. To double-check that the app is a
PMP-Compatible App, the PMP Gatekeeper searches for the
app’s ais file. The platform’s AssetManager provides methods
to access the app’s assets and the PMP Gatekeeper validates
them. If one of the two checks fails, the app cannot be a
PMP-Compatible App.

In order to decide whether the vetted app is a Legacy
App or a System App, the PMP Gatekeeper has to check
the package information again. System Apps are stored in a
special partition and are tagged with a FLAG_SYSTEM flag.
Essentially, a check for this flag is sufficient to identify System
Apps. However, since the platform vendor sometimes assemble
third party apps into the OS (e. g., the Facebook app), the PMP
Gatekeeper enables users to specify certain System Apps which
should be monitored and regulated as well. The identification
mechanism is resource-efficient and thus, neither the stability
nor the performance of the system is affected (Requirement
(3)). Figure 3 shows how the PMP Gatekeeper is integrated
into the system.

C. Revoke of Permissions
The PMP Gatekeeper is not only able to identify third party

Legacy Apps, but also to intercept access attempts to private
data for which the user has revoked the Permission. Simply
removing the Permission tag from the manifest does not have
the desired outcome since these entries are only analyzed at
installation time. Afterwards, the Permissions of an app are
stored within the OS. It is possible to manipulate the manifest

followed up by uninstalling and installing the modified app,
but this is ineligible when Permission changes at run-time are
intended. The commonly suggested solution to manipulate
the Permissions entries within the OS is also inadvisable,
since these entries are stored in secured parts of the main
memory which are only written to a backup file (packages.xml)
when the system is shut down. However, this file has neither a
coherent data model—i. e., depending on the respective app the
Permissions are stored in different ways—nor does it contains
the Permission information for all apps. Some information are
outsourced to completely different files for no obvious reasons.
The manipulation of the backup file at run-time would have
no effect on the app’s Permissions: On the one hand changes
are noticeable after a reboot, only, and on the other hand all
changes are overwritten when the system shuts down.

Thus, the PMP Gatekeeper requires a different strategy. We
copy the basic idea of a policy which is held in main memory
all the time and is only made persistent at a certain point in
time. However, as the PMP Gatekeeper is the owner of this
policy, it is able to make changes at run-time to both the stored
file as well as the policy held in memory. At run-time the PMP
Gatekeeper determines all Permissions an app specifies in the
app’s manifest and grants the app each of them. Upon request,
the user can individually withdraw (or grant) Permissions at
run-time. When an app sends out a Permissions request the
PMP Gatekeeper simply has to intercept the request at the
PackageManager and refer it to the PMP Gatekeeper’s policy
(see Figure 1). Depending on the user’s settings, the access is
either granted or denied. However, in order to ensure a crash
free execution of the app, no SecurityException is raised, but
fake data is sent to the app. More implementation insights are
given in Section V.

The modus operandi of the PMP Gatekeeper is as follows:
For Legacy Apps, the user gets an overview of all installed
third party apps and s/he can look up all Permissions any of
them requires. Since the shown Permissions are derived from
the manifest directly, this list is complete and not an aggregated
summery as it is used in the original Android installation dialog.
The user can add or revoke any Permission in this list. By
default, all Permissions are granted to guarantee an unrestricted
functionality for any app.

As a consequence, any kind of app can now be monitored and
regulated by the PMP. PMP-Compatible Apps are supported
by the PMP out of the box and Legacy Apps can be dealt with
by the PMP Gatekeeper. Even the Permissions of System Apps
can be restricted (Requirement (2)).

V. Implementation Insights

After the overview of the PMP Gatekeeper’s functionality,
this section provides details on two implementation aspects:
Section V-A describes how the PMP Gatekeeper is hooked into
the PMP while Section V-B explains the required alternations
towards the mobile platform.

App

Application Framework

Context ActivityManager PackageManager

enforce(…)

checkPermission(…) checkUIDPermission(…)

PERMISSION_GRANTED /

PERMISSION_DENIED

Access to a

Protected Resource

Security

Exception

Figure 4. Android Call Chain for Permissions Requests

A. Interfaces Towards the PMP

The Android Application Framework responds to various
system events (e. g., an incoming SMS) by sending so-called
Broadcasts. These system notifications can be intercepted
and processed by any app which defines a corresponding
BroadcastReceiver in its manifest. However not only hardware
events result in a Broadcast, but also software events, e. g.,
actions of the PackageManager such as installing or uninstalling
an app. For this reason, the PMP implements an InstallReceiver
and an UninstallReceiver responding to the installation and
the removal of apps via the PackageManager by passing the
names of the apps to the PMP.

Thus, the interface to the new PMP Gatekeeper component
can be hooked into the InstallReceiver. Whereas hitherto the
PMP assumed that any app is a PMP-Compatible App and
hence tried to install it via the PMP installation dialog, the PMP
Gatekeeper initially identifies the app’s type: When an app is
installed the PackageManager initiates the InstallReceiver via
a PACKAGE_ADDED Broadcast Intent. The InstallReceiver
forwards the information about the app to the PMP Gatekeeper.
The PMP Gatekeeper checks whether the app is a PMP-
Compatible App or a Legacy App (see Section IV-B). For
PMP-Compatible Apps the PMP Gatekeeper invokes the PMP’s
installation and registration mechanisms. Legacy Apps are
added to the PMP Gatekeeper’s Legacy Apps list. For each
list entry, the PMP Gatekeeper determines all Permissions and
adds them to its whitelist as initially an app’s access rights are
not restricted. This can be revised by the user, subsequently.

The uninstall process triggers a PACKAGE_REMOVED
Broadcast Intent after removing the app. Therefore, the PMP
Gatekeeper has the app’s name, but can no longer analyze the
app and identify whether the app is a PMP-Compatible App or
a Legacy App since the apk is gone already. However, this is
not necessary anyway. The PMP Gatekeeper only has to check
whether the app still has an entry in the Legacy Apps list and
remove this entry to keep the list lean.

It is not necessary to identify System Apps in this working
step as System Apps cannot be uninstalled. Even if the user
removes a System App manually (e. g., by acquiring root rights

Listing 1. Code Enhancements towards the checkPermission Method
ch e ckPe rm i s s i o n (S t r i n g pe rm i s s i on , i n t pid ,

i n t u id) {
i f (p e r m i s s i o n == n u l l) {

re turn PackageManager . PERMISSION_DENIED ;
}
i f (checkComponen tPe rmiss ion (p e rm i s s i on , pid ,

uid , −1) == PackageManager .
PERMISSION_GRANTED) {

S t r i n g [] packageNames = PackageManager .
g e tPackage sFo rU id (u i d) ;

re turn checkGa t ekeepe r (packageNames ,
p e r m i s s i o n) ;

} e l s e {
re turn PackageManager . PERMISSION_DENIED ;

}
}

and then deleting the apk), this would not pose a problem for
the PMP Gatekeeper, since additional entries increases the list’s
size only marginally. Furthermore, as System Apps cannot be
installed by the user (they are directly shipped and installed
with the platform) only a negligible number of them appears
in the PMP Gatekeeper’s list anyhow.

B. Extension of the Mobile Platform
As described in Section IV-C the only practicable approach

to revoke a Permission is to enhance the Android Application
Framework as any data request is processed within this
framework. Figure 4 depicts a simplified sequence of the
method calls which are required for a Permission check.
Basically each of the three methods (enforce, checkPermission,
and checkUIDPermission) is qualified to be a host for the PMP
Gatekeeper. Our implementation strategy reads as follows: As
early as possible, as late as necessary.

The sooner the PMP Gatekeeper sorts out apps, the less
apps have to be checked in the subsequent steps which saves
processing time. However, early steps in the process chain (e. g.
enforce) have very little information about the requesting app.
These information arise in the ActivityManager—namely the
UID required to identify an app. Therefore, the PMP Gatekeeper
is hooked into the checkPermission method. Listing 1 shows
how this is done: First, the PMP Gatekeeper checks whether
the unaltered privacy system would grant the Permission. Only
if that is the case, the PMP Gatekeeper gets active. Instead of
passing the result of the PackageManager to the framework,
it starts its own validation: After the identification of the app
type, PMP-Compatible Apps are forwarded to the PMP without
further checks. Likewise, System Apps are passed through to the
OS without further ado. For Legacy Apps the PMP Gatekeeper
checks in the whitelist, whether the Permission is granted.

VI. Assessment
So, the PMP Gatekeeper fulfills the requirements towards a

holistic privacy system: (1) The extended PMP enables its users
to grant or deny any given subset of the Permissions an app
requests at any time. Therewith, a fine-grained configuration of

the privacy system is possible. (2) The extended PMP monitors
any kind of app. The PMP Gatekeeper ensures that each
type of app is dealt with by the appropriate PMP component.
Even System Apps can be monitored. (3) The classification
mechanism is unambiguously and resource-efficient. So, neither
the system’s stability nor its performance is sustainably affected
by the PMP Gatekeeper.

With the PMP Gatekeeper, the user has total control over
any private data. S/he is free to decide which information
should be process by a certain app. Since these Permissions
can be fine-grained adjusted arbitrarily at run-time, the user
sees immediately what effect a specific modification has on
the scope of service of the affected app. So s/he can find the
optimal balance between security and functionality.

VII. Conclusion
Today, there is an app for virtually any use case. As a

consequence, a lot of sensitive data is stored on smart phones.
Startled by an increasing number of information thefts and
data misuse incidents, smart phone users are becoming more
and more aware of the need for comprehensive protection
measures for their sensitive data in order to maintain their
privacy. Although the mobile platform vendors are aware of
their responsibility to protect their users’ data, their solution
approaches seem to be halfhearted. This is hardly surprising
since the mobile platform vendors cannot spoil things with
the app developers whose business model is often focused
on collection as much as possible data in order to use it for
personalized ads. Therefore, the better approaches—in terms
of more secure approaches—originate from third parties. Their
common problem is, that every app is aligned with the privacy
system of the mobile platform and it does not collaborate with
any other approach out of the box.

For this reason, we discuss different approaches of how to
deal with Legacy Apps—namely manipulating the original
privacy system or manipulating the apps. Since none of
the existing approaches seems to provide a comprehensive
privacy mechanism for any kind of app, we introduce the
PMP Gatekeeper as an extension for the PMP. With this new
component, the PMP is able to provide its context-aware, fine-
grained, and crash-proof privacy management functionality
not only for PMP-Compatible Apps but also for Legacy Apps
without impairing the OS. We give implementation insights of
the main components of the PMP Gatekeeper and show that
the PMP Gatekeeper meets all requirements towards a holistic
privacy system. Moreover, we also indicate how the findings
of the related work study can be used to create a toolchain
to convert Legacy Apps into PMP-Compatible Apps in order
to gain even more control over their data usage. Although the
presented prototype is implemented for Android, the underlying
concept can be applied to other application platforms such as
the Facebook Platform or Chrome OS.

Acknowledgements
The PMP results from a close collaboration with Google

Munich office. Hence, we would like to thank Google for

their support. We also thank our student Diana Salsa for her
assistance with the implementation of the PMP Gatekeeper.

References
[1] C. Stach and A. Brodt, “—vHike—A Dynamic Ride-

sharing Service for Smartphones,” in MDM’11, 2011.

[2] C. Stach, “Saving time, money and the environment
- vHike a dynamic ride-sharing service for mobile
devices,” in PERCOM Workshops’11, 2011.

[3] C. Stach and L. F. Schlindwein, “Candy Castle - A
Prototype for Pervasive Health Games,” in PERCOM
Workshops’12, 2012.

[4] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin,
and D. Wagner, “Android Permissions: User Attention,
Comprehension, and Behavior,” in SOUPS’12, 2012.

[5] C. Stach and B. Mitschang, “Design and Implementation
of the Privacy Management Platform,” in MDM’14,
2014.

[6] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-
Rotaru, and I. Molloy, “Android Permissions: A Per-
spective Combining Risks and Benefits,” in SACMAT’12,
2012.

[7] P. P. Chan, L. C. Hui, and S. M. Yiu, “DroidChecker:
Analyzing Android Applications for Capability Leak,”
in WISEC’12, 2012.

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,
“TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” ACM
Trans. Comput. Syst., vol. 32, no. 2, pp. 1–29, 2014.

[9] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending
Android Permission Model and Enforcement with User-
defined Runtime Constraints,” in ASIACCS’10, 2010.

[10] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan,
“MockDroid: Trading Privacy for Application Function-
ality on Smartphones,” in HotMobile’11, 2011.

[11] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, and T. Millstein, “Dr. Android
and Mr. Hide: Fine-grained Permissions in Android
Applications,” in SPSM’12, 2012.

[12] W. Enck, M. Ongtang, and P. McDaniel, “Understanding
Android Security,” IEEE Security and Privacy, vol. 7,
no. 1, pp. 50–57, 2009.

[13] C. Stach, “How to Assure Privacy on Android Phones
and Devices?” In MDM’13, 2013.

[14] C. Stach and B. Mitschang, “Privacy Management
for Mobile Platforms—A Review of Concepts and
Approaches,” in MDM’13, 2013.

	I Introduction
	II Related Work
	III Strategies for Legacy Apps
	III-A Extension of the Privacy System
	III-B Inline Reference Monitoring

	IV The PMP Gatekeeper
	IV-A PMP-Compatible Apps
	IV-B Classification of Apps
	IV-C Revoke of Permissions

	V Implementation Insights
	V-A Interfaces Towards the PMP
	V-B Extension of the Mobile Platform

	VI Assessment
	VII Conclusion

