
© 2014 IEEE. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_14_pmp.pdf
by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in In: Zaslavsky, A. et al. (Eds.) Proceedings of the 2014
IEEE 15th International Conference on Mobile Data Management. IEEE, Brisbane, QLD, Australia, pp. 69–72, 2014, doi: 10.1109/MDM.2014.14.

Design and Implementation of the Privacy
Management Platform

Christoph Stach† and Bernhard Mitschang
University of Stuttgart

Institute for Parallel and Distributed Systems
Universitätsstraße 38

70569 Stuttgart, Germany
Email: Christoph.Stach@ipvs.uni-stuttgart.de, Bernhard.Mitschang@ipvs.uni-stuttgart.de

Abstract—Nowadays, mobile platform vendors have to concern
themselves increasingly about how to protect their users’ privacy.
As Google is less restrictive than their competitors regarding
their terms of use for app developers, it is hardly surprising that
malware spreads even in Google Play. To make matters worse,
in Android every user is responsible for his or her private data
and s/he is frequently overwhelmed with this burden because
of the fragile Android permission mechanism. Thus, the calls
for a customizable, fine-grained, context-based, crash-proof, and
intuitive privacy management system are growing louder. To
cope with these requests, we introduce the Privacy Management
Platform (PMP) and we discuss three alternative implementation
strategies for such a system.

Index Terms—Android; policy model; implementation strate-
gies.

I. Introduction

Mark Weiser’s vision of the next generation of computers [1]
came true with the introduction of the first smartphones in
the late nineties. Whereas the user has hitherto been happy to
be “always-on-call”—i. e. s/he could be contacted by phone
anywhere at anytime—smartphones caused a demand to be
“always-on-line” in terms of having a constant connection to
other people via the Internet. Additionally, these devices possess
enhanced sensor techniques (e. g., GPS). With a smart device,
a user manages his or her contacts in an address book, arranges
appointments via a synchronized calendar, writes (and stores)
private as well as business mails, takes pictures, and so forth. To
facilitate these activities, users avail themselves of the extensive
offerings in App Stores. However, the ability of unlimited data
transmission, the access to situation information as well as
private data, and the possibility to use apps of unknown third-
parties is a severely dangerous combination. There is a lot of
evidence for inadequate usage of private user data throughout
various mobile platforms [2]. Therefore, each major platform
vendor pursues a specific strategy in order to preserve privacy:
Apple and other vendors give their users absolutely no control
over their data, but determine which apps are benign and thus
can be installed on an iOS device. Google’s Android OS chose
an entirely different strategy and put the end-user in total control
over his or her private data—and transferred all responsibility
over this data to the user.

† This work was supported by a Google Research Award.

However, also Google’s privacy mechanism does not meet
with the users’ needs, since it lacks of a customizable, fine-
grained, context-based, crash-proof, and intuitive privacy policy
model. Therefore, we introduced the Privacy Management
Platform (PMP) in our earlier work [3]. This paper builds
upon our prior approach, but clearly extends it w. r. t. details
on design decisions and implementation alternatives.

The remainder of the paper is structured as follows: In
Section II, we consider systems enhancing the Android privacy
system. Then, we introduce our privacy policy model in
Section III: We give a brief overview of some design issues
and highlight its main components. Then, we discuss three
alternative implementation strategies for such a privacy policy
model for Android OS in Section IV. Finally, Section V comes
up with a short summary of this paper.

II. Related Work
A lot of research work is done in the area of privacy

threats on Android devices. Basically these approaches can be
divided into three categories: App-based solutions (e. g., Privacy
Protector), approaches integrated into the OS (e. g., CRêPE),
and systems using an app converter (e. g., AppGuard). Privacy
Protector considers location data and network access as privacy-
critical factors, only. The user can control a specific app’s usage
of these two functions. Once Privacy Protector detects that this
very app is running, GPS or network access is disabled system-
wide—so any app is affected by this. CRêPE [4] adds context
references to its privacy policy: A user can describe situations
in which a certain policy rule should be applied, respectively
when they are invalid. Each policy rule can be defined in a very
fine-grained manner and they can be changed even at run-time.
However, CRêPE does neither support faked data nor does
it provide the user with any feedback on his or her settings.
Moreover, an app may crash if a required permission has
been withdrawn. AppGuard [5] introduces a bytecode rewriting
system that integrates a monitor component as well as a set of
built-in privacy policies into an app. Hence, it puts the user
back in charge of controlling the permissions of an app. S/he
can decide both at installation time and at run-time what data an
app is allowed to access. However, AppGuard’s modus operandi
is legally questionable (see Section IV-C). Unfortunately, non
of the currently existing privacy management systems complies

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_14_pmp.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_14_pmp.pdf
https://doi.org/10.1109/MDM.2014.14
mailto:Christoph.Stach@ipvs.uni-stuttgart.de
mailto:Bernhard.Mitschang@ipvs.uni-stuttgart.de

with all the users’ requests. For this reason, we introduced in our
previous work the Privacy Management Platform (PMP) [3]—
a context-aware and crash-proof privacy management system
where a user can define fine-grained permission rules at run-
time and obfuscate his or her private data on demand. The
user is always informed about what his or her settings mean
for the affected app’s scope of service.

III. The Privacy Policy Model
In this paper, we focus on refining the PMP’s privacy policy

model, its realization (Section III-B), and sound implementation
strategies (Section IV).

A. The Privacy Policy Model of the PMP
Figure 1 shows the relationships among the key components

of the privacy policy model in an UML-like notation:
Service Feature. A PMP-compatible app encapsulates its

provided services in so-called Service Features. Permissions
are not directly assigned to an app, but to its Service Features.
The user can enable or disable any of these features—with
the corresponding impact on the scope of service—and thus
expand or respectively limit the permissions this app requires.

Resource. Resources represent interfaces to protected data.
Depending on the granted permissions, a Resource provides
an app either with unaltered data, aggregated data, randomized
data, or no data at all. Resources can be added, updated, or
removed at any time. The Resources are provided by a protected
on-line repository—hereby, we can ensure that all Resources are
free of any malware. This approach is pretty similar to Apple’s
modus operandi in their App Store. However, as the number
of new Resources that have to be checked is vanishingly low
compared to the number of new apps, also the overhead caused
by these checks keeps within reasonable limits. Resources with
related content are encapsulated in Resource Groups.

Privacy Setting. The Privacy Settings are configured by the
user. For that, the Resources specify a valid range of values
for each Privacy Setting. Accordingly, a Resource developer
defines with the Privacy Settings how fine-grained a user can
assign permissions to a Service Feature. Thus, e. g., for the
Location-Resource, a user is able to prohibit the use of location
data entirely, restrict it’s accuracy up to 𝑥 meters, randomize
his or her location data, provide predefined mock data, or grant
the unrestricted use of location data.

Privacy Rule. A Privacy Rule combines these three com-
ponents: Such a rule consists of an actor (Service Feature)
requesting access to private data (Resource) and the permissions
that a user has granted for that actor (Privacy Setting). By
additional contextual constraints—the context is also provided
by the appropriate Resource—a rule can be further detailed
e. g., if a rule should be applied in a certain place or at a certain
time, only. In accordance to the closed world assumption, every
request is denied when there is no rule for that particular action.
The set of all Privacy Rules forms the so-called Privacy Policy.

An arbitrary set of Privacy Rules can be exported to a
file, the so-called Preset. A Preset can be shared easily with
any PMP user. Subsequently, they can be added to a Privacy

Service

Feature
Resource

Privacy

Rule

Privacy

Policy

0..*1..*

1..*

1

1..*

1

1..*1..*

1

1

1..*
1..*

1

App
Resource

Group

1
Context

Data

User

Settings

Service Range

provides

consists of

pools

Privacy

Setting

Potential Privacy Threats Trusted Components

Presets
preconfigures

Figure 1. PMP’s Privacy Policy Model (cf. [3])

Policy, replace an existing policy or create a new policy.
These Presets significantly facilitate the configuration of the
PMP as unexperienced users can fall back on initial settings
recommended by trustworthy third-parties.

B. Realization Concept of the Privacy Policy Model

For the realization of the privacy policy model its compo-
nents are partitioned into three separated software units: The
apps including their Service Features, all Resources pooled in
Resource Groups, and finally the PMP managing the user’s
Privacy Settings within the Privacy Policy.

When a user installs new apps on the system, a check is
performed whether the PMP is up and running. Then, the app
registers to the PMP and the user can specify an initial set
of Privacy Rules; the user is able to reconfigure each Privacy
Setting at any time. If additional Resources are required, the
PMP automatically downloads and mounts them. Whenever
a Service Feature requires access to protected data, the PMP
checks whether there is already a Privacy Rule for this action.
If that is not the case, the user is informed by the PMP and
s/he can add rules to the policy. Elsewise, the PMP grants or
denies the access to the corresponding Resource depending on
the Privacy Policy. The Resource has access to protected data.
It transfers this data (possibly altered according to the Privacy
Settings) to the enquiring app.

A privacy management system is reasonable only if it is
comprehensible and ergonomically designed. Therefore, the
PMP is topped off with an intuitive management interface
and an import function for preconfigured rules (referred to as
Presets). Furthermore, the PMP has two different user modes:
In the simple mode, laymen are not overwhelmed, whereas
experts still can use the PMP’s full range of services in the
expert mode. For further information on the PMP please refer
to our previous work [3].

As the privacy policy model’s components are completely
abstracted from its underlying system, it can easily be applied
to any OS. For the PMP, we focused on Android, however. The
most reasonable implementation strategies are discussed in the
following section.

OS

A

p

p

s

PMP

Appz
Appy

System

Appx
PMP

Res1 Resn
…

(a) On Top of the OS

A

p

p

s

P

M

P

O

SOS

PMP

Appz

Appy

System

Appx

ResnRes1
. . .

PMP

(b) Integrated into the OS

OS

A

p

p

s

PMP

Res1 Resn
…

System

Appx

PMP

Appy

Appy

App

Converter

(c) Usage of an App Converter

Figure 2. Implementation Strategies for a Privacy Management System

IV. Implementation Strategies
After presenting how the privacy policy model is realized

in an OS-independent manner, it is necessary to clarify how
these software fragments can be embedded into a specific
OS, here the Android OS. Basically, there are three different
approaches, as shown in Figure 2: The implementation on
top of the OS (Section IV-A), the integration into the OS
(Section IV-B), or the usage of an app converter in order
to manipulate the bytecode of an app such that critical API
calls are diverted to secured ones (Section IV-C). In Figure 2
trustworthy components are colored green whereas potentially
dangerous apps are portrayed in red.

A. Implementation on Top of the OS
As a proof of concept, we implemented all components

of the PMP as plain Android apps initially [6]. So, neither
root privileges nor modifications to the Android platform are
necessary—any Android user is able to give the PMP a trial
by installing it from the project’s website (http://goo.gl/1pwt4).
The PMP runs as an Android service in the background and
listens whether any new PMP Resource or any app compatible
to the PMP is installed. Legacy apps—i. e. apps using the
Android permission mechanism—are not affected by the PMP
and still run without any problems.

However, this is the central issue of this implementation
strategy: As the PMP is a plain Android app without any further
privileges, it can only control apps which cooperate with the
PMP. Whenever an app requests data directly from the OS (see
Figure 2a), the PMP cannot prevent this access. To make matters
worse, even apps seemingly cooperating with the PMP can
access the private data via this backdoor! Thus, this approach
is applicable as a first prototypical implementation, only. For
a real privacy system, a different strategy has to be chosen.
Looking at the various approaches discussed in Section II,
apparently only two different strategies are appropriate for a
privacy management system for Android: Either by enhancing
the Android permission mechanism or by using an app converter
to intercept any privacy-critical data access.

B. Integration into the OS
If the Android permission mechanism is replaced by an

alternative privacy management system, it has to be ensured that
every app does no longer access data via the old mechanism.
Therefore, the new privacy management system is used as
a bouncer, regulating the communication between the apps

and the OS (see Figure 2b). This works only if an app
collaborates with the new system. Hereto, adaptions to the
app are necessary. This can either be done automatically, as
discussed in Section IV-C, or by the app developers themselves.
As it is hardly likely that all developers do so, it has to be
clarified, how to deal with legacy apps.

A very basic approach is to manipulate the app’s Manifest at
installation time and remove any permission entry from it. Thus,
it is ensured that an app no longer can use the old permission
mechanism. In this way, many crashes will occur since required
permissions are no longer available. Moreover, there are also
laws prohibiting such an approach (see Section IV-C).

So, it is advisable to manipulate the authorization process
instead: The enforce-method checks for any data request
whether an app has all required permissions. Then, the data
access is either granted or denied. A simplistic approach is
to manipulate this method so that it denies any request. Thus,
an app has to support the new privacy management system
in order to get access to private data—please note that this
affects system apps (i. e., apps shipped with the OS), also.

Therefore, we differentiate between system apps and third-
party software. To achieve this differentiation, it is sufficient
to consider the app’s install location: System apps are located
in the directory /system/app, while third-party software is
installed in /data/app. So, the enforce-method has only to
query an app’s package information, including the file path of
the apk-file. Depending on this path, enforce passes requests
from system apps to the ActivityManagerService as usual.
Requests from third-party software can be rejected per se.
So, all system apps still work unrestrained, while third-party
apps can access their data safeguarded via the new privacy
management system, only.

However, this approach has also a disadvantage concerning
the system performance. The additional checking of the install
location creates a performance overhead, which seems at a first
glance to be negligible. However, the Android system calls the
enforce-method in the background with very high frequency.
Nevertheless, early evaluations show that this performance
overhead keeps within reasonable limits.

C. App Converter
So, the major problem for a new privacy management

system is how to deal with legacy apps. Depending on the
implementation strategy, this means that those apps either
continue to use the old (insufficient) permission mechanism

https://code.google.com/p/pmp-android/

or are no longer executable. From a user perspective, both
alternatives are unacceptable. For this very reason some related
work approaches apply a third implementation strategy: the
so-called app converter (see Figure 2c).

An app converter proceeds as follows: First, it scans an
app’s bytecode for privacy-relevant system calls that require
special permissions. Then it replaces the corresponding code
fragments with equivalent requests towards the new privacy
management system. The converter has to adapt the Manifest
according to the new privacy management system, also. Thus
no longer needed entries can be removed, additional application
metadata can be added, or new permissions, activities, services,
or receivers can be registered. Subsequently, the app has to be
repacked and re-signed.

This strategy has many benefits: It provides an inviolable
privacy protection, since it guarantees that any data access
has to be made through the new privacy management system.
Moreover, no modifications of the mobile platform itself are
necessary. Finally, a privacy management system following
this implementation strategy is fully compatible to any legacy
app. Thereby, it is not only ensured that all legacy apps are
still executable without any crashes, but all apps use the new
privacy management system right after conversion.

However, all bytecode rewriting systems are immature [7]:
Any app has to be converted before its first-time usage and after
every update or else there is no additional protection. Besides,
due to the bytecode manipulations and the associated re-signing
process, an automatic update process is virtually impossible.
So, severe security problems in an app cannot be fixed as
updates do not reach the user. Also, bytecode manipulation is
partly based on heuristics. However, an incorrect assumption
could have serious security consequences.

Furthermore, this implementation strategy extends the range
of permissions of an app inevitably due to its signature
alternations. Android apps with an equal signature are allowed
to share data and even code fragments among each other. Since
after converting all apps are signed by the converter with the
identical signature, this leads to security risks that are hardly
comprehensible to the user.

Besides the massive security risks inevitably associated to
this implementation strategy, there are also copyright laws
that exclude such an approach: For example in Germany, by
manipulating the bytecode of an app, the converter violates
the copyrights of the respective developer. Even though a
limited manipulation is allowed for private use, such serious
interferences in the program flow concern also other laws.

Whereas from a user perspective the usage of an app
converter is the allrounder among the implementation strategies,
arising security threats, applicable law, and Google’s terms and
conditions of use prohibit us from applying it to realize our
privacy policy model.

Hence, the optimal implementation strategy for the privacy
policy model is the “integration into the OS strategy” with some
crucial adaptations (e. g., an enhanced selection mechanism
for trusted legacy apps or optimizations towards the run-
time performance). Early evaluations show that such an

implementation of the PMP produces an acceptable overhead
concerning CPU and memory usage while still satisfy the users’
expectations.

V. Conclusion
Mobile platform vendors have to deal with attacks against

their customers’ privacy. As Google chose to give their users the
highest degree of autonomy, they delegated the responsibility for
the protection of private data to the users—an almost unsolvable
task with the current Android permission mechanism—a fact
which even Google is aware of by now. Yet, the so-called App
Ops feature introduced in Android 4.3, where the user has
the opportunity to selectively grant and withdraw a specific
permission, has been removed in Android 4.4.2 as it is
incomprehensible for the user and a permission withdrawal
results in a crash quite likely.

Since no currently existing privacy management system
fulfills all user requirements, i. e. customizability, context-aware
privacy rules, crash safety, or fine-grained operability, we
introduce our approach to a Privacy Management Platform
(PMP) as described in [3]. The complementing design and
implementation of the PMP is provided by this paper. Therefore,
we characterize the design as well as realization decisions and
assess various implementation alternatives. The validity of our
approach is confirmed by early evaluation results.

References
[1] M. Weiser, “How computers will be used differently in

the next twenty years,” in IEEE Symposium on Security
and Privacy, 1999.

[2] W. R. O’connor, Mobile Device Security: Threats and
Controls. Nova Science Publishers, Inc., 2013.

[3] C. Stach and B. Mitschang, “Privacy Management for Mo-
bile Platforms - A Review of Concepts and Approaches,”
in MDM’13, 2013.

[4] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich,
“CRêPE: A System for Enforcing Fine-Grained Context-
Related Policies on Android,” IEEE Transactions on In-
formation Forensics and Security, vol. 7, no. 5, pp. 1426–
1438, 2012.

[5] M. Backes, S. Gerling, C. Hammer, M. Maffei, and
P. von Styp-Rekowsky, “AppGuard - Enforcing User
Requirements on Android Apps,” in TACAS’13, 2013.

[6] C. Stach, “How to Assure Privacy on Android Phones
and Devices?” In MDM’13, 2013.

[7] H. Hao, V. Singh, and W. Du, “On the Effectiveness of
API-Level Access Control Using Bytecode Rewriting in
Android,” in ASIA CCS’13, 2013.

	I Introduction
	II Related Work
	III The Privacy Policy Model
	III-A The Privacy Policy Model of the PMP
	III-B Realization Concept of the Privacy Policy Model

	IV Implementation Strategies
	IV-A Implementation on Top of the OS
	IV-B Integration into the OS
	IV-C App Converter

	V Conclusion

