
© 2013 IEEE. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_
pmpdemo.pdf by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in In: Bettini, C. et al. (Eds.) Proceedings
of the 2013 IEEE 14th International Conference on Mobile Data Management. IEEE, Milan, Italy, pp. 350–352, 2013, doi: 10.1109/MDM.2013.54.

How to Assure Privacy on Android Phones and Devices?

Christoph Stach†
University of Stuttgart

Institute for Parallel and Distributed Systems
Universitätsstraße 38

70569 Stuttgart, Germany
Email: Christoph.Stach@ipvs.uni-stuttgart.de

Abstract—There is an increasing popularity of mobile devices—
especially Android devices—particularly because of the huge
amount of available third-party applications. Albeit, the num-
ber of diagnosed hacker attacks against mobile user increased
in unison, as these devices became the prime target of the latest
malware, thanks to inexperienced users and a negligent way of
dealing with private data. To make matters worse, the Android
permission system is much too coarse-grained and too hard to
grasp for an average user. However, even if a user is able to
comprehend the meaning and impact of a certain permission,
in the end, s/he must grant all requested permission anyhow,
if s/he wants to install the application.

Therefore, we introduce PMP a privacy management plat-
form for Android, which enables a user to grant an application
fine-grained access rights to critical data. Furthermore, those
rights can depend on some contextual constraints (e.g. Internet
usage is restricted to certain locations) and the policy rules can
be modified at run-time. Depending upon the granted rights an
application provides a different scope of service. Moreover, the
user is—due to a catchy GUI—always informed what impact
the granting or respectively the revocation of a permission has
on the application’s service quality.

Index Terms—privacy management; Android; demonstrator.

1. Introduction

When looking at the mobile handset market, this manu-
facturing branch has a steady compound annual growth rate
of almost 25% since 2009. Approximately every second sold
mobile handset is a smartphone. Thereby, the smartphone
market is dominated by the duopoly consisting of Google
and Apple [1]. These smart devices are able to collect a
lot of context information (e.g. location data) and are also
used to store a lot of private data (e.g. contacts). A third key
feature of these devices is the capability to obtain third-party
applications easily. Largely, these applications represent a
novel breed of applications combining all sorts of information
sources in order to augment the user experience.

However, with great power comes great responsibility,
thus even the seemingly most innocent application might
† This work was supported in part by a Google Research Award.

be a critical privacy risk, if the user is not able to identify
precisely which data is actually accessed by it. A small
negligence might result in a great harm, rapidly (e.g. [2]).
Occasionally, it is even the smartphone OS vendor itself who
accesses some private data of a user for obscure reasons [3].

Unfortunately, it seems that none of the currently existing
privacy protection systems is sufficient enough to provide
comprehensive security or fulfill the community request for
more flexibility and freedom [4]. Thus, we came to realize
that there is a tremendous need to manage the permissions
of an application in a more fine-grained manner. Here it
is all-important that the privacy settings can be modified
at run-time without causing an application to crash. On
top, it should be possible to provide an application with
blurred data instead of the privacy compromising original
one. The user has to be informed in more detail what is
happening to his or her sensitive data, so that s/he can
reasonably decide which application should be granted access
to which data. Furthermore, it is a necessity to add contextual
constraints to the privacy policies. E.g. imagine an application
monitoring crucial health data. There is no need for such an
application to reveal this information to anyone—unless in
case of an emergency. Starting from this idea we built the
Privacy Management Platform (PMP) [5] as a result of a
close collaboration with Google Munich office. To visualize
the necessity of such a platform, we come up with a sample
application which serves as an open playground for the PMP.

The remainder of this paper is structured as follows.
Section 2 gives an overview about the state of the art and
the related work on privacy protection for mobile devices.
Section 3 introduces an approach towards a better privacy
protection mechanism before we illustrate in Section 4 the
proposed demonstration scenario.

2. State of the Art

As smartphone users get more and more aware of privacy
issues, this might become a major selling point in the near
future. A mobile OS vendor has to map out a strategy how
to assure the greatest possible protection for any private data.
Basically, one can differentiate two strategy types [6]:

Walled-Garden Model. In the Walled-Garden Model,
the OS vendor seals its devices off from the rest of the

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_pmpdemo.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_pmpdemo.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_pmpdemo.pdf
https://doi.org/10.1109/MDM.2013.54


Application Service 
Feature Resource 

Privacy 
Setting 

Privacy 
Policy 

provided 

1 1..* 

current 
context 

requested 
data 

requested 
feature 

user adjustm
ent 

develops 

Application 
Developer 

Resource 
Developer 

User 

configures 

provides 

Figure 1. PMP’s Privacy Policy

world. The vendor controls which applications are available
via its own market and doesn’t allow the user to install an
application from anywhere else. However, the user is not
only patronized, but s/he has also to rely on the good-natured
handling of all personal data by the OS vendor, as usually
there is virtually no information for what purpose this data
is needed and / or is used.

User Control Model. In contrast to the Walled-Garden
Model, the User Control Model gives the user (almost)
total freedom—along with full responsibility—concerning
application installation and usage. Therefore, it has to be
ensured that the user is provided with sufficient information
about the data usage of an application, so s/he can make
the best-fitting decision. Unfortunately, this information is
typically very sparse and the adjustment possibilities are
severely limited. Most likely the user is facing an all-or-
nothing decision—either s/he installs the application and
accepts all of its requirements or s/he revokes the requested
permissions and therewith abandons the application.

Google applied the User Control Model in the Android
OS and, to make matters even worse, they ask the user
whether the requested private data access of an application
shall be permitted at installation time, only. The cause of
this access and moreover the usage of this potentially private
data remains concealed. Thereby, it is hardly surprising that
especially the community of Android users craves for better
privacy settings as fine-grained as possible.

3. The Privacy Management Platform

After dealing with currently existing privacy preserving
approaches in detail, we came to the reason that none of
them provides the protection and flexibility as it is demanded
by the mobile community (see [5]). Therefore, we introduced
the Privacy Management Platform (PMP), a fine-grained
mechanism to enable a user to monitor potential critical
data access and protect any private data appropriately. The
most prominent features of the PMP are its extensibility—
in terms of adding further objects to be monitored—its
context sensitivity—as the privacy policy can be augmented
by context references—and its user interaction—as a user
always gets adequate feedback information.

However, these three purposes cannot be achieved with
the current permission system of the Android OS. With this
in mind, we introduced our own privacy policy model, as

(a) Installation Dialog (b) Privacy Settings

Figure 2. New Application Installation Process

seen in Figure 1. In our model the privacy policy consists
of three novel components: Service features, resources, and
privacy settings. An application provides various service
features. Each service feature aggregates any given subset of
the application’s functionality regarding a common topic (e.g.
“Show current location on a map”). As all applications might
originate from potentially hazardous developers, their data
access has to be monitored and, if necessary, restricted by
the PMP. For that purpose, we encapsulate various Android
system services (for instance location information provided by
the LocationManager) in so called resources. These resources
have influence on the privacy policy in two different ways:
On the one hand they serve as a source for the application’s
requested data and on the other hand they provide the
application’s context at run-time to determine whether a
context-sensitive policy rule has to be applied. The privacy
settings specify to which extent a user may adjust the usage
of a certain resource. This exceeds the prevailing permission
system by far, as e.g. an appropriate setting for the location
resource might not only be on or off, but also up to a
precision of 100 meters. On top of that, trusted developers
may enhance existing resources or create further resources
and make them public—keep in mind that the PMP resources
are, contrary to the Android permissions, not mandatorily
linked to a given hardware feature, but can also encapsulate
certain features of the system. E.g. there could be a resource
which determines the current location and forwards it to one
(and only one) particular server address.

But how does that work in practice? First at all, with
the PMP the current Android permissions become obsolete
and should therefore no longer be used. The PMP works
as an information broker between an application and the
system. Any request has to be raised to the PMP and the
PMP forwards any resulting data—perhaps altered or even
faked if the privacy setting stipulates it. So, a user does
not have to grant any permission to an application during
the installation process. When an application is started for
the first time it automatically registers itself to the PMP
(see Figure 2a). In this process the PMP informs the user
which service features are provided by this application. Due
to the current policies, some of these features might be
enabled (highlighted in green) and some might be disabled
(highlighted in red). When a user changes this preset, s/he
gets informed which privacy settings need to be altered for
this purpose (see Figure 2b). If a service feature is grayed
out, then an associated resource is currently not installed



(a) Tagging a Location (b) Navigation by Map

(c) Navigation by Compass (d) Map with all Tagged
Locations

Figure 3. The Simple Placefinder for Android Mobiles

on the device. However, any resource available on the PMP
server can be directly fetch and installed within this dialog.
After the registration the application as well as all resources
can be managed via the PMP menu. From there all privacy
settings can be subsequently adjusted—even at run-time! We
refer the reader to [5] for a detailed description of the PMP.

4. Demonstration

To demonstrate PMP’s functionality, we implemented
the Simple Placefinder for Android Mobiles (SPAM). With
SPAM you can store geographical coordinates and tag them
with a label (as shown in Figure 3a). Afterwards, SPAM
guides you back to that location either by showing the path on
a map (see Figure 3b) or simply by indicating the approximate
direction with a compass needle (see Figure 3c). SPAM can
also output the complete history—i.e. SPAM displays all
tagged locations on a map (see Figure 3d).

One imaginable use case for SPAM might be, that you
parked your car in a foreign town, did some sightseeing,
and cannot remember afterwards where that parking place
was—not to mention how to get there. With SPAM, you just
store the coordinates as soon as you leave your car and tag
them with a meaningful label (e.g. “parking lot”). When you
want to go back, you simply select that stored location and
allow SPAM to guide you.

Such a handy little application requires a lot of An-
droid permissions in order to run properly—inter alia AC-
CESS_FINE_LOCATION (to get the user’s accurate posi-
tion), INTERNET (to generate the map with the suggested
route), or SEND_SMS (to share some points of interest
with your clique). However, not each of SPAM’s functions
requires every permission. The user might want to revoke
some permissions even if s/he looses some features. Each
of SPAM’s functions considered separately seems fairly
harmless but with all permissions SPAM is able to create a
user profile and share it with anybody which is presumably
undesirable (e.g. for personalized spam). In this demo session,

Figure 4. PMP’s Eclipse Plugin

any interested visitor can test SPAM and it’s interaction with
the PMP. S/he can adjust any privacy setting and will notice
an immediate effect on SPAM’s scope of service.

In addition, we present the so called PMP Eclipse Plugin.
As the PMP requires some additional information about an
application (e.g. its provided service features), admittedly
there is a certain overhead for a developer. Therefore, the
PMP Eclipse Plugin supports the development of PMP
compatible applications (as well as the development of new
resources) on the one hand by auto-generating templates for
required components and on the other hand by guiding the
developer through auto-completing forms, as seen in Figure 4.
Furthermore, the plugin is able to parse the entered data and
check them for errors.

If you are not able to attend the demo session, feel free
to try the PMP on your own device, since it is available
online bundled with some small sample applications:

http://code.google.com/p/pmp-android

Acknowledgment

The PMP resulted from a close collaboration with Google
Munich office. Hence, we would like to thank Google for
their useful advices and ideas in the planing phase, and their
given support during the implementation phase.

References

[1] VisionMobile, “Developer economics 2013,” Developer
Economics, Tech. Rep., 2013.

[2] B. X. Chen and N. Bilton, Et Tu, Google? Android
Apps Can Also Secretly Copy Photos, The New York
Times, Mar. 2012. [Online]. Available: https://bits.blogs.
nytimes.com/2012/03/01/android-photos/.

[3] K. M. Heussner, Why Are Apple, Google Tracking Your
Phone? ABC News, Apr. 2011. [Online]. Available:
https : / / abcnews.go.com/Technology/google- apple-
track-users-location-information/story?id=13436330.

[4] A. P. Felt et al., “Android Permissions: User Attention,
Comprehension, and Behavior,” in SOUPS ’12, 2012.

[5] C. Stach and B. Mitschang, “Privacy Management
for Mobile Platforms - A Review of Concepts and
Approaches,” in MDM ’13, 2013.

[6] D. Barrera and P. van Oorschot, “Secure Software In-
stallation on Smartphones,” IEEE Security and Privacy,
vol. 9, pp. 42–48, 2011.

http://code.google.com/p/pmp-android
https://bits.blogs.nytimes.com/2012/03/01/android-photos/
https://bits.blogs.nytimes.com/2012/03/01/android-photos/
https://abcnews.go.com/Technology/google-apple-track-users-location-information/story?id=13436330
https://abcnews.go.com/Technology/google-apple-track-users-location-information/story?id=13436330

	1 Introduction
	2 State of the Art
	3 The Privacy Management Platform
	4 Demonstration

