
© 2013 IEEE. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_pmp.
pdf by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in In: Bettini, C. et al. (Eds.) Proceedings of the
2013 IEEE 14th International Conference on Mobile Data Management. IEEE, Milan, Italy, pp. 305–313, 2013, doi: 10.1109/MDM.2013.45.

Privacy Management for Mobile Platforms —
A Review of Concepts and Approaches

Christoph Stach† and Bernhard Mitschang
University of Stuttgart

Institute for Parallel and Distributed Systems
Universitätsstraße 38

70569 Stuttgart, Germany
Email: Christoph.Stach@ipvs.uni-stuttgart.de, Bernhard.Mitschang@ipvs.uni-stuttgart.de

Abstract—The still rising popularity of modern mobile phones
results in an increased demand for manifold applications for
these devices. As Android OS supports the development and
usage of third-party software greatly, there are more and more
developers for this platform. However, many of those applica-
tions handle private data grossly negligent which immediately
leads to serious privacy concerns. To make matters worse, the
current Android permission rules are much too coarse and
incomprehensible from the average user’s perspective. But even
if s/he understands the meaning of the permissions, s/he must
either accept all of them or waive the application.

Therefore we review concepts and approaches towards
effective privacy management for mobile platforms. All this
is discussed based on the prevailing key players in the mobile
market, namely Apple, RIM, Microsoft and Google. As this
work has been initiated by Google we mainly concentrated on
Android-based concepts towards customizable privacy manage-
ment approaches. As a result of our review and taking into
account current initiatives and trends in the market, we come
up with a novel approach, an implementation architecture and
a prototype.

Index Terms—privacy; profound overview; permission model.

1. Introduction

Smartphones are established in our society and constitute
an inherent part in our everyday life. These devices are no
longer used as mobile phones only, but as mobile computers
for your pant’s pocket. IDC [1] forecasts a high demand for
smartphones despite a general decline in sales of mobile
phones worldwide: 686 million units will be sold by the end
of 2012 and the target audience is still growing.

One of the many reasons for this trend is that there are a
lot of third-party applications for these devices. For instance
Apple and Google currently offer all in all over one million
applications in their marketplaces [2]. In order to keep this
developer community alive, the smartphone vendors seek to
publish all kinds of tools and infrastructure to support the
whole development process—starting with SDKs or IDEs
† This work was supported by a Google Research Award.

through to application stores. As these devices are on the
one hand often operated by inexperienced and careless users
and on the other hand carry a large number of sensitive data,
they become more and more interesting for data thieves.

Moreover, sophisticated security mechanisms are missing.
Mechanisms that are urgently needed to provide reasonable
protection of the large amount of private data (e.g. pictures,
contact information or messages) stored on the smartphone.
Examples for data abuse can be found with increasing
frequency across all mobile platforms (e.g. [3] or [4]).

Alarmed by these reports, users get more conscious about
protecting their privacy. Smartphone operating system ven-
dors are aware of these hazards and provide several different
approaches to prevent privacy compromises. However, despite
all of these efforts, none of these approaches informs the
user comprehensively, which rights s/he has granted the
application at installation time or what they are doing with
his or her data. Not to mention the fact that s/he cannot
restrict an application’s permissions—either one grants all
permissions or the application cannot be installed at all.

Consider the example of a mobile application providing
various services to enable and support dynamic ride-sharing
such as vHike [5] [6]. Both drivers and hitchhikers receive
benefit throughout the entire process from vHike: Starting in
finding offered or requested rides, providing information
about potential passengers, getting in touch with fellow
travellers to clarify some details before the ride, guiding
the driver to the negotiated pick up locations and last but
not least guaranteeing that all parties involved reach their
destination safely. Additionally, third parties can track the ride
in real-time via Internet to ensure a trouble-free hitch-hike.

Such an application will require inter alia the following
permissions: manage private data (e.g. for identifying a
user to the community), access current location (e.g. for
navigation), use phone functions (e.g. for making contact
before the ride), access the Internet (e.g. for searching
distant ride providers), use Bluetooth features (e.g. for
searching nearby ride providers), and so forth. Albeit, vHike
(depicted in Figure 1a) provides some useful features, such
an application could cause a great harm due to the large
amount of personal data it has access to. That fact would
probably scare off many users giving such an application a

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_pmp.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_pmp.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/mdm_13_pmp.pdf
https://doi.org/10.1109/MDM.2013.45


(a) vHike Main Menu (b) PMP Management (c) Service Features Menu (d) Privacy Settings Menu

Figure 1. Captures of the vHike Sample Application and the PMP GUI

try. Keep in mind that users would often be satisfied with a
reduced service scope if they do not have to sacrifice that
much privacy.

Wouldn’t it be nice to be able to manage the permissions
of an application in a more fine-grained manner than it is
possible in the currently available mobile operating systems?
Shouldn’t the privacy settings be modifiable at run-time
without causing an application to crash? Why isn’t it possible
to provide an application with fake / blurred data instead of
the privacy compromising original data? Wherefore isn’t the
user informed in more detail what happens to critical data?
Wouldn’t it be reasonable to add contextual constraints to
the privacy rules?

The remainder of the paper is structured as follows: In
Section 2 we reflect upon the strategies the key system
vendors come up with. We consider the major third-party
approaches from research as well as the smartphone commu-
nity in Section 3. Subsequently, we introduce an approach to
customizable privacy management and define in Section 4
the so-called Privacy Management Platform (PMP), a fine-
grained, context-based and extendable approach for securing
privacy on Android-based devices. Therefore we give an
overview of its features firstly (Section 4.1) and deal with our
model for privacy policies, secondly (Section 4.2). Section 5
highlights the main components of the approach. Afterwards
we discuss different implementation strategies which might
be relevant for the approach in Section 6. Finally, Section 7
evaluates the presented approach under qualitative aspects
before Section 8 comes up with a brief summary of this
paper and an outlook on future work.

2. Prevailing Mobile Platforms

Smartphones combine three critical factors, when con-
cerning privacy: private information (which should not be
shared with anyone), context data (which could reveal a lot
about the user’s current situation) and network access (which

is a permanent threat for data exposure). In addition, users
generally don’t have an adequate sense of how easily an
application could misuse their data, anyway. According to
Wetherall et al. [7] users can manage their privacy settings if
and only if a reliable source (e.g. the OS) informs them how
their information is used. Due to constantly emerging reports
in the news about vulnerabilities in almost every current
smartphone OS, the users call for fine granular adjustment
options that support application independency, transparency
in the use of the data and the possibility to import configu-
ration presets suggested by reputable authorities.

However, not only the smartphone itself entails various
risks, often the applications pose a threat, also. There are
several reasons for this: Firstly, the smartphone vendors need
an active developers community in order to stay attractive for
the customers by constantly offering new applications. Hence,
they lower the entry barriers for the developers so much, that
even non-programmers can build their own applications. Even
distribution channels are provided so that these homemade
applications can be propagated easily. Thus, they also attract
script kiddies who, driven either by inability or evil intentions,
compromise the smartphones. Added to this is that between
30 percent and 50 percent of all Android applications are
overprivileged regarding their requested permissions. Felt et
al. [8] discovered this fact, when they examined 940 randomly
selected Android applications. Finally, there are also planned
attacks on the system (and thus on the private data) of course.
Enck et al. [9] introduced a tool called TaintDroid, which
monitors an application’s access to and use of private data
in real time without interfering. They observed a misuse of
sensitive data in two out of three applications. All analyzed
applications were (and still are) available in the Google Play
Store. The privacy violations reach from sending the device
ID or other private information (e.g. the phone number) to
the application’s context server to reporting the geographical
coordinates to third party servers (e.g. advertisement servers).



Table 1. OS Comparison

Apple iOS BlackBerry Windows Phone 7 Android OS

Application Isolation system-based sandbox Java virtual machines extended sandbox Manifest isolation

Reason for Code Signing control mechanism system protection fingerprint application protection

Root Access no no no no

Kill Switch yes ? yes yes

Application Installation Model Walled-Garden Model Guardian Model Guardian Model User Control Model

Controlled Marketplaces iTunes App Store multiple sources Zune Marketplace multiple sources

Thus, all smartphone vendors are aware that they have to
provide strategies to face these threats. In the following we
present the different approaches of the current key players
in the market, namely Apple, RIM, Microsoft and Google.

We compare the four systems regarding the following
six properties: Application isolation, code signing, root
access, kill switches, application installation model and the
controlled marketplaces.

Application Isolation. Principally, each of the four
considered OSs ensures that every application runs in its
own sandbox isolated from the rest of the system, albeit
they differ in some details: iOS provides isolation at system
level while BlackBerry provides process isolation via Java
virtual machines as BlackBerry applications are plain JavaME
code. Windows Phone 7 extends the sandbox concept by
introducing four chambers. Each application is assigned to
one certain chamber wherein each chamber has only a limited
amount of permissions. Depending on how trustworthy an
application is, a corresponding chamber is selected. Basically
Android also isolates each process, albeit applications of the
same developers can run in a common process.

Code Signing. In general, applications are signed in order
to validate their origin and guarantee that an application has
not been modified furtively. Admittedly, this technique can
be applied in various ways. Apple signs every application
which is available in the App Store—i.e. any application
that can be run on an iOS device. Thereby Apple confirms
the application a good behaviour after an intransparent and
time consuming vetting process. RIM also demands that
each application has to be signed, though they differentiate
between two signatures: The Carrier Code Signature which
is available for every developer and the RIM-Signature which
has to be requested directly by RIM. While the former one
authorizes the execution of functions regarded as harmless,
only, the latter one enables to use also the restricted ones.
Developers of applications for Windows Phone 7 have to
apply for a digital certificate by Microsoft and sign their
applications with it. In this way Microsoft is able to backtrack
who can be made responsible for any malware. And finally,
Android applications are mere self-signed, i.e. the developer
autonomously generates a key pair without any involvement
on behalf of Google. This is just to ensure that any update for
an application originates from the developer of the original
application.

Root Access. All of today’s smartphones unite the fact
that they have a protected memory area. Only the vendor is

allowed to modify code in that area. This ensures that the
OS cannot be compromised.

Kill Switch. In iOS, Windows Phone 7 and Android the
smartphone vendors have the ability to delete applications
from the phone remotely, when they show a bad behavior.
It can be assumed that also BlackBerry has such a feature,
even if it is not officially confirmed by RIM.

Application Installation Model. Barrera et al. [10]
distinguish three different application installation models:
The walled-garden model, the guardian model and the
user control model. The walled-garden model gives the
smartphone vendor full control over any application on the
device. The Vendor alone decides whether an app is allowed
to run or not. Even though the user is released of a lot
of responsibility thereby, this approach is heavily discussed
because of the omnipotence of the vendor. Apples iOS is a
perfect example for this model. In the user control model the
vendor passes all the control over the software on the system
(and therefore all the responsibility) to the user. The user is
not restricted in choosing his or her software. However, it
is crucial that the user is aware of possible consequences.
Google relies with Android on this model. The so called
guardian model—which is the model of choice of both
Windows Phone 7 as well as BlackBerry—is in between
the walled-garden and the user control model, sharing the
control over the applications evenly between the user and
the smartphone vendor.

Controlled Marketplace. Even though almost every
smartphone vendor provides a marketplace for third-party
applications, the handling with it is extremely divergent:
Before an application is available in the App Store Apple
checks the code of it. If a violation of the user policies or
malicious code is detected, the application will be rejected.
Since the App Store is the only source for new applications,
this also means a prohibition of it. Microsoft pursues with
their marketplace called Zune a similar strategy. RIM and
Google indeed provide their own shops—the BlackBerry App
World respectively the Google Play Store—but applications
for BlackBerry or Android devices can be purchased from
any source. The applications are not reviewed before their
release. However, they will be removed from the store when
a malicious behavior is reported.

Table 1 summarizes the most prominent characteristics
concerning privacy issues of the smartphone vendors con-
sidered in this paper.



Table 2. Android-based Privacy Approaches in Comparison

Focus Granularity Extendable Contextual Configuration Crash Data Feed- Realization
Constraints Time Safe Privacy back

Android hardware coarse yes no installation yes no no kernel
Permissions time

Apex hardware coarse no yes run-time no no no kernel

AppFence hardware fine no no run-time yes mock no kernel

Dr. Android application coarse no no convert yes no no application
& Mr. Hide time

MockDroid hardware coarse no no run-time yes mock yes kernel

YAASE application fine no no run-time no no no kernel
CyanogenMod hardware coarse no no run-time no no no kernel

PDroid hardware fine no no run-time yes mock & no kernel
custom

Privacy application fine no no run-time no no no application
Protector

PMP application & coarse & yes yes run-time yes mock & yes application
hardware fine blur

3. Concepts and Approaches to Privacy Man-
agement for Android

Looking at the sales figures, it is remarkable that with iOS
and Android, both the most monitored, and the most open OS
lead the popularity charts [11]. Even though developers like
Android devices because of their high degree of freedom [2],
the user acceptance decreases slowly inter alia because of
the uncertain privacy concept [12]. The initial goal of our
Google cooperation is to come up with a review of existing
approaches to privacy management in a mobile setting with
a special focus on Android. In the following we take a closer
look at existing approaches:

Especially for Android, there are a variety of research
approaches to protect privacy. Hereinafter, we reflect on Apex,
Dr. Android & Mr. Hide, MockDroid and YAASE. However,
not only in research attention has been paid to the issue of
privacy on mobile devices. Also the Android community
regularly introduces new solutions on how to improve security
of sensitive data. Hence, three representatives of this type
will also be presented in this work: CyanogenMod, PDroid
Privacy Protection and Privacy Protector.

Apex. Nauman et al. [13] analysed the current permis-
sions an Android user can grant an application in order to
identify the most critical ones. Based on these observations
they introduced a powerful policy model and extended the
Android OS by a mechanism to apply these policies. This
model has three major advantages: Firstly, the user even
can install an application, although if only a subset of
the requested permissions is granted. Secondly, however,
at run-time permissions can be added, modified, or removed.
Certainly the biggest improvement is undeniably that the user
can define various constraints under which certain functions
may not be executed. However, the biggest drawback of this
approach—apart from the fact that a user needs a device
with root rights—is that applications might crash if they try

to access data though the user has withdrawn the therefore
required permissions.

AppFence. Hornyack et al. [14] address two problems
with AppFence: Uncontrolled data access and information
sharing. Therefore, they enable the user to shadow private
data for certain applications by providing mocked data
and furthermore restrict network transmissions of classified
information. However, the information flow tracking system
used for the exfiltration blocking feature can be bypassed by
an app.

Dr. Android and Mr. Hide. Jeon et al. [15] introduce
with Dr. Android and Mr. Hide a unique approach to increase
privacy without modifying the OS. They developed an An-
droid background service (Mr. Hide) which has full access to
any data and provides several interfaces to share this data with
authorized applications. To authorize an application a fine
granular application-centric permission system is available.
For any application there is a converter (Dr. Android—an
acronym for Dalvic Rewriter for Android) which replaces
all critical API calls in an application with requests to Mr.
Hide. However, the user gets no feedback to which extent
the functionality of the application is affected by his or her
permission settings.

MockDroid. Beresford et al. [16] came to the conclusion
that the mere access to critical data is not too bad, as long
as the user can control which applications get the correct
data back. To this end, they modified the OS so that a user
can select at run-time some applications that henceforth
receive mock data by certain APIs—e.g. faked location data.
Thereby some applications become useless, of course (e.g. a
navigation application with mocked location data).

YAASE. Russello et al. [17] pursue two main targets with
YAASE: On the one hand they provide a way to formulate
extremely fine-grained access control policies whose genera-
tion does not overburden the user since s/he would not use it
otherwise. On the other hand YAASE addresses the problem



of permission spreading between several applications—e.g.
when they run in the same process. Even if this indeed can
stop the direct exchange of permissions, it does not prevent
any application from sharing the critical data itself.

CyanogenMod. extends the original Android OS by
some features. Our interest in this paper rests on the applica-
tion permissions management, solely. CyanogenMod allows
an user to revoke any permission s/he deems unnecessary for
any application even a posteriori after installation. Then the
affected application has no longer this certain permission. If
it still tries to accesses a now prohibited function, it crashes
in nine out of ten times. PDroid Privacy Protection deals
with this problem: Instead of blocking an application from
accessing vulnerable data PDroid supplies the application
with custom or random values. While both approaches require
root rights, Privacy Protector does not need them. Privacy
Protector simply turns off locating and disconnects any
network connections when certain applications are running.
Thereupon all applications are affected by these restrictions.

Table 2 summarizes the most prominent features of these
approaches. They include, whether the privacy settings focus
on applications or hardware features, how precisely the rules
can be expressed, whether the policy model is expandable,
whether context constraints are possible, when the rules can
be modified, whether the method is crash safe, how private
data can be disguised, whether the user is informed about
the impact of the settings on an application and finally how
the approach is implemented. As a result of this review (cf.
Table 2, bottom row) we extended the goal of our Google
cooperation to come up with a more comprehensive and
effective approach. This will be described in the subsequent
sections.

4. An Approach to Customizable Privacy Man-
agement

Unfortunately, none of these proposals convinced us
entirely, as each of them reveals more or less grave shortcom-
ings. Therefore, we introduce an approach to customizable
privacy management that can be characterized as an extend-
able, fine-grained, interactive, context sensitive and fail safe
mechanism to enable the user to become master of his or
her private data.

Even though many developers fear the restrictions on
their applications (e.g. disabling in-app advertising [18]), it
also cannot be in their interest that they have to publish the
same applications several times with different permissions as
it is already practiced sometimes. For example an application
in an ad-free and two ad-supported versions—once location-
based and once general advertising.

The basic idea of the approach that we call PMP (Privacy
Management Platform) will be described in Section 4.1 and
its privacy model in Section 4.2 in particular.

4.1. Overall Picture

Obviously, current mobile applications such as the in-
troductory example vHike require highly sensitive personal

Application Service 
Feature Resource

Privacy 
Setting

Privacy 
Policy

provided

1 1..*

current
context

requested
data

requested
feature

user adjustm
ent

develops

Application
Developer

Resource
Developer

User

configures

provides

Figure 2. PMP’s Privacy Policy Model

data, such as position, contact data, etc. Naturally, the user
does not want to share this data with everybody in every
context. Albeit, without any private data at all it is often
impossible for an application to provide any reasonable
service. It is essential to find a compromise between privacy
and service level. Thus, a central aspect of the PMP is to
enable applications offering various Service Features that
build upon user acceptable permission sets.

To achieve this, an application has to specify various
Service Features with mandatory private data requirements.
PMP informs the user about the available Privacy Settings
and their consequences for the scope of services.

The most outstanding features of PMP are its extendibil-
ity—in terms of adding user generated new Resources in
arbitrary granularity—its context sensitivity—as permissions
can be granted or revoked according to the current situation—
and its user interaction—as a user is always informed about
the impact of any decision both on privacy as well as on
application’s service.

4.2. PMP’s Privacy Policy Model

The approach of the PMP is based on a model that
comprises applications (respectively their Service Features),
private data, and Privacy Settings. Private data can originate
from various data providers referred to as Resources. As
shown in Figure 2, Service Features, Resources, and Privacy
Settings are highly interrelated and must be able to interop-
erate with each other. The Privacy Policy holds all needed
information for granting access to private data: It basically
interrelates Resources (private data sources)—provided or
audited by trustworthy organizations—required for a certain
Service Feature (as a part of an application)—distributed
by potentially malicious developers—with Privacy Settings
adjusted by the attentive user. In accordance to the closed
world assumption, an access is denied if a certain interrelation
is not represented. Furthermore, the PMP hereby is able to
consider the user’s current context, also.

To pick up the vHike example introduced in Section 1, the
navigation feature that directs the driver to a hiker requires
position data from both of them. However, it provides two
different Service Features: GPS navigation or static map. The
user can adjust the Privacy Settings so that access to the exact



Resources SettingsPresetsApps

GUI

PMP-Compatible 
Application

Application Service 
Feature

Resource 
Group

Resource

Privacy 
Setting

Presets

PMP
Management

Privacy
Policy

Figure 3. PMP’s Components Overview

position is granted if the hiker is within a few kilometers
(which enables navigation). Otherwise, an approximation of
the current position is shared and vHike shows a map of the
hiker’s current surrounding, only.

A privacy management system is of no use if it is too
complicated for the user to handle. Thus, the Privacy Settings
are designed such that despite expressive power an intuitive
user interface is feasible. Moreover, as PMP supports Presets
as a kind of default, the user is not bothered with excessive
access permission requests.

5. PMP Architecture

In this section we introduce the six main components
of the PMP: Resources, Privacy Settings, PMP-compatible
Applications, Service Features, PMP Management and Pre-
sets. Figure 3 illustrates the correlation and interaction
between these components. The components implement the
Privacy Policy model introduced in the previous chapter
and visualized in Figure 2. Resources, pooled in Resource
Groups, provide access to private and system data of the
device. A user controls and restricts its usage via the Privacy
Settings. A PMP-compatible Application asks the Resource
Groups for their data and the PMP Management component
decides whether this request is legitimate. Depending on
the number of Resources an application gets access to, it
provides a variety of Service Features. As not every user is
able or willing to configure the Privacy Policy appropriately,
Presets can be established, exported, shared and imported.

Every depicted component is described in more detail
in the subsequent paragraphs. The major implementation
aspects of these components are discussed in Section 6.

Resources. Resources can be seen as information broker
between the applications and the Android system: Each
Resource obtains a certain kind of data from the system
and provides interfaces for the applications to access some
of these data. Resources are registered at the PMP. Thus,
PMP can manage the access to the data by managing access
to its Resources.

One big advantage that comes with the Resource model
compared to the original Android content provider respec-

Fo
cu

s

Specification

Class I:
Hardware Feature 

Resources

Class II:
Hardware Specific 

Resources

Class III:
Application Category 

Resources

Class IV:
Application Specific 

Resources

Application / Software

Hardware

G
en

er
ic

Sp
ec

ifi
c

Figure 4. Resource Classes

tively data manager concept, is its extensibility. This means
that Resources can be added or updated whenever it is
necessary. Moreover, s/he can pool content-related Resources
within a so called Resource Group.

Whenever the PMP Management detects that an applica-
tion uses a Resource which is currently not installed on the
device or if an installed Resource is outdated it acquires them
from a central Resource repository. Those new Resources
are automatically integrated into the PMP system.

Since this Resource approach is a very generic one,
a Resource can either be modeled hardware-centric or
application-centric. Furthermore, the Resource developer
decides whether a Resource should be generic or rather
specific. Based on these two dimensions we divide four
different Resource types as shown in Figure 4. We illustrate
this based on vHike: A class I Resource might be Location,
which can be used by any application to locate the user—
however, it is masked which technology is applied. On the
contrary a class II Resource—let us assume a Resource such
as GPS_Location—constitutes a certain technology explicitly.
This Resource is also available to all applications, but it uses
the GPS for locating solely. A third Resource GeoNavigation
(class III) provides location data to any application, but
restricted to the Service Feature Navigation exclusively for
navigation services. The final Resource type (class IV) cuts
down the number of applications which are supported by
this Resource—e.g. vHikeLocation makes the geolocation
available for vHike, only.

It is striking that both class I and class II are indeed
covered by the Android permissions up to a certain point—
ACCESS_COARSE_LOCATION is a textbook example for
a class I Resource, as it encapsulates multiple location
techniques, while CAMERA represents a class II type, because
it explicitly states the used technology. Dr. Android and
Mr. Hide is able to deal with class III Resources. Its
AdsGeo permission enables any application to display ads
and forwards the current location to the advertisers. Rules to
control class IV Resources can be defined by the very fine-
grained policy language which is used in YAASE. However,
it is remarkable, that PMP is the only system supporting the



full spectrum of Resource types, which is a prerequisite for
comprehensive privacy control.

Privacy Settings. Each Resource may define a certain
number of so-called Privacy Settings. A Privacy Setting is
permanently linked to a Resource Group and consists mainly
of an unique identifier, a significant name, its description for
the user and a value (i.e. the actual setting). A Privacy Setting
for the Resource Location could be useFineLocation.
Possible values for this setting are true and false. There-
fore, the Privacy Settings can be most likely compared to
the Android permissions. However, this approach provides
two crucial advantages:

On the one hand, as the Privacy Settings are linked to
individual Resources and not to an application, more precise
configurations are possible. E.g. you could grant the use
of location data for the Navigation Resource in vHike and
prohibit its use for the Observation Resource. This example
illustrates that it makes sense to decouple the Privacy Settings
from physical hardware features and relate them to the logical
Resource Groups.

On the other hand the Privacy Settings are more powerful
than the Android permissions. While the latter can be granted
or removed, only, a Privacy Setting accepts any data type
as a value. Besides Boolean values, which corresponds to
the behavior of the original permissions, also numerical or
textual values are accepted. This makes it feasible to define
e.g. a rule that vHike is allowed to use location data via the
Resource Location up to an accuracy of 100 meters.

PMP-compatible Applications. The development of a
PMP-compatible Application differs only marginally from
the conventional application development process. The imple-
mentation of the application logic is not altered, except that
the developer should use the PMP Resources to access needed
data, instead of the Android content providers. Additionally,
if the permission entries have been removed from the Android
Manifest, the PMP cannot be bypassed.

However, as the PMP attempts to inform the user pro-
found, some additional details about the application are
required. For this purpose we introduced the so called App
Information Set. Alongside with the application’s name a
multilingual description of the usage of the application is
specified therein. In an analogous manner to the presentation
in the Google Play Store this information is displayed when
an application is installed. Thus, this overhead for a developer
keeps within reasonable limits.

Service Features. The last component a developer has to
worry about are the Service Features. Since PMP-compatible
Applications can provide a variable range of functions,
depending on the Privacy Policy, a developer has to determine
which feature requires access to which Resources respectively
how the Privacy Settings have to be set. These statements are
stored in the App Information Set as well. Apart from the
references to the used Resources an unique identifier for the
Service Feature, its name and a description what functions
are provided by it can be specified there.

A component like the Service Features is not provided
in the original Android concept. In order to imitate such a
behavior, a developer will have to implement many different

Table 3. Excerpt of a Privacy Policy for vHike

Service Feature Resource Privacy Setting Constraint

vHikeContacts Contacts usePhone = true —
sendSMS = true —

vHikeFineLoc Location useFineLoc = true cond1
vHikeAprxLoc Location locPrecision = 100 cond2

versions of the same application. However, an application
with 𝑛 Service Features leads to 2𝑛 variants already. The
maintenance for this sheer volume of applications cannot be
handled efficiently anymore. Not to mention the resulting
irritations of the user when the search for a certain application
yields a high number of similar findings.

Presets. The configuration of a PMP-compatible Applica-
tion (or more precisely the selection of activated respectively
deactivated Service Features) can be stored within a so
called Preset. A Preset contains—beneath the accumulation of
application identifiers and their appropriate Service Features—
a name and a short description. As a matter of fact it is up
to the user which settings should be included in a Preset.
Apart from the possibility to store these settings locally, the
Presets can also be deposited on a web server and thus made
available for other users. One could imagine, that trusted
organizations provide certified Presets as a recommendation
of how to ensure a maximum of privacy—e.g. the German
Federal Office for Information Security Technology (BSI)
offers something similar for the configuration of web browsers
in terms of Internet security. Another use-case for Presets
could be to ensure compliance with company policies—for
instance, the deactivation of certain safety-critical functions
during working hours.

Since several different Presets can be imported, the PMP
might have to deal with conflicting Presets. A conflict may
occur, when two or more different Presets exist for the same
application. If the settings do not contradict each other, then
all Presets are combined additively. However, if there is a
conflict, the afflicted Presets are highlighted immediately
after the import. Then, based on this information, the user
can decide which Service Features he wants to retain in order
to resolve the conflict.

PMP Management. The PMP Management enforces the
Privacy Policy and represents the interface towards the user:

On the one hand, from system startup the PMP Man-
agement component monitors whether a PMP-compatible
Application is either installed or running. Thus, new PMP-
compatible Application or Resources will be automatically
registered. When a PMP-compatible Application is started,
the PMP verifies at run-time that all activated Service
Features are covered by the Privacy Policy. For this, the
PMP Management checks whether for the given Service
Feature and the requested Resource the Privacy Settings (and
optional constraints) are valid (as indicated in Table 3). If
that’s not the case, the user is immediately informed.

On the other hand, the PMP Management component
provides a graphical user interface for administrating the
PMP-compatible Applications, the Resources and the Presets.
The main menu is shown in Figure 1b. The four submenus are



detailed in the following. The tab labeled with Apps provides
an overview of all PMP-compatible Applications currently
installed on the device. Thereby these applications can be
started directly via the PMP Management. Additionally, the
user gets further information about the applications (e.g. a
brief description) and a summary of all Service Features
offered by the application. Here, s/he sees immediately which
of them are activated, respectively deactivated and s/he
can modify the settings as needed. Figure 1c shows some
exemplary Service Features for a calendar application—e.g.
for the creation, export / import, or distribution of calendar
entries. When a Service Feature is disabled because of
missing Resources, they can be downloaded. The submenu
Resources provides an overview of all installed respectively
all currently available Resources. Here one can also install,
update, or remove them independently of any application. As
the name already suggests, from the menu Presets all Presets
can be managed—e.g. create, import or export. Besides mere
administration tasks the user can also modify all permission
settings at run-time, in order to make more private data
available, feed some applications with mocked data or cut
down existing permissions. For a Resource Filesystem a
Privacy Setting could be read or write permissions for
a certain directory, as shown in Figure 1d. Finally, in
the Settings menu, one can switch between simple and
expert mode or activate some logging functionalities (e.g. a
summary of all Resource requests).

6. PMP Realization Strategies

Essentially, there are two distinct implementation strate-
gies (Figure 5): Either PMP is implemented as an ordinary
application (left side of Figure 5) or it is integrated into the
OS itself (right side of Figure 5). We chose the former option,
however, also the latter would have been easily possible,
as the Resource Groups are very similar to the Android
Managers in the Application Framework layer whereby a
merger would be feasible. Both approaches have pros and
cons:

An implementation on top of Android provides two
significant benefits: On the one hand this implementation
strategy does not require any modification to the Android
OS making PMP usable on every Android device even
without root rights. On the other hand all current applications
continue to work properly as they are not affected by the new
privacy mechanism. This, however, represents the biggest
disadvantage at the same time. Since an application is not
forced to request all private data via the PMP, it can also get
access to this data directly using the Android Application
Framework. Though, the user has to grant the application
the required permissions initially. Implementing the PMP
within the Android OS—so it is the only interface towards
all applications—closes this, albeit small, vulnerability con-
cerning privacy and such an implementation is more efficient.
However, since a PMP-compatible Application requires some
additional code, conventional Android applications have to
be adapted in order to work with the PMP. Here an APK

Applications

Application Framework

Libraries

Linux Kernel

Android 
Runtime

PMP

Res1 Resn

Appx

Content 
Provider

Location 
Manager

…

…

Applications

Application Framework

Libraries

Linux Kernel

Android 
Runtime

PMP

Res1 Res2 Resn

App1 App2 Appm

U
nt

ru
st

ed
Tr

us
te

d

Figure 5. Realization Strategies within the Android Stack

repackaging comparable to the one used in Aurasium [19]
might help.

7. Assessment

Looking back at the requirements postulated in Table 2,
PMP satisfies in all categories: Thanks to the flexible
Resource model, PMP supports all four Resource classes
and therewith is able to cope with either application-centric
or hardware-centric Resources of an arbitrary granularity.
Moreover, further Resources can be added when necessary.
Besides, in PMP a user can define in the Service Feature
settings, that a Resource should only provide mocked data for
a certain application. The Service Feature concept ensures,
that an application does not crash if some required permis-
sions are missing, as each feature is activated respective
deactivated accordingly. The PMP Management takes care
of this and gives feedback to the user how s/he can limit or
extend the functionality of the application by adjusting the
Privacy Settings. Finally, the Privacy Policy model enables to
add (contextual) constraints to each policy rule (cf. Table 3).
A rule can be generated, removed, or modified at run-time.

We have implemented three PMP-compatible Applica-
tions: In addition to vHike, we implemented a privacy-aware
calender application (CalendarApp) and an application called
InfoApp, which lists various stats about your device. Thus
we were able to gain early experiences with the PMP. Initial
tests showed that the concept of Service Features is very
useful, intuitive, and means almost no overhead for a user.
An application developer has to define Service Features,
which leads to an overhead compared to a plain Android
application. The Resource developer’s effort depends on the
capacity of the Resource—e.g. pure forwarding of the content
providers’ data generates only a slight overhead. Moreover,
the PMP Eclipse plugin assists developers with these duties
a lot.

Admittedly, there is an overhead concerning the run-time
of an application. Though it became apparent in benchmarks
of similar approaches that the performance overhead of mere
policy verification can be ignored (e.g. [20]). Of course, this
applies only if a Resource simply passes values provided
by an Android Manager. This changes significantly when
values need to be accumulated or calculated within the



Resource—e.g. to approximate a geolocation—depending
on the complexity of these calculations.

Since PMP as well as all the sample applications are
hosted on Google Code do not hesitate to test it yourself:

http://code.google.com/p/pmp-android.

8. Conclusion and Future Work
The review performed in our Google cooperation project

and presented here clearly shows that there are various
and diverse approaches to privacy management for mobile
platforms available. However, a truly comprehensive and
satisfactory one is currently not provided. Therefore we
chose to develop the PMP as a customizable, fine-grained,
context-based and extendable privacy management platform
for mobile devices. PMP can be characterized to apply and
augment useful features from existing approaches and to add
functionalities for missing features.

Acknowledgment
This approach resulted from a close collaboration with

Google Munich office. Not only in the planing phase we
received useful advices and ideas, but we were given support
with the implementation, also. Hence, the authors would
like to thank Google for their support of our work and their
helping suggestions for improvements.

References
[1] International Data Corporation (IDC), Android Ex-

pected to Reach Its Peak This Year, Press Release, Jun.
2012. [Online]. Available: https://www.businesswire.
com / news / home / 20120606005318 / en / Android -
Expected-Reach-Peak-Year-Mobile-Phone.

[2] G. J. Spriensma, “The Need for Cross App Store
Publishing and the Best Strategies to Pursue,” Distimo,
Tech. Rep., 2012.

[3] N. Bilton, Apple Loophole Gives Developers Access
to Photos, The New York Times, Feb. 2012. [Online].
Available: https://bits.blogs.nytimes.com/2012/02/
28/tk-ios-gives-developers-access-to-photos-videos-
location/.

[4] B. X. Chen and N. Bilton, Et Tu, Google? Android
Apps Can Also Secretly Copy Photos, The New York
Times, Mar. 2012. [Online]. Available: https://bits.
blogs.nytimes.com/2012/03/01/android-photos/.

[5] C. Stach, “Saving time, money and the environment
- vHike a dynamic ride-sharing service for mobile
devices,” in PERCOM ’11, 2011.

[6] C. Stach and A. Brodt, “vHike - A Dynamic Ride-
Sharing Service for Smartphones,” in MDM ’11, 2011.

[7] D. Wetherall, D. Choffnes, S. Han, P. Hornyack, J.
Jung, S. Schechter, and X. Wang, “Privacy Revelations
for Web and Mobile Apps,” in HotOS ’11, 2011.

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android Permissions Demystified,” in CCS ’11, 2011.

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J.
Jung, P. McDaniel, and A. N. Sheth, “TaintDroid:
An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones,” in OSDI ’10,
2010.

[10] D. Barrera and P. van Oorschot, “Secure Software
Installation on Smartphones,” IEEE Security and
Privacy, vol. 9, pp. 42–48, 2011.

[11] Gartner, Gartner Says Worldwide Sales of Mobile
Phones Declined 2 Percent in First Quarter of 2012,
Press Release, May 2012. [Online]. Available: https:
//prwire.com.au/pr/28952/gartner-says-worldwide-
sales-of-mobile-phones-declined-2-percent-in-first-
quarter-of-2012.

[12] M. King and S. Ellison, “Q2 2012 Mobile Developer
Report,” Appcelerator and IDC, Tech. Rep., 2012.

[13] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending
Android Permission Model and Enforcement with
User-defined Runtime Constraints,” in ASIACCS ’10,
2010.

[14] P. Hornyack, S. Han, J. Jung, S. Schechter, and D.
Wetherall, “"These Aren’t the Droids You’re Looking
For": Retrofitting Android to Protect Data from Im-
perious Applications,” in CCS ’11, Chicago, Illinois,
USA, 2011.

[15] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, and T. Millstein, “Dr. Android
and Mr. Hide: Fine-grained Permissions in Android
Applications,” in SPSM ’12, 2012.

[16] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan,
“MockDroid: trading privacy for application function-
ality on smartphones,” in HotMobile ’11, 2011.

[17] G. Russello, B. Crispo, E. Fernandes, and Y. Zhua-
niarovich, “YAASE: Yet Another Android Security
Extension,” in PASSAT ’11, 2011.

[18] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo,
“Don’t kill my ads! Balancing Privacy in an Ad-
Supported Mobile Application Market,” in HotMobile
’12, 2012.

[19] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practi-
cal Policy Enforcement for Android Applications,” in
USENIX Security ’12, Bellevue, WA, 2012.

[20] P. Kodeswaran, V. Nandakumar, S. Kapoor, P. Kama-
raju, A. Joshi, and S. Mukherjea, “Securing Enterprise
Data on Smartphones using Run Time Information
Flow Control,” in MDM ’12, 2012.

http://code.google.com/p/pmp-android
https://www.businesswire.com/news/home/20120606005318/en/Android-Expected-Reach-Peak-Year-Mobile-Phone
https://www.businesswire.com/news/home/20120606005318/en/Android-Expected-Reach-Peak-Year-Mobile-Phone
https://www.businesswire.com/news/home/20120606005318/en/Android-Expected-Reach-Peak-Year-Mobile-Phone
https://bits.blogs.nytimes.com/2012/02/28/tk-ios-gives-developers-access-to-photos-videos-location/
https://bits.blogs.nytimes.com/2012/02/28/tk-ios-gives-developers-access-to-photos-videos-location/
https://bits.blogs.nytimes.com/2012/02/28/tk-ios-gives-developers-access-to-photos-videos-location/
https://bits.blogs.nytimes.com/2012/03/01/android-photos/
https://bits.blogs.nytimes.com/2012/03/01/android-photos/
https://prwire.com.au/pr/28952/gartner-says-worldwide-sales-of-mobile-phones-declined-2-percent-in-first-quarter-of-2012
https://prwire.com.au/pr/28952/gartner-says-worldwide-sales-of-mobile-phones-declined-2-percent-in-first-quarter-of-2012
https://prwire.com.au/pr/28952/gartner-says-worldwide-sales-of-mobile-phones-declined-2-percent-in-first-quarter-of-2012
https://prwire.com.au/pr/28952/gartner-says-worldwide-sales-of-mobile-phones-declined-2-percent-in-first-quarter-of-2012

	1 Introduction
	2 Prevailing Mobile Platforms
	3 Concepts and Approaches to Privacy Management for Android
	4 An Approach to Customizable Privacy Management
	4.1 Overall Picture
	4.2 PMP's Privacy Policy Model

	5 PMP Architecture
	6 PMP Realization Strategies
	7 Assessment
	8 Conclusion and Future Work

