Demand-Driven Data Provisioning in Data Lakes
BARENTS — A Tailorable Data Preparation Zone

Christoph Stach

stachch@ipvs.uni-stuttgart.de
University of Stuttgart, IPVS / AS
Stuttgart, Germany

Corinna Giebler
giebleca@ipvs.uni-stuttgart.de
University of Stuttgart, IPVS / AS
Stuttgart, Germany

ABSTRACT

Data has never been as significant as it is today. It can be acquired
virtually at will on any subject. Yet, this poses new challenges to-
wards data management, especially in terms of storage (data is not
consumed during processing, i. e., the data volume keeps growing),
flexibility (new applications emerge), and operability (analysts are
no IT experts). The goal has to be a demand-driven data provision-
ing, i. e., the right data must be available in the right form at the
right time. Therefore, we introduce a tailorable data preparation
zone for Data Lakes called BARENTS. It enables users to model
in an ontology how to derive information from data and assign
the information to use cases. The data is automatically processed
based on this model and the refined data is made available to the
appropriate use cases. Here, we focus on a resource-efficient data
management strategy. BARENTS can be embedded seamlessly into
established Big Data infrastructures, e. g., Data Lakes.

CCS CONCEPTS

+ Information systems — Extraction, transformation and
loading; Mediators and data integration; Data cleaning; Data
federation tools; « Applied computing — Bioinformatics.

KEYWORDS

data pre-processing, data transformation, knowledge modeling,
ontology, data management, Data Lakes, zone model, food analysis

ACM Reference Format:

Christoph Stach, Julia Bréacker, Rebecca Eichler, Corinna Giebler, and Bern-
hard Mitschang. 2021. Demand-Driven Data Provisioning in Data Lakes:
BARENTS — A Tailorable Data Preparation Zone. In The 23rd International
Conference on Information Integration and Web Intelligence (iiWAS2021),
November 29-December 1, 2021, Linz, Austria. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3487664.3487784

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iiWAS2021, November 29-December 1, 2021, Linz, Austria

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9556-4/21/11

https://doi.org/10.1145/3487664.3487784

Julia Bracker
julia.braecker@Ic.uni-stuttgart.de
University of Stuttgart, IBTB / LC

Stuttgart, Germany

Rebecca Eichler

eichlera@ipvs.uni-stuttgart.de
University of Stuttgart, IPVS / AS
Stuttgart, Germany

Bernhard Mitschang
mitsch@ipvs.uni-stuttgart.de
University of Stuttgart, IPVS / AS
Stuttgart, Germany

1 INTRODUCTION

“Data is the new oil.” This metaphor, coined by Clive Humby (data
science entrepreneur and Chief Data Scientist of Starcount) in the
year 2006, is still used today to illustrate the importance of data in a
digital society. This analogy also appears to be overly apt. Just as oil
was a significant driver for the Technological Revolution, data is the
key resource of the Industry 4.0. Similarities can also be identified
with regard to the extraction and usage of data — like oil, data has
to be localized and extracted first. Subsequently, data also needs to
be cleansed and processed before it can be stored and provided to
users for further exploitation [47].

Peter Sondergaard (Senior Vice President of Gartner) emphasizes
the fact that data in general only becomes valuable when it is refined
in his 2011 statement that “information is the oil of the 21% century”.
For instance, datasets may contain inconsistent or inaccurate values,
and relevant attributes might not be included in a dataset. Such
impurity has to be cleansed in the run-up to an actual analysis.
Furthermore, data is typically not available in the form needed for
the intended analyses. Besides cleansing, data must therefore also
be transformed, pre-processed, and enriched to gain meaningful
information from it [30].

Although data shares many characteristics with oil, there are
some crucial differences. This becomes particularly evident with
regard to the following aspects: While oil is a finite resource, data
can be generated at will. Additionally, data is not consumed dur-
ing processing, i.e., it does not disappear —in terms of storage,
concepts for managing Big Data are required. This is further ag-
gravated as data is heterogeneous. Novel tasks emerge frequently,
which is why pre-processing needs to be adapted dynamically to
the ever-changing challenges. At the same time, refined data is
highly specific, i. e., it only reaches its full potential in the use case
envisaged through pre-processing. A ready-made one-size-fits-all
solution is therefore not an option. It is rather necessary to involve
the analyst during data preparation and to adapt it to the respective
use case [11].

Moreover, data is not only a driver in industry, but also for, e. g.,
research and the private sector. A key issue for any data-driven
project is rarely a lack of data, but rather the unavailability of the
right data in the right form at the right time. John Naisbitt (author
in the domain of futures studies) emphasizes that this is a key issue
for a digital society with his revised allegory: “We are drowning in
data but starving for information.”

© 2021 ACM. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/iiwas_21_
barents.pdf by permission of ACM for your personal use. Not for redistribution. The definitive version was published in In: Indrawan-Santiago, M. et al. (Eds.) The
23rd International Conference on Information Integration and Web Intelligence (iiWAS °21), November 29-December 1, 2021, Linz, Austria. ACM, New York, NY, USA, pp.
i 187-198, 2021, doi: 10.1145/3487664.3487784.

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/iiwas_21_barents.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/iiwas_21_barents.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/iiwas_21_barents.pdf
https://doi.org/10.1145/3487664.3487784
https://orcid.org/0000-0003-3795-7909
https://orcid.org/0000-0002-4676-6410
https://orcid.org/0000-0003-3094-6852
https://orcid.org/0000-0002-5726-0685
https://doi.org/10.1145/3487664.3487784
https://doi.org/10.1145/3487664.3487784

iiWAS2021, November 29-December 1, 2021, Linz, Austria

-
= =)

Data Business
Sources Professional

=) | Data Warehouse ﬁ

(Aggregated Data)

peo-

o

10R11X3
wJiojsuel)

(a) Data Warehouse Architecture

Christoph Stach, Julia Bréacker, Rebecca Eichler, Corinna Giebler, and Bernhard Mitschang

- ——
_|
== | — —>IF
18)| Datalake o |4 &
- o= Raw Data S
— g r__f_______l___ 3
Data Data

Sources Scientist

(b) Data Lake Architecture

Figure 1: Comparison of the Data Warehouse Architecture and the Data Lake Architecture.

To this end, we introduce BARENTS!, a tailorable data preparation
zone for Data Lakes. It enables analysts to model how datasets have
to be pre-processed to become meaningful information. This infor-
mation is assigned to use cases to enable a demand-driven data
provisioning. We make the following contributions:

1.) We introduce an ontology-based method that enables even
non-IT experts to specify the data requirements of their
use cases.

2.) We manage the data of the use cases in a resource-efficient
manner that addresses the requirements inherent in a Big
Data context.

3.) We demonstrate how BARENTS can be embedded seam-
lessly into an established Big Data infrastructure.

The remainder of this paper is structured as follows: In Sec-
tion 2, we examine the state of the art with regards to data man-
agement. Section 3 identifies requirements towards demand-driven
data provisioning. Based on this, we discuss related work in Sec-
tion 4. Subsequently, we introduce BARENTS and provide details on
its implementation in Section 5. BARENTS is evaluated in Section 6,
before Section 7 concludes this paper.

2 DATA PROVISIONING ARCHITECTURES

When it comes to managing and providing large amounts of data
in an efficient manner, Data Warehouses have long been considered
the system architectures of choice. The basic idea is that there is a
central relational database, which is considered as the single point of
truth and serves as a foundation for any analysis. It has a predefined
schema. Thereby business professionals even with little IT know-
how are enabled to analyze the contained data with standardized
tools (e. g., online analytical processing or reporting tools). The
Data Warehouse is populated by external data sources. This entails
that data extracted from these sources needs to be transformed
first, before it is loaded into the Data Warehouse, in order to match
the given schema. In this process, it is inevitable that the extracted
raw data is altered and aggregated. This pre-processing and the
resulting loss of information limits the analysis potential to a few
predefined tasks [21].

Yet, due to the Internet of Things, more flexible solutions without
such rigid schemes are needed. Moreover, the inherent transforma-
tions cause a significant delay before data is available for analysis.

10ur approach is named after the navigator and explorer Willem Barents — the historic
Barents discovered new land in the seas, while our approach explores new insights
within a Data Lake.

Lastly, the sheer processing of who, what, when, and where ques-
tions as intended in Data Warehouses is no longer adequate for
most use cases [45].

Data Lakes represent such a dynamic system architecture. Simi-
lar to Data Warehouses, they provide a central gateway to all data
extracted from sources. However, data is stored in an untransformed
manner, i. e., in its original format and without a uniform schema.
For this, heterogeneous Big Data technologies such as Hadoop
are applied. To analyze the raw data, it has to be transformed be-
forehand, i.e., in addition to the actual analysis, users must also
take care of the transformation. This requires extensive IT skills,
which is why the target users are data scientists. Yet, they also
face the problem of finding all required data in the Data Lake and
recognizing the respective data formats on read [17].

Both architectural models are shown schematically in Figure 1
and their key characteristics are summarized in Table 1. It is evi-
dent that demand-driven data provisioning requires a compromise
between both approaches combining the simple operability of Data
Warehouses with the flexibility of Data Lakes. In the following, we
examine the requirements towards such a compromise.

3 REQUIREMENT SPECIFICATION

Based on the work by Grossmann and Rinderle-Ma [16], we derive
requirements towards a data management infrastructure, so that
demand-driven data provisioning is feasible. We only consider re-
quirements related to data provisioning. In a digital society, these
requirements are relevant for any kind of data-intensive task.

R; - Adaptable: While in Data Warehouses analyses are known
in advance, Data Lakes are supposed to be flexible. Since raw data

Table 1: Comparison of the Key Characteristics of a Data
Warehouse and a Data Lake.

Data Warehouse Data Lake

e Structured e Structured & Unstructured

Data

o Aggregated e Raw

e Homogeneous e Heterogeneous
Storage)

e Schema-on-Write e Schema-on-Read

o Predefined Tasks o Support for any Use Case
Usage

e Business Professional e Data Scientist

> Simple Data Retrieval > Flexible Data Management

Demand-Driven Data Provisioning in Data Lakes

has to be transformed to be suitable for the intended purpose, i. e.,
the respective analysis, transformations have to be tailorable. Yet,
a simple parameterization of pre-defined transformations is not
sufficient; joins between data sources or the application of user-
defined functions must be possible as well.

R2 — Versatile: Similar to the ever-increasing number of use
cases, 1. e., analyses, new data types and data formats are also being
added regularly to a Data Lake. Therefore, an approach towards a
demand-driven data provisioning also has to be extensible in terms
of new data sources as well as new data types and data formats to
reflect this dynamic.

R3 - Big-Data-Ready: Storing all raw data generates a high data
volume. Due to the use-case-dependent transformation required for
a demand-driven data provisioning, this data is additionally stored
several times in different aggregation states. Therefore, the required
disk space should also be restrained to a certain level, e. g., by not
keeping all pre-processed data in a materialized manner.

R4 — Easy-to-Use: Domain experts who have the expertise to
specify the requirements for their analyses are usually no IT experts.
Data Lakes solve this by requiring data scientists to prepare the
data for every analysis. Yet, if no data scientist is available, non-IT
experts must be able to tailor the transformations according to their
use cases.

Rs - Resource-Efficient: An approach has to be resource-
efficient. On the one hand, the specification of the requirements for
the analyses has to be accomplished in a time-saving manner. In
particular, the user should not have to reinvent the wheel over and
over again for each new use case. On the other hand, the overhead
caused by the realization of these specifications, i. e., the actual data
transformation and provision, has to be reasonable.

Rg — Compatible: An approach should be compatible to pre-
existing infrastructures, i. e., it has to be embeddable into today’s
Big Data architectures.

Having identified the requirements towards enabling demand-
driven data provisioning, we analyze how related work addresses
these challenges in the following.

4 RELATED WORK

Related work in terms of approaches to improve data discovery in
flexible data provisioning architectures can be divided into four
categories, namely data partitioning, data catalogs, index structures,
and navigation assistance [32]. In addition, there is a recent trend
towards the use of AI-based pre-processing approaches which prepare
raw data for specific use cases [28]. We assess these five concepts
in terms of how they facilitate demand-driven data provisioning.
Due to the large number of similar approaches, we only discuss
representatives for each category.

Data Partitioning. The most intuitive approach to facilitate data
discovery is partitioning the data and keeping the amount of data
in each partition small. A Data Puddle therefore only contains data
for a single use case. If the contained data is also transformed,
the boundaries to a Data Warehouse become blurred. To support
multiple use cases, several Data Puddles can be linked to create a
Data Pond [14]. Yet, this kind of partitioning causes some problems,

iiWAS2021, November 29-December 1, 2021, Linz, Austria

e.g., there no longer is a single point of truth and data relevant
for multiple use cases must be kept redundant in several Data
Puddles. Moreover, similar to a Data Warehouse it must be known
in advance which use cases have to be supported. Therefore, zone
models provide an alternative type of partitioning. Besides a Raw
Data Zone, in which the original raw data is held, there are zones
which hold transformed versions of the data. Users operate on this
pre-processed data. How the data is transformed is defined by the
Data Lake [35]. Some models have several zones to provide the data
in different processing levels. Users can select the most appropriate
zone for their particular use cases [39]. Yet, as the pre-processing is
as generic as possible, further transformations are required, which
users have to implement and carry out on their own.

Data Catalogs. A Data Catalog is a digital inventory of data in
the Data Lake, i. e., it contains information about the data source,
available attributes, or their data types. Thereby, it facilitates the
discovery of data and its usage. While in Data Warehouses a de-
scription of all data is possible due to their rigid schemata, this is
often not the case in flexible Data Lakes. A thorough and system-
atic coverage of all data in a Data Lake is still barely addressed in
literature [25]. For this purpose, a comprehensive metadata man-
agement is required. Sawadogo and Darmont [37] identify two
distinct typologies of metadata. Functional metadata covers man-
ually generated business metadata, which facilitates the semantic
understanding of data, as well as automatically captured opera-
tional metadata, which describes the processing of the data, and
technical metadata, which contains information about the data for-
mats. For instance, HANDLE [9] follows this typology. Structural
metadata adopts an object-oriented approach by regarding items in
Data Lakes as objects with attributes and relations between them.
The CC Data Lake [38] takes a structural metadata approach using
a knowledge graph. However, a Data Catalog only facilitates data
discovery, not its demand-driven pre-processing.

Index Structures. While Data Catalogs are designed to improve
data discovery by describing the data in more detail, query-driven
discovery takes the opposite approach. Here, incoming queries are
analyzed, and datasets are identified that are similar to the query
results. Comprehensive index structures are a key enabler to achieve
this. Bogatu et al. [4] leverage hash-based indexes over the features
of the data to find similar datasets. By contrast, Zhang and Ives [49]
focus on a higher level of granularity. They exploit existing indexes
of the source databases of a Data Lake, to recommend additional
potentially relevant tables. Yet, similar to Data Catalogs, demand-
driven data pre-processing remains the users’ responsibility and
they are not supported in this process.

Navigation Assistance. This category summarizes approaches
that enable users to browse a Data Lake and comprehend its content.
To this end, Nargesian et al. [33] organize the content of a Data Lake
using a hierarchical tree structure where the actual data is in the
leaves. Starting from a root element, the data is divided into finer
and finer categories. By navigating the hierarchy, users find similar
data in the respective subtrees. Data Markets take this concept
a step further. Like in a store for physical goods, data providers
offer their data and data consumers can obtain them. This enables
market basket analyses and recommendations of useful data based

iiWAS2021, November 29-December 1, 2021, Linz, Austria

on previous acquisitions or collaborative filtering, i. e., the behavior
of comparable users. Fernandez et al. [10] introduce such a Data
Market. This requires data providers to be interested in users finding
their data and therefore prepare it accordingly. Yet, it can neither
be assumed that every data provider invests such effort, nor that
an appropriate data offer is available for every demand.

Al-Based Pre-Processing Approaches. The last category of ap-
proaches is about using Al techniques to pre-process raw data
in a fully automated way in order to make it available for use cases
in a tailored form. To this end, Mishra et al. [31] study various
ensemble approaches, in which several predefined pre-processing
techniques are applied to raw data. All of these approaches have in
common that arbitrary combinations of pre-processing techniques
are applied to the data in a fully automated manner. For each of
the resulting datasets, a machine learning model is computed for
the respective use case. The quality of these models (e. g., accuracy
or precision) is evaluated. All models with a quality better than a
given baseline (e. g., a model trained on the raw data) are pooled
into an ensemble. When deployed, all models in the ensemble are
evaluated and the weighted average of the results of each model is
considered as the overall result. However, the data pre-processing
considered here is limited to standard data cleansing tasks, such
as handling missing data or removing noise and outliers. Use-case-
specific transformations of the raw data are not considered. Chaari
Fourati and Ayed [7] present an approach based on federated learn-
ing that enables the transformation of data in near real-time. Here,
the pre-processing steps are applied as close to the data source
as possible. Yet, in order to enable automatic distribution of the
transformation tasks, a model of the infrastructure and the data
pre-processing workflow is required. This model can be specified,
for instance, using an extended version of BPMN [20]. As the key
focus of this approach is on the distribution of the transformation
tasks, primarily infrastructure knowledge and less knowledge about
the data itself (which is the core competence of the domain experts)
is included in the model. Also, information is lost in this approach
as sources only submit pre-processed data instead of raw data.

All Al-based approaches face the inherent problem that, apart
from use-case-independent standard tasks such as data cleansing
tasks, predefined pre-processing steps are required. Consequently,
use-case-specific domain knowledge has to be integrated in order
to improve automated pre-processing (or to enable it in the first
place) [24]. Moreover, since the trained models are usually difficult
to understand, subsequent adaptations by the domain expert are
hardly possible [26]. Due to the use-case-specific pre-processing
tasks, the models also cannot be applied to new use cases without
further ado. Therefore, domain experts have to be involved in the
training of new models for each and every use case, which is con-
trary to the fully automated idea behind such Al-based approaches.

Besides these five main categories, there are many hybrid ap-
proaches that combine these concepts. Also, combinations of dy-
namic Data Lakes with user-friendly Data Warehouses are possi-
ble [27]. For instance, Jensen et al. [19] present a programming
framework that enables to easily specify extract-transform-load
flows to transform data from heterogeneous sources into a process-
able format. Here, users only need to implement the three individual
steps in Python, while the framework handles the execution of the

Christoph Stach, Julia Bréacker, Rebecca Eichler, Corinna Giebler, and Bernhard Mitschang

workflow. Thereby, the flows are parallelized as much as possible,
which renders the approach suitable for processing Big Data [46].
As shown in Section 2, the extract-transform-load workflow is ap-
plied in both, Data Warehouses as well as Data Lakes. Although
the approach by Jensen et al. [19] greatly simplifies the realization
of the workflows as a whole, a lot of IT knowledge is still required
to implement the individual steps.

In addition, all related work require some kind of analysis-driven
discovery, providing the essential data for the respective analy-
ses [32]. Without an efficient data provisioning, however, a Data
Lake deteriorates substantially [29].

Overall, two opposing trends can be identified in related work:
enabling domain experts to contribute to data pre-processing and a
full automation of the data preparation process.

While the latter sounds very appealing, as an Al might discover
new insights regarding data pre-processing and additionally no
expensive and rare domain experts are required [18], studies show
that full automation is not effective and a trade-off between both
trends has to be achieved [8]. That is, comprehensive tool assistance
of domain experts in data pre-processing is needed [1].

To this end, we introduce our approach BARENTS in the follow-
ing section to solve this problem.

5 A TAILORABLE DATA PREPARATION ZONE

Since related work supports users to identify relevant data within
the flood of data available in a Data Lake, with BARENTS we take
the next logical step by enabling non-IT experts to pre-process this
data in a demand-oriented manner. This is crucial as the human
and his or her knowledge should always be first-class citizen in the
data pre-processing process [2].

For this, we build upon prior work by Giebler et al. [13], which
introduces a holistic zone architecture for Data Lakes. This architec-
ture categorizes a Data Lake in two areas: a use-case-independent
area and a use-case-dependent area. At the transition point, data
scientists or other IT experts transform the available raw data into
refined information. This is where BARENTS comes into play by
tailoring the data to the specific use cases for the user.

In the following, we first describe how BARENTS adapts this ar-
chitecture in Section 5.1. We then discuss in Section 5.2 how domain
experts are able to specify transformations in BARENTS in a com-
prehensible manner. Finally, Section 5.3 outlines how BARENTS is
implemented.

5.1 BARENTS Zone Architecture

The architecture by Giebler et al. [13] comprises several zones
which hold pre-processed data in addition to the raw data. The pre-
processing can be highly use-case-specific. Users operate on the
refined data. As a result, data can be provided in a demand-driven
manner. Yet, profound IT know-how is needed to implement the
required transformations, i. e., the effort to support a novel use case
is high.

Therefore, in BARENTS we extend this architecture. The result
is shown in Figure 2. Here, we differentiate between zones that
contain data persistently (depicted in white) and zones that contain
data only transiently (depicted in gray).

Demand-Driven Data Provisioning in Data Lakes

iiWAS2021, November 29-December 1, 2021, Linz, Austria

Zones Dedicated to BARENTS
A

Transient Raw Data | BARENTS Materialized Delivery
Landing Zone Preparation Tem mocn Zone
U- Zone Zone Use Case
= ‘ Zone(s)
Data Stores —¢ :} éj
000110 = d .
0110 - -
. . L
() Temporary Original Data Pre- Access User
T ‘ Data Source Data | Processing Control
Buffering Virtual
Sensors
Cataloging | Single Point | Allocation to m l"zsgn—(é?ge Data
the Data of Truth Use Cases Provisioning
)\

Use-Case-Independent

T

Y

Use-Case-Dependent

Figure 2: The BARENTS Zone Architecture.

Data from different source systems enters the Data Lake via the
Transient Landing Zone. This zone acts as a kind of buffer, since data
that is ingested into the Data Lake can accrue in large volumes at a
high velocity. If the subsequent zones cannot cope with such high
ingestion rates, the Transient Landing Zone can compensate for
this by forwarding the incoming data staggered in batches. This
zone is supposed to fulfill two additional tasks: On the one hand, it
is intended to ensure that the incoming data is authentic, and on the
other hand it has to annotate incoming data with metadata that may
be relevant for later processing or retrieval. Gritti et al. [15] present
a lightweight approach that facilitates both tasks. Here, incoming
data packets are signed by the sources using an attribute-based
signature. Such a signature guarantees the integrity of the data and
provides the necessary metadata via the attributes at the same time.

The unmodified data is then loaded into the Raw Data Zone. Since
the data here is in an unprocessed state?, this zone is considered the
single point of truth for the Data Lake. It is not intended for users
to interact directly with the Raw Data Zone. For this reason, a wide
range of storage technologies and systems are used in this zone
(e. g., the Hadoop Distributed File System?), since the main focus is
on an efficient data storage and not on an easy data discovery and
retrieval.

In order to facilitate data discovery and retrieval, the BARENTS
Preparation Zone harmonizes the data in the Data Lake. That is,
it takes the raw data and pre-processes it based on the demands
of the users. As a result, this zone represents the transition from
the use-case-independent components of the BARENTS Zone Ar-
chitecture to its use-case-dependent components. A great deal of
insight about the intended use cases —i. e., domain knowledge — is
therefore required at this point. Section 5.2 outlines an example of
how a domain expert can specify the use-case-specific demands.

The transformed and pre-processed data is stored in one of the
Use Case Zones. These zones later serve as primary data sources and
contain the refined data as demanded by the use cases. The user
?Nota bene: “Unprocessed” refers to the actual data— it is, however, enriched by

metadata when it is stored in the Raw Data Zone.
3see https://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html

determines how specifically the data is adapted to a particular use
case. S/he is also able to use any technology to store the data in the
Use Case Zones. For instance, the Materialized Use Case Zones can
be implemented as relational databases such as the Oracle Database*
or NoSQL data stores such as the Apache CouchDB®, depending on
the requirements of the respective use case.

Since such redundant data storage could be an issue in a Big
Data context®, BARENTS also introduces Virtual Use Case Zones.
These are, e. g., a strictly in-memory database such as the Raima
Database Manager7, a hybrid database such as Oracle Berkeley DB?,
or a Kafka Broker® providing the data via data streams —i. e., the
data pre-processed by BARENTS is not persisted but forwarded
directly to the user. This enables users to choose the type of data
delivery demand-driven for their use cases.

The Delivery Zone enables demand-driven data provisioning by
referring to the appropriate Use Case Zone. To determine an appro-
priate Use Case Zone!?, an approach such as the one introduced by
Stach et al. [42] can be applied. In this approach, users are identified
based on their attributes. Access rights are specified in terms of
public patterns (i. e, data requirements of an authorized user) and
private patterns (i. e., insights that must not be disclosed). A utility
metric that maximizes the number of detectable public patterns and
minimizes the number of disclosed private patterns can be used to
select an eligible Use Case Zone.

Orthogonally to these operational zones, a Data Lake requires
a Management Zone that contains, e. g., data catalogs, privacy re-
strictions, or access control policies [39]. Yet, these aspects are not
relevant for this paper and are therefore not shown in the figure
for the sake of simplicity.

“see https://www.oracle.com/database/technologies/

Ssee https://couchdb.apache.org/

®Note that a single dataset in the Raw Data Zone can be included in multiple Use Case
Zones.

7 see https://raima.com/

8see https://www.oracle.com/database/berkeley-db/

9see https://kafka.apache.org/

1011 this context, not only the data requirements of the user, but also his or her access
rights as well as data privacy requirements have to be taken into account.

https://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html
https://www.oracle.com/database/technologies/
https://couchdb.apache.org/
https://raima.com/
https://www.oracle.com/database/berkeley-db/
https://kafka.apache.org/

iiWAS2021, November 29-December 1, 2021, Linz, Austria

5.2 BARENTS Configuration

To enable domain experts without IT know-how to describe the
data requirements of their use cases, we adopt an ontology-based
approach in BARENTS. There are many alternative approaches
towards the representation of knowledge, e. g., linguistic knowledge
bases, expert knowledge bases, or cognitive knowledge bases. However,
in our opinion, ontologies are best suited for the configuration of
BARENTS, as they are well suited to persist expert knowledge
in a machine-processable manner. Since a lot of research work
has been done in the area of ontologies, they have reached a high
maturity level. Thus, many methods, tools, languages, and systems
have been developed in recent years which greatly facilitate the
manual creation of ontologies. In addition, machine learning and
natural language processing approaches also enable an automatic
or semi-automatic creation of ontologies [48]. However, the main
benefit of ontologies, which makes them particularly appealing for
our purposes, is that they are primarily designed to facilitate the
sharing and reuse of knowledge [3]. Thus, the knowledge of domain
experts can not only be persisted, but also successively adapted
in order to address novel use cases. This constantly reduces the
configuration effort for the domain experts since they can leverage
the already established knowledge base.

The BARENTS ontology is inspired by the Data Pyramid [36],
i.e., a model for relationships between data, information, and knowl-
edge [50]. Data is a disjointed collection of facts. It is heterogeneous,
unorganized, and not assigned to a particular context. If this data is
processed, combined, and assigned to a specific purpose, informa-
tion is obtained. The preparation steps that are used in this process
are commonly validations (i. e., filtering out false or irrelevant data),
transformations (i. e., mapping a function to a set of data), and
aggregations (i. e., reducing a set of data to a result value). If the
obtained information is used to achieve a goal, it is referred to as
knowledge. That is, in order to reach the highest level in terms of
information value, the information has to be assigned to a specific
use case in which it can be profitably used.

Translated to the configuration of BARENTS, at the data level,
users select the data required for their analyses from the Raw Data
Zone and model which data features have to be included in the
pre-processing. Data features are modeled as resources in the on-
tology and data sources are descriptive literals that are linked to
these resources via relationships. Additional literals provide further
information, e. g., access credentials. The discovery and selection
of suitable data sources is supported by the metadata available for
the Raw Data Zone.

At the information level, the transformations are specified. Ini-
tially, all the relevant data features are grouped in a resource. Then,
the function which has to be applied to the data, is described in
a literal linked to this resource. Additionally, it is modeled which
type of transformation is used. BARENTS supports four different
types of transformations:

I) A filter operator deals with the elimination or selection of
facts from the specified data sets at the data level. For this
purpose, a filter function has to be specified that has the
following mathematical signature:

f:D—B

Christoph Stach, Julia Bréacker, Rebecca Eichler, Corinna Giebler, and Bernhard Mitschang

This function is applied to a set of data of data type D and
maps each of them to a boolean value. All facts selected at
the data level where this boolean value evaluates to false
are filtered out of the set of data.

IT) A map operator deals with the transformation or modifica-
tion of facts from the specified data sets at the data level. For
this purpose, a map function has to be specified that has the
following mathematical signature:

f:D—E

This function is applied to a set of data of data type D and
each fact contained in the set is processed accordingly. In
this process, the facts selected at the data level are cast to
data type E (which can be identical with data type D).

IIT) A reduce operator deals with the aggregation of facts from
the specified data sets at the data level. For this purpose, a
reduce function has to be specified that has the following
mathematical signature:

f:ExD—E

This binary function is applied to a set of data of data type
D. All facts contained in the set are combined to a single
output value of data type E. Similar to the accumulator in
the von Neumann Architecture, this binary function takes
one fact from the input data set and the current intermedi-
ate result —i. e., the data is processed progressively. After
processing all facts selected at the data level, the last inter-
mediate result is the result of the reduction.

v

~

Even though many of the pre-processing tasks can be car-
ried out with the three operators presented above, BARENTS
also provides support for the use of user-defined functions.
For this purpose, the transformation type procedure can be
used. Although it cannot be assumed that domain experts are
able to implement arbitrary transformations independently,
implementations for frequently used pre-processing opera-
tions can be provided by the IT department in programming
libraries that can be integrated and used in BARENTS.

The knowledge level is used to model where the results are stored.
Here, a literal is used to denote in which Use Case Zone this data
sink is located. Similar to the data level, further literals can describe
the data sink in more detail, e. g., in terms of access rights.

Sample Use Case Scenario. To demonstrate the configuration of
BARENTS, we selected a real-world sample scenario from the field
of food chemistry. As food allergies are on the rise in Western
countries, it is very important to test food for allergens on a regular
basis. In this context, nut seeds are among the most prevalent food
allergies which can trigger severe allergic shocks. Hence, in the
considered use case, it has to be analyzed, whether a food sample
contains allergens. More precisely, it has to be ascertained whether
chocolate samples contain traces of hazelnut or walnut [6].

In the analysis considered in this paper, the samples are exam-
ined at the molecular level. That is, the samples are searched for
allergenic peptides, i. e., fragments of proteins. Thereby;, it is possible
to detect even the smallest traces of nuts in the samples. To this end,

Demand-Driven Data Provisioning in Data Lakes

/
/
’ type
e
/
/

/

~
~
-
-
)

A\
A function ®
peptides B ———

iiWAS2021, November 29-December 1, 2021, Linz, Austria

Knowledge Level o Resource E
Information Level L Literal
Data Level — Relation :

1

lambda x :
x.hazelnut
or x.walnut

Figure 3: Excerpt of an Instance of the BARENTS Ontology.

the samples are analyzed with a LTQ Orbitrap XL mass spectrome-
ter!! paired with an Accela HPLC system!?. The thereby acquired
raw data is cross-checked against a protein sequence database!> to
determine whether hazelnut or walnut peptides are contained in
the sample. The samples in which a match occurred are marked. To
reduce the data volume for subsequent analyses, unmarked samples
are then filtered out. The remaining samples, i. e., all chocolates in
which traces of nut seeds were detected, are loaded into a peptide
analysis software!? for in-depth analysis [23].

Figure 3 illustrates how a food chemist can specify a configura-
tion for the previously described use case in the BARENTS ontology.
However, for the sake of simplicity and clarity, only an excerpt of
the complete configuration is shown here. This excerpt contains
only the last pre-processing step, in which all irrelevant food sam-
ples —i. e., the chocolates that do not contain hazelnut or walnut
traces — are filtered out.

To this end, the domain expert initially selects the database
containing the chocolate samples. This is modeled as a literal in the
ontology, which is the data source for the specified transformation.
From the records contained in it, only the features indicative of
hazelnuts or walnuts traces are selected for filtering at the data
level. At the information level, a resource is defined that takes these
two features as input and applies a filter operator to them. The filter
is described as a lambda expression that evaluates to true if one
of the two features is present in a sample, i. e., if a corresponding

marker is found. Finally, at the knowledge level, it is specified that
Hsee https://www.selectscience.net/products/thermo-scientific-ltq-orbitrap-
x1?prodID=81295

125ee https://www.selectscience.net/products/thermo-scientific-accela?prodID=20507
Bsee https://www.uniprot.org/

I4see https://www.bioinfor.com/peaks-studio/

all samples forwarded by the filter operator have to be inserted into
the use case zone “allergens”.

Prior to the depicted excerpt, a similarly structured map operator
is needed, which assigns a corresponding marker to all samples, for
which the comparison with the protein sequence database indicates
that they require an in-depth analysis. This also highlights another
key feature of our ontology — all transformations can be arbitrarily
combined and composed. That is, the outcome of a transformation,
i.e., the resources at the knowledge level, can be used as input, i. e.,
as literals at the data level, in subsequent transformation steps.

Listing 1: RDF/XML Representation of an Instance of the
BARENTS Ontology.

1 <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
< xmlns:dl="http://barents.dl/">

2 <rdf:Description rdf:about="http://barents.dl/walnut">

3 <dl:layer>Data Layer</dl:layer>

4 <dl:source>chocolate</dl:source>

5 <dl:partOf rdf:resource="http://barents.dl/peptides"/>

6 </rdf:Description>

7 <rdf:Description rdf:about="http://barents.dl/hazelnut">

8 <dl:layer>Data Layer</dl:layer>

9 <dl:source>chocolate</dl:source>

10 <dl:partOf rdf:resource="http://barents.dl/peptides"/>
11 </rdf:Description>

12 <rdf:Description rdf:about="http://barents.dl/peptides">
13 <dl:layer>Information Layer</dl:layer>

14 <dl:function>lambda x : x.hazelnut or x.walnut</dl:function>
15 <dl:type>filter</dl:type>

16 <dl:partOf rdf:resource="http://barents.dl/results"/>
17 </rdf:Description>

18 <rdf:Description rdf:about="http://barents.dl/results">
19 <dl:layer>Knowledge Layer</dl:layer>

20 <dl:zone>allergens</dl:zone>

21 </rdf:Description>

22 </rdf:RDF>

https://www.selectscience.net/products/thermo-scientific-ltq-orbitrap-xl?prodID=81295
https://www.selectscience.net/products/thermo-scientific-ltq-orbitrap-xl?prodID=81295
https://www.selectscience.net/products/thermo-scientific-accela?prodID=20507
https://www.uniprot.org/
https://www.bioinfor.com/peaks-studio/

iiWAS2021, November 29-December 1, 2021, Linz, Austria

BARENTS

User Ontology

RDF/XML
File RDF Graph

RDF/ @

Christoph Stach, Julia Bréacker, Rebecca Eichler, Corinna Giebler, and Bernhard Mitschang

Query
Engine

Preparation Phase
o
®
©

@ BARENTS

Processing Phase

p
XML g e

Preparation Zone

Use Case
Zones

Delivery
Zone

Figure 4: Two-Phase Configuration and Operation Process of BARENTS.

5.3 BARENTS Implementation

We use RDF/XML for the internal representation of the ontology.
RDF is well suited to describe ontology instances in a formal way
and for its XML representation, a lot of processing libraries are
available. In addition, XML files can be easily shared among users.
In Listing 1, the instance of our ontology modeled in Figure 3 is
given in this notation. To enable efficient queries on these RDF/XML
files, an equivalent RDF graph has to be generated first. As shown
in Figure 4, they are processed in two phases: an initial preparation
phase and a subsequent processing phase.

@ First, a domain expert models the pre-processing steps re-
quired for his or her use cases, e. g., with the help of a graphical
editor. To this end, s/he can make use of existing RDF triples and
adopt or extend them. In the example presented in Figure 3, the
identified marker peptides could be cross-checked against an exter-
nal protein sequence database or information emphasizing scripts
as presented by Stach et al. [44] could be applied to the data.

® The sum of all triples constitutes the BARENTS ontology. An
RDF/XML file is used internally to store it. @ In order to derive
the required pre-processing steps, the XML file is parsed, and the
corresponding RDF graph is generated. @ Efficient query engines
are available to traverse such graphs. With them, all subgraphs can
be retrieved which describe a transformation for entities at the data
level to entries at the knowledge level.

® After this preparation phase, the derived pre-processing steps
are then transferred to the BARENTS Preparation Zone as con-
figuration for the processing phase. ® There, all affected tuples
are requested from the Raw Data Zone. @ BARENTS applies the
required transformations sequentially to the raw data. Filter, map,
and reduce operators are translated into stream operators, while
procedures are applied to the datasets using iterators.

Since the BARENTS Preparation Zone is a transient zone,
pre-processed data is forwarded to the respective Use Case Zone
specified in the ontology, i. e., either a materialized or a virtual one.
® Users can access the prepared data via the Delivery Zone.

5see https://www.w3.org/TR/rdf-syntax-grammar/

For the data stores at the data and knowledge level, adapters
handle the actual access. The information given in the ontology
(e. g., access credentials) is used as configurations for these adapters.
To support a new data store, BARENTS only needs to be extended
by a corresponding adapter. Then, domain experts can use them
in their transformation descriptions as sources or sinks without
having to worry about technical details.

If needed, a second BARENTS Preparation Zone can be deployed
between the Use Case Zones and the Delivery Zone to enable further
data pre-processing prior to its release. For instance, use case data
can be filtered or blurred to comply with privacy policies and enable
fine-grained data sharing in the process [41].

A proof-of-concept implementation for the use case outlined
in Section 5.2 is depicted in Figure 5. The databases used in the
Raw Data Zone and in the Use Case Zone are only examples that
have proven to be suitable for the given use case. Depending on the
available infrastructure, other databases and storage technologies
can be used as well. One only has to define appropriate connectors
for BARENTS that handle the required data accesses. More details
on the prototypical implementation of BARENTS as well as an
evaluation of our approach are given in the following section.

6 EVALUATION

After introducing our tailorable data preparation zone, BARENTS
is now evaluated. For this purpose, first the runtime overhead as
well as the memory requirements of the BARENTS prototype are
determined in Section 6.1. Then, in Section 6.2, the scope of func-
tionality of the BARENTS approach in general regarding the six
requirements specified in Section 3 is assessed. These two aspects
provide indicators for the soundness of our concept regarding the
support of demand-driven data provision.

6.1 Performance Measurement

In order to evaluate the performance of our approach, we imple-
mented the use case outlined in Section 5.2 with BARENTS. The
result is shown in Figure 5. However, it has to be noted that in this
prototypical implementation created specifically for performance
measurement, both the data import (i. e., the Transient Landing

https://www.w3.org/TR/rdf-syntax-grammar/

Demand-Driven Data Provisioning in Data Lakes

iiWAS2021, November 29-December 1, 2021, Linz, Austria

Data Transient Raw Data BARENTS Use Case Delivery End User
Sources Landing Zone Preparation Zone Zone Applications
Zone Zone
UniParc Protein 0 Processing
Sequence Database Phase

s [)

] BARENTS

- T~ Processing

-— S Engine

\ -
\\ e e
w S — R
/ Manual

! ?SQLite

LTQ Orbitrap XLTM RDFLib
Mass Spectrometer &
Accela HPLC System
RDF/XML
Configuration
File

Export

T W TinyDB

PEAKS Studio

Preparation
Phase

!

Figure 5: A Prototypical Implementation of BARENTS used for the Evaluation.

Zone) as well as the data export (i. e., the Delivery Zone) are han-
dled manually. That is, both the data transfer from the metering
devices (i. e., the LTQ Orbitrap XLTM mass spectrometer and the
Accela HPLC system) and the UniParc protein sequence database
into the Raw Data Zone as well as the data access of the analytics
software (i. e., PEAKS Studio) to the (Virtual) Use Case Zone are
carried out manually by the domain experts. This is due to the fact
that these operations are not within the scope of BARENTS. For
more information on how these two zones can be realized, please
refer to the work of Giebler et al. [13].

As both the data from the metering devices as well as the compar-
ison data from the protein sequence database are structured data, a
relational database is suitable for implementing the Raw Data Zone
in this use case. Due to the given data volumes and for reasons of
simplicity, we decided to use SQLite DB 3.35.5'°. Since only samples
that are subjected to an in-depth analysis are forwarded to the Use
Case Zone, we opted for a Virtual Use Case Zone — it is sufficient to
keep the samples in their original form in the Raw Data Zone per-
manently. The document-oriented database TinyDB 4.5.1'7 proved
to be appropriate for this intermediate storage. However, the data
stores in both zones can be substituted as needed, without any
significant impact on the validity of the subsequent measurements.

The core of BARENTS, the BARENTS Preparation Zone, is im-
plemented in Python 3.9.6'8. All transformations specified in the
ontology are handled by the BARENTS Processing Engine (partially

16see https://www.sqlite.org/
7see https://github.com/msiemens/tinydb/
18see https://www.python.org/

supported by pandas 1.3.1'%). The ontology, which is provided as an
RDF/XML file, is parsed using RDFLib 6.0.0%° and converted into a
processable RDF graph. As Python allows to execute dynamically
created program code, all user-defined transformations specified in
the ontology can be applied to the raw data straightforwardly.

In the performance measurement, both the preparation phase
as well as the processing phase are considered, as indicated in
Figure 5. In order to determine the overhead of the preparation
phase —i. e., the overhead caused by compiling and processing the
RDF graph — we supplemented the ontology containing the trans-
formations introduced in Section 5.2 by artificially generated ones.
By doubling the generated triples gradually, we obtained eleven
ontologies consisting of 250 RDF triples (i. e., 20 transformations) up
to 256k RDF triples (i. e., over 21k transformations). To determine
the overhead of the processing phase —i. e., the overhead caused
by the actual transformations — we incrementally populated the
Raw Data Zone with 500 up to 5,000k entries (i. e., approximately
15 GB of data), increasing the data volume tenfold at each step.

The runtime overhead in the preparation phase is defined as the
time elapsing between reading in the RDF/XML file and completely
traversing the compiled graph, i. e., it indicates how long it takes
to identify all relevant transformations within the ontology. This
overhead is entirely accruing due to the usage of BARENTS, since
such a preparation phase would not occur if the transformations
were performed manually. That is, no baseline can be provided for
this overhead.

Ysee https://pandas.pydata.org/
2see https://rdflib.readthedocs.io/

https://www.sqlite.org/
https://github.com/msiemens/tinydb/
https://www.python.org/
https://pandas.pydata.org/
https://rdflib.readthedocs.io/

iiWAS2021, November 29-December 1, 2021, Linz, Austria

Christoph Stach, Julia Bréacker, Rebecca Eichler, Corinna Giebler, and Bernhard Mitschang

Runtime (in seconds)

T
= Baseline
- = BARENTS g 102
§ | 2
8 110" §
= E| o
I . 3
F 8 S
N—
L 1100 %
: 1100 g
I 8 =
I — 3
9 Fih
L + 102
| |

! ! ! !
0.25 1 4 16 64 256
RDF Triples (in thousands)

(a) Runtime Overhead caused in Preparation Phase

| | |
0.5 5 50 500 5000
Processed Records (in thousands)

(b) Runtime Overhead caused in Processing Phase

Maximum Memory Usage (in Megabyte)

0.25 0.5 1 2 4 8
RDF Triples (in thousands)

16 32 64 128 256

(c) Memory Overhead caused in Preparation Phase

102 |- 8

100 |- *

D EBaseline
| |HBBARENTS

—_
(=]
N

—_
(=]
w

—_
(=)
N

>
Maximum Memory Usage (in Megabyte)

—_
(=]
=4

0.5 5 50 500 5000
Processed Records (in thousands)

(d) Memory Overhead caused in Processing Phase

Figure 6: Overhead caused by BARENTS.

The runtime overhead in the processing phase is defined as the
time elapsing until the transformations are applied to all raw data
and the pre-processed data is available in the corresponding Use
Case Zone, i.e., it indicates how long it takes until the refined
data can be provided to users. For benchmark purposes, we have
determined the runtime of the best possible manual realization of
the transformations as a baseline for the overhead of the processing
phase. Here, for instance, the filtering was applied directly to the
raw data in the database via selection operators to exploit existing
index structures and also reduce the data volume at an early stage.

In addition to the runtime overhead, we have also determined
the memory consumption of BARENTS for both phases in a similar
way. We identified the memory peak usage of BARENTS during
compiling and processing the RDF graph as well as transforming

the raw data. For the processing phase, we also compared the con-
sumption of BARENTS to a baseline consisting of the best possible
manual implementation.

Each measurement was performed five times on an Intel Core i7-
1165G7 (11t gen.) at 2.80 GHz with 32 GB RAM. After each run, all
databases were reset to avoid side effects caused by warm caches.
Figure 6 shows the medians for each measurement. We use the
median to exclude side effects caused by background processes.

It is particularly promising that in both phases the over-
head —both in terms of runtime as well as memory consump-
tion —is in O(n), i.e., it grows linearly with the number of RDF
triples or data records that are processed, respectively. Further-
more, it is remarkable that the overhead in the processing phase is
competitively viable with respect to the baseline.

Demand-Driven Data Provisioning in Data Lakes

A detailed review of the performance data also reveals that the
runtime overhead caused by BARENTS is low. 21k transforma-
tions are traversed in approximately 16.6 s and 15 GB of data are
transformed in 267.3 s. It is important to keep in mind that both
overheads are one-time costs per use case and accrue in advance of
the actual analyses.

Table 2 lists the detailed consolidated runtime costs (i. e., the sum
of the overhead of the preparation phase and processing phase). It
is evident that when dealing with Big Data, it does not greatly differ
whether a small ontology (20 transformations) or a large ontology
(21k transformations) is used. The main overhead is therefore caused
during the processing phase. However, when comparing these costs
to the baseline, it is evident that the consolidated runtime overhead
caused by BARENTS is approximately 155% higher.

This overhead is partly due to the fact that pandas is not designed
to process Big Data [34]. This can be improved, e. g., by approaches
such as Grizzly [22], in which part of the computation is carried out
in the databases of the source system —i. e., the transformations
performed by BARENTS get considerably more in line with the
manually optimized baseline. An alternative optimization strategy
is to use a highly parallelized computation library, such as the
extension for Dask?! presented by Bohm and Beranek [5], which
scales better with Big Data. This also has a positive effect on the
memory consumption.

6.2 Feature Discussion

As the performance evaluation indicates that the overhead caused
by BARENTS is compelling, we assess its functionality next.

A key requirement is that the pre-processing is adaptable (Rj).
In BARENTS this is achieved as user-defined functions can be spec-
ified in the ontology at the information level. Due to the dynamic
evaluation of these functions, external scripts can also be invoked
here. This way, even complex transformations can be applied to the
data. The transformations also must be versatile (R3). Since any
source and sink can be included at the data and knowledge level
via adapters, this is fulfilled in BARENTS. Moreover, the BARENTS
Zone Architecture supports both, materialized and virtual sinks.
The virtual sinks reduce the generated data volume, which makes
BARENTS big-data-ready (R3).

Zsee https://dask.org/

Table 2: Consolidated Runtime Overhead caused by
BARENTS (Preparation and Processing Phase).

Records Baseline BARENTS
small big
500 0.01s 0.02s 16.61s
5k 0.07s 0.09s 16.67 s
50k 0.77 s 0.84s 17.42s
500k 7.43s 8.23s 24.81s

5,000k 183.34s 267.35s 283.94s

iiWAS2021, November 29-December 1, 2021, Linz, Austria

Evidently, an approach targeting non-IT experts also has to be
easy-to-use (Ry). The BARENTS ontology enables domain experts
to model the data requirements of their use cases in an accessible
manner without the need for profound IT know-how. A graphical
editor such as CoModIDE [40] could further facilitate the model-
ing process. The runtime measurement indicated that BARENTS is
resource-efficient in terms of performance (R5). Also, the model-
ing process is efficient, as parts of the RDF graphs can be reused
for other use cases. Stach and Steimle [43] introduce an approach
to recommend such available patterns to modelers depending on
the modeling context.

Lastly, a practicable approach also has to be compatible with
existing infrastructures and must be seamlessly embeddable into
them (Rg). BARENTS can be seamlessly embedded in any zone
model for Data Lakes. Even without a Data Lake, BARENTS can be
used whenever sources have to be connected to sinks and transfor-
mations must be applied to the data during transmission. The ma-
terialized and virtual zones also support a hybrid batch and stream
processing, which is common in a Big Data environment [12]. Thus,
BARENTS meets all requirements towards a data management
infrastructure enabling demand-driven data provisioning.

7 CONCLUSION

The economic value of data is on the rise. Yet in order to fully
exploit it, data needs to be refined first. This pre-processing must
be tailored to the intended use case. While domain experts have
the expertise to decide which pre-processing steps are needed, they
often lack the IT skills required to implement them and apply them
to the raw data.

To this end, we introduce a tailorable data preparation zone for
Data Lakes called BARENTS that enables a demand-driven data
provisioning. This is achieved by means of three factors:

1.) BARENTS introduces an ontology to specify data pre-
processing steps. Domain experts can use this ontology to
describe which data transformations have to be applied to the
raw data from source systems in order to make it exploitable
in their use cases.

2.) This ontology is used to configure the BARENTS Prepa-
ration Zone, an extension to a zone architecture for Data
Lakes. Data Lakes are well suited for managing Big Data.
This is further enhanced by the addition of virtual zones in
BARENTS.

3.) By means of adapters, the BARENTS Preparation Zone can
be connected to any data source or sink —i.e., BARENTS
can be seamlessly integrated into any IT landscape.

Performance measurements and feature analyses show that
BARENTS is not only performant, but also fulfills all requirements
towards such a data provisioning approach.

As part of future work, the performance of BARENTS can be fur-
ther enhanced, e. g., by carrying out part of the computation in the
databases of the source system or by applying parallel computation
approaches.

REFERENCES

[1] Michael Behringer, Pascal Hirmer, Manuel Fritz, and Bernhard Mitschang. 2020.
Empowering Domain Experts to Preprocess Massive Distributed Datasets. In

https://dask.org/

iiWAS2021, November 29-December 1, 2021, Linz, Austria

(2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[24]

Proceedings of the 23'¢ International Conference on Business Information Systems
(BIS *20), 61-75.

Michael Behringer, Pascal Hirmer, and Bernhard Mitschang. 2018. A Human-
Centered Approach for Interactive Data Processing and Analytics. In Enterprise
Information Systems: 1 9 International Conference, ICEIS 2017, Porto, Portugal,
April 26-29, 2017, Revised Selected Papers. Slimane Hammoudi, Michat Smialek,
Olivier Camp, and Joaquim Filipe, editors. Springer, Cham, 498-514.

Andrew Thomas Bimba et al. 2016. Towards knowledge modeling and manipu-
lation technologies: A survey. International Journal of Information Management,
36, 6, Part A, 857-871.

Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-
stantinou. 2020. Dataset Discovery in Data Lakes. In Proceedings of the 2020
IEEE 36" International Conference on Data Engineering (ICDE °20), 709-720.
Stanislav Bohm and Jakub Beranek. 2020. Runtime vs Scheduler: Analyzing
Dask’s Overheads. In Proceedings of the 2020 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS °20), 1-8.

Julia Bracker and Jens Brockmeyer. 2018. Characterization and Detection of
Food Allergens Using High-Resolution Mass Spectrometry: Current Status
and Future Perspective. Journal of Agricultural and Food Chemistry, 66, 34,
8935-8940.

Lamia Chaari Fourati and Samiha Ayed. 2021. Federated Learning toward Data
Preprocessing: COVID-19 Context. In Proceedings of the 2021 IEEE International
Conference on Communications Workshops (ICC Workshops ’21), 1-6.

Tijl De Bie et al. 2021. Automating Data Science: Prospects and Challenges.
Communications of the ACM, 1-19. Accepted for publication (April 2021). https:
//arxiv.org/abs/2105.05699.

Rebecca Eichler et al. 2020. HANDLE-A Generic Metadata Model for Data
Lakes. In Proceedings of the 22" International Conference on Big Data Analytics
and Knowledge Discovery (DaWaK ’20), 73-88.

Raul Castro Fernandez, Pranav Subramaniam, and Michael J. Franklin. 2020.
Data Market Platforms: Trading Data Assets to Solve Data Problems. Proceed-
ings of the VLDB Endowment, 13, 12, 1933-1947.

Samuel Flender. 2019. Data is not the new oil. Medium — towards data science,
(Feb. 2019). https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61b
c2d.

Corinna Giebler, Christoph Stach, Holger Schwarz, and Bernhard Mitschang.
2018. BRAID — A Hybrid Processing Architecture for Big Data. In Proceedings
of the 7" International Conference on Data Science, Technology and Applications
(DATA *18). Vol. 1, 294-301.

Corinna Giebler et al. 2020. A Zone Reference Model for Enterprise-Grade Data
Lake Management. In Proceedings of the 2020 IEEE 24" International Enterprise
Distributed Object Computing Conference (EDOC *20), 57-66.

Alex Gorelik. 2019. The Enterprise Big Data Lake: Delivering the Promise of Big
Data and Data Science. Andy Oram, editor. O’Reilly Media, Sebastopol, CA.
Clémentine Gritti, Melek Onen, and Refik Molva. 2019. Privacy-Preserving
Delegable Authentication in the Internet of Things. In Proceedings of the 34"
ACM/SIGAPP Symposium on Applied Computing (IoT °19), 861-869.
Wilfriedand Grossmann and Stefanie Rinderle-Ma. 2015. Data Provisioning.
In Fundamentals of Business Intelligence. Springer, Berlin, Heidelberg. Chap. 3,
87-118.

Saurabh Gupta and Vonkayala Venkata Giri. 2018. Practical Enterprise Data
Lake Insights: Handle Data-Driven Challenges in an Enterprise Big Data Lake.
Apress, New York, NY.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated Machine
Learning: Methods, Systems, Challenges. Springer, Cham.

Seren Kejser Jensen, Christian Thomsen, Torben Bach Pedersen, and Ove
Andersen. 2021. pygrametl: A Powerful Programming Framework for Easy
Creation and Testing of ETL Flows. In Transactions on Large-Scale Data- and
Knowledge-Centered Systems XLVIII: Special Issue In Memory of Univ. Prof. Dr.
Roland Wagner. Abdelkader Hameurlain and A. Min Tjoa, editors. Springer,
Berlin, Heidelberg, 45-84.

Ameni Kallel, Molka Rekik, and Mahdi Khemakhem. 2021. IoT-fog-cloud based
architecture for smart systems: Prototypes of autism and COVID-19 monitoring
systems. Software: Practice and Experience, 51, 1, 91-116.

Ralph Kimball and Margy Ross. 2013. The Data Warehouse Toolkit: The Definitive
Guide to Dimensional Modeling. (3"rCl Edition ed.). Wiley, Indianapolis, IN.
Steffen Klabe and Stefan Hagedorn. 2021. Applying Machine Learning Models
to Scalable Dataframes with Grizzly. In Tagungsband der 19. Fachtagung fiir
Datenbanksysteme fiir Business, Technologie und Web (BTW ’21), 195-214.
Robin Korte, Julia Briacker, and Jens Brockmeyer. 2017. Gastrointestinal di-
gestion of hazelnut allergens on molecular level: Elucidation of degradation
kinetics and resistant immunoactive peptides using mass spectrometry. Molec-
ular Nutrition & Food Research, 61, 10, 1700130:1-1700130:16.

Maxat Kulmanov, Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. 2020.
Semantic similarity and machine learning with ontologies. Briefings in Bioin-
formatics, 22, 4, 1-18.

Christoph Stach, Julia Bréacker, Rebecca Eichler, Corinna Giebler, and Bernhard Mitschang

[25]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[43]

[44]

[45]

[46]

Clément Labadie, Christine Legner, Markus Eurich, and Martin Fadler. 2020.
FAIR Enough? Enhancing the Usage of Enterprise Data with Data Catalogs. In
Proceedings of the 2020 IEEE 22" Conference on Business Informatics (CBI’20),
201-210.

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2021. Ex-
plainable AIL: A Review of Machine Learning Interpretability Methods. Entropy,
23,1, 18:1-18:45.

Marilex Rea Llave. 2018. Data lakes in business intelligence: reporting from
the trenches. Procedia Computer Science, 138, 516-524.

Julian Luengo et al. 2020. Big Data Preprocessing: Enabling Smart Data. Springer,
Cham.

Christian Mathis. 2017. Data Lakes. Datenbank-Spektrum, 17, 3, 289-293.
Amol Mavuduru. 2020. Is Data Really the New Oil in the 21st Century? Medium,
(Dec. 2020). https://www.towardsdatascience.com/is-data-really-the-new-oil-i
n-the-21st-century-17d014811b88.

Puneet Mishra et al. 2020. New data preprocessing trends based on ensemble of
multiple preprocessing techniques. TrAC Trends in Analytical Chemistry, 132,
116045:1-116045:12.

Fatemeh Nargesian et al. 2019. Data Lake Management: Challenges and Op-
portunities. Proceedings of the VLDB Endowment, 12, 12, 1986-1989.

Fatemeh Nargesian et al. 2020. Organizing Data Lakes for Navigation. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD °20), 1939-1950.

Devin Petersohn et al. 2020. Towards Scalable Dataframe Systems. Proceedings
of the VLDB Endowment, 13, 12, 2033-2046.

Franck Ravat and Yan Zhao. 2019. Data Lakes: Trends and Perspectives. In
Proceedings of the 30" International Conference on Database and Expert Systems
Applications (DEXA °19), 304-313.

Jennifer Rowley. 2007. The wisdom hierarchy: representations of the DIKW
hierarchy. Journal of Information Science, 33, 2, 163-180.

Pegdwendé Sawadogo and Jérome Darmont. 2021. On data lake architectures
and metadata management. Journal of Intelligent Information Systems, 56, 97~
120.

Stefan Schmid, Cory Henson, and Tuan Tran. 2019. Using Knowledge Graphs
to Search an Enterprise Data Lake. In Proceedings of the 16" European Semantic
Web Conference (ESWC ’19), 262-266.

Ben Sharma. 2018. Architecting Data Lakes: Data Management Architectures
for Advanced Business Use Cases. Rachel Roumeliotis, editor. (Z“d Edition ed.).
O’Reilly Media, Bejing et al.

Cogan Shimizu, Karl Hammar, and Pascal Hitzler. 2020. Modular Graphical
Ontology Engineering Evaluated. In Proceedings of the 17" European Semantic
Web Conference (ESWC 20), 20-35.

Christoph Stach, Clémentine Gritti, and Bernhard Mitschang. 2020. Bringing
Privacy Control Back to Citizens: DISPEL — A Distributed Privacy Management
Platform for the Internet of Things. In Proceedings of the 35t ACM/SIGAPP
Symposium On Applied Computing (PDP ’20), 1272-1279.

Christoph Stach, Clémentine Gritti, Dennis Przytarski, and Bernhard Mitschang.
2020. Trustworthy, Secure, and Privacy-aware Food Monitoring Enabled by
Blockchains and the IoT. In Proceedings of the 2020 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom *20), 50:1—
50:4.

Christoph Stach and Frank Steimle. 2019. Recommender-based Privacy Re-
quirements Elicitation - EPICUREAN: An Approach to Simplify Privacy Set-
tings in IoT Applications with Respect to the GDPR. In Proceedings of the 34"
ACM/SIGAPP Symposium On Applied Computing (PDP ’19), 1500-1507.
Christoph Stach et al. 2020. How to Provide High-Utility Time Series Data in a
Privacy-Aware Manner: A VAULT to Manage Time Series Data. International
Journal on Advances in Security, 13, 3 & 4, 88-108.

Michael Stonebraker and Ugur Cetintemel. 2005. “One Size Fits All”: An Idea
Whose Time Has Come and Gone. In Proceedings of the 21°! International
Conference on Data Engineering (ICDE *05), 2-11.

Christian Thomsen and Torben Bach Pedersen. 2011. Easy and Effective Parallel
Programmable ETL. In Proceedings of the ACM 14" International Workshop on
Data Warehousing and OLAP (DOLAP ’'11), 37-44.

Wil M. P. van der Aalst. 2014. Data Scientist: The Engineer of the Future. In
Proceedings of the 5t International Conference on Interoperability for Enterprise
Systems and Applications (I-ESA ’14), 13-26.

Wei Yun et al. 2021. Knowledge modeling: A survey of processes and techniques.
International Journal of Intelligent Systems, 36, 4, 1686—1720.

Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD °20), 1951-1966.

Chaim Zins. 2007. Conceptual approaches for defining data, information, and
knowledge. Journal of the American Society for Information Science and Tech-
nology, 58, 4, 479-493.

https://arxiv.org/abs/2105.05699
https://arxiv.org/abs/2105.05699
https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d
https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d
https://www.towardsdatascience.com/is-data-really-the-new-oil-in-the-21st-century-17d014811b88
https://www.towardsdatascience.com/is-data-really-the-new-oil-in-the-21st-century-17d014811b88

	Abstract
	1 Introduction
	2 Data Provisioning Architectures
	3 Requirement Specification
	4 Related Work
	5 A Tailorable Data Preparation Zone
	5.1 BARENTS Zone Architecture
	5.2 BARENTS Configuration
	5.3 BARENTS Implementation

	6 Evaluation
	6.1 Performance Measurement
	6.2 Feature Discussion

	7 Conclusion

