
© 2018 SCITEPRESS. This is the author’s version of the work. It is posted at https://opencms.uni-
stuttgart.de/fak5/ipvs/departments/as/publications/stachch/icissp_18_accessors.pdf by
permission of SCITEPRESS for your personal use. Not for redistribution. The definitive version was
published in In: Mori, P. et al. (Eds.) Proceedings of the 4th International Conference on Information
Systems Security and Privacy - Volume 1: ICISSP, pp. 30–40, 2018, doi: 10.5220/0006572100300040.

ACCESSORS
A Data-Centric Permission Model for the Internet of Things

Christoph Stach1 and Bernhard Mitschang1
1Institute for Parallel and Distributed Systems, University of Stuttgart,

Universitätsstraße 38, D-70569 Stuttgart, Germany
{stachch, mitsch}@ipvs.uni-stuttgart.de

Keywords:
Permission Model, Data-Centric, Derivation Transparent, Fine-Grained, Context-Sensitive, IoT.

Abstract:
The Internet of Things (IoT ) is gaining more and more relevance. Due to innovative IoT devices
equipped with novel sensors, new application domains come up continuously. These domains include
Smart Homes, Smart Health, and Smart Cars among others. As the devices not only collect a lot
of data about the user, but also share this information with each other, privacy is a key issue for
IoT applications. However, traditional privacy systems cannot be applied to the IoT directly due
to different requirements towards the underlying permission models. Therefore, we analyze existing
permission models regarding their applicability in the IoT domain. Based on this analysis, we come
up with a novel permission model, implement it in a privacy system, and assess its utility.

1 INTRODUCTION

The Internet of Things (IoT ) is leaving the Early
Adopters stage as it is becoming more and more
popular (Davies et al., 2016). New Things, i. e.,
small gadgets with sensors which are connected to
the Internet, come onto the market. Not only tech-
nology enthusiasts are interested in these devices,
but they also get into the focus of the general pub-
lic. IoT has opened the way for novel use cases in
various domains including Smart Homes, Smart
Health, or Smart Cars (Aman et al., 2017).

As the Things1 are able to capture a lot of
diverse data about the user and they can share
this information with each other, IoT applications
(or apps) gain a comprehensive knowledge about
their users. That way, they are able to improve
the quality of our everyday life, as they are able to
predict the most likely user demands at an early
stage and adapt their provided services accord-
ingly. However, the possible threats deriving from
such apps cannot be underestimated. Individu-
als can be monitored permanently without their
knowledge. Therefore, IoT apps have an high
impact on privacy (Aggarwal et al., 2013).

1We use the generic term Thing for any kind of
device equipped with sensors and Internet access.

Technical approaches are required to conceal
sensitive information and give users the ability to
control what happens with their data. However,
most privacy management systems overwhelm
users. Generally, such systems enable to restrict
the usage of a certain data processing unit. Yet,
users cannot estimate which threats originate from
these entities (Felt et al., 2012). From the data
gathered for a data producer, a lot of additional
information can be derived (Perera et al., 2014).
For instance, a proximity sensor can disclose the
absolute location of a user also, when it gathers
the distance to a Thing with a stationary loca-
tion. So, a data-centric and thus comprehensible
approach is required to secure private data.

For this very reason, we provide the following
five contributions in our work:
(1) We deduce requirements towards a permission

model for IoT apps from a use-case scenario.
(2) We analyze permission models which are ap-

plied in existing privacy systems and provide a
comprehensive overview of their features and
their applicability in the IoT domain.

(3) We construct a data-centric permission model
for the Internet of Things, called accessors.

(4) We apply accessors to an existing privacy
system, the Privacy Management Platform

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/icissp_18_accessors.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/icissp_18_accessors.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/icissp_18_accessors.pdf
https://doi.org/10.5220/0006572100300040


(PMP) (Stach and Mitschang, 2013,Stach and
Mitschang, 2014). However, we could use any
of the many similar privacy systems as a foun-
dation for our model without a loss of argu-
ment.

(5) We evaluate our model and assess its utility.

The remainder of this paper is as follows: Sec-
tion 2 introduces a real-world use-case scenario to
illustrate the challenges for a permission model for
IoT apps. Then, Section 3 postulates five key re-
quirements for such a permission model. Section 4
discusses various existing permission models. Our
model—accessors—is introduced in Section 5.
Section 6 describes how to apply accessors to
a privacy system. Finally, Section 7 assesses our
approach before Section 8 concludes this work and
gives a short outlook on future work.

2 USE-CASE SCENARIO

(Istepanian et al., 2011) describe how IoT tech-
nologies can be applied for non-invasive glucose
level sensing and diabetes management. To that
end, the patients’ diabetes devices are linked via
IPv6 connectivity to their healthcare provider to
forward any measured data. Yet, patients do
not know, which data exactly is forwarded, espe-
cially since such a device is able to gather various
kinds of data. For instance, some devices also
add location data to each glucose metering, since
this information can be relevant for the diagnos-
tic analysis (Knöll, 2010,Stach and Schlindwein,
2012, Stach, 2016). By combining the gathered
data, further knowledge can be derived (e. g., a
combination of blood sugar values and location
data enables to draw inferences about the user’s
eating behavior as a rising blood sugar level shortly
after walking past a candy shop indicates that the
user has bought some sweets (Knöll, 2009)).

The number of available IoT health devices is
considerable growing. Each new generation comes
up with more sensors, offering a wider service
spectrum than the preceding generation (Vashist
et al., 2014). The accuracy of the sensors is also
getting better and better (Kovatchev et al., 2004).
However, not every IoT app requires such a high
accuracy. Meaning that from a privacy perspec-
tive, the data quality should be downgraded in
order to conceal some private information. While
some of the data provided by such IoT devices
are uncritical from a privacy point of view or so
vital that the data is required all the time, other

sensitive data is required only in case of an emer-
gency. For instance, if a patient suffers an insulin
shock, any available data should be sent to his
or her physician in order to get the best medical
attendance as possible.

In such a scenario a privacy system—or more
specifically its permission model—has to meet
several novel requirements in order to be effec-
tive (Sicari et al., 2015). For instance, a focus
on data-centric protection goals is becoming es-
sential (Agrawal et al., 2012), especially since the
processed information is assembled from various
sources which are not necessarily known to the
user (Takabi et al., 2010). Furthermore, as perma-
nently new devices with new kinds of sensors are
rolled out, the permission model has to persist in
such a fluctuating setting (Aggarwal et al., 2013).

3 REQUIREMENTS
SPECIFICATION

As the foregoing scenario illustrates, there are
special requirements towards a permission model
for IoT apps which are detailed in the following.

[R1] Data-Centric Policy Rules. In order
to be comprehensible and manageable for users,
permissions have to refer to types of data (e. g.,
blood sugar level) instead of data providers (e. g.,
glucometer). While it is obviously that a glucome-
ter meters the blood sugar level, some devices
provide additionally location data. If policy rules
are based on data providers, a user might allow a
health app to use his or her glucometer without
knowing that s/he also gave access to such non-
medical data in the process. Moreover, the same
type of data can be provided by several providers
(e. g., the blood sugar level is provided by glucome-
ters as well as Apple Watches). If a user wants to
prohibit access to his or her health data, then this
rule has to be applied to any possible provider.

[R2] Derivation Transparency. An IoT
app has access to several sensors and thus various
types of data. By combining these, additional
data can be derived. A permission model has
to be able to represent such coherences. For in-
stance, if 𝐴 can be derived from 𝐵 and 𝐶 and a
user prohibits access to 𝐴, then an app must not
be allowed to access 𝐵 and 𝐶 at the same time.
This can be archived by describing what data can
be derived from which sources. Then the user can
assign permissions at data level and the privacy
system has to apply corresponding rules to the
associated sources.



[R3] Extendable Permission Model. The
IoT is constantly evolving as new sensor technolo-
gies or communication standards arise. A static
permission model, i. e., a model with a fixed set of
protected entities, gets outdated very fast. There-
fore, the model has to be dynamically extendable.
In particular, all extensions have to be backward
compatible, that is, by extending the model pre-
vious policy rules must not become invalid.

[R4] Fine-Grained Policy Rules. In order
to enable a user to manage his or her data in a
privacy-aware manner, s/he requires total control
over information distribution and disclosure. That
implies that the permission model has to support
fine-grained policy rules in terms of two dimen-
sions: On the one hand, the protected entities
have to be fine-grained. For instance, Android pro-
vides a Bluetooth permission which controls any
data that is provided by a device via a Bluetooth
connection—such a permission specifies neither a
type of data nor a sensor. As a consequence, users
have to permit apps to use a Bluetooth headphone
and a Bluetooth medical device at the same time
via a single permission! On the other hand, a user
has to have several choices how to constrain a
certain permission. Most permission models allow
Boolean decisions, only (grant or deny). However,
a permission for location data also could restrict
the accuracy of the data.

[R5] Context-Sensitive Policy Rules.
Since IoT apps are often context-aware, that is, an
app react on the situation it is currently used, also
the policy rules should be context-sensitive. For
instance, a medical app should have access to any
kind of data in case of an emergency. Otherwise,
more restrictive policy rules should be applied. We
follow the context definition of (Dey, 2001), i. e.,
“any information that can be used to characterize
the situation of an entity”.

4 RELATED WORK

Based on these requirements, we analyze permis-
sion models which are currently used in the IoT
context. As the IoT is a highly heterogeneous
environment with various operating systems run-
ning on the Things, a lot of different privacy sys-
tems and thus permission models are being used
which aggravates the privacy issues. Yet, there
are several approaches to establish Android in the
IoT, e. g., Android Things (Google Inc., 2017) or
RTAndroid (Kalkov et al., 2012). So, we focus
on Android-based privacy systems in our work.

Rule
[1,*]

createPolicy
[1,1]

define
Access 

Permission

System 
Function

Sensor

Application
[1,1]

[1,1]

[1,1]
is-a

Figure 1: The Permission Model Applied in Android.

However, as any mobile platform applies a compa-
rable permission-based privacy system, we loose
no argument by doing so (Barrera et al., 2010).

In Android a quite simple permission model is
applied (see Figure 1). Each Permission regulates
either the usage of a system functions (e. g., adding
entries to the calendar) or access to a sensor (e. g.,
the camera). An app which uses such a function or
sensor has to request the appropriate permission.
For each granted request a policy rule is created.
Most permissions are automatically granted when
an app is installed, while dangerous permissions
have to be granted at runtime (Enck et al., 2009).

Whenever Google adds new permissions or re-
labels existing permissions, app developers have
to add these permissions to their already released
apps in order to keep them operative (Sellwood
and Crampton, 2013). Yet, a single permission can
cover several system functions or sensors, which
makes it hard for a user to comprehend the per-
missions. This is aggravated by the fact that
there are too many different permissions, even
for noncritical operations (e. g., the usage of the
vibration function) (Felt et al., 2012). That is why
Google no longer informs the user about noncriti-
cal permissions, the so-called normal permission.
However, Google classifies access to the Internet
or the usage of Bluetooth device as safe operations
(see Figure 2), although both can have a severe
impact on the user’s privacy. Thus, such a basic
permission model is not applicable for the IoT.

(Sekar et al., 2012) introduce Selective Permis-
sions. That is, any Android permission requested
by an app is stored in a Shadow Manifest which
can be modified at runtime. In this way, a user
is able to withdraw certain permissions similar to
the Android runtime permissions. Yet, the Selec-
tive Permissions have two advantages. On the one
hand, a user can withdraw any permission and
on the other hand a missing permission does not
lead to a security exception. Instead a null value
is returned to the app. However, this approach
does not alter the Android permission model and
therefore it does not fulfill any of the requirements
postulated in Section 3 likewise.

CRêPE introduces a context-sensitive permis-
sion model (Conti et al., 2011). Each access to a



Android 
Permission

Normal 
Permission

BLUETOOTH

INTERNET

…

Dangerous
Permission

CALL_PHONE

READ_SMS

…

Figure 2: Classification of Android Permissions in
Normal and Dangerous Ones, cf. (Wei et al., 2012).

data source, i. e., each permission request, can be
linked to a spatio-temporal context. This context
defines a condition under which the permission is
granted. Yet, the rules are mapped to Android
permissions and therefore, CRêPE has the same
shortcomings as Android’s permission model.

Apex introduces an XML-based policy lan-
guage in order to restrict the usage of Android
permissions (Nauman et al., 2010). The user is
able to define, e. g., how often a certain permission
can be used or in which chronological order permis-
sions can be granted. Aside from such constraints,
the permission model allows no wide-ranging con-
textual constraints or fine-grained permission set-
tings. Also, the model is neither data-centric nor
derivation transparent and it cannot be extended
as it is based on Android permissions.

In YAASE a user defines what operations a
certain app is allowed to perform on a resource,
i. e., either a content or service provider (Russello
et al., 2011). Data from these resources can be
tagged, e. g., to differentiate between public and
private data provided by the same resource. The
user specifies whether only certain tags are ac-
cessible for an app. Moreover, s/he can define
operations which have to be performed before the
data is forwarded to an app, e. g., a filer operation
to remove sensitive data. That way, YAASE is
able to specify very fine-grained policy rules. How-
ever, these rules are not data-centric, derivation
transparent, or context-sensitive. Furthermore,
the expandability of the model is restricted to
specified operations.

Sorbet mainly focuses on undesired informa-
tion flows between apps (Fragkaki et al., 2012). To
this end, the underlying permission model allows
to specify information-flow constraints in order
to prevent privilege escalation. That way, Sorbet
supports some kind of context-sensitivity. In ad-
dition, the resources protected by the permissions
can be any kind of component (e. g., services or

content providers). So, the permission model is
extendable. Moreover, the model allows to specify
constraints that limit the usage of certain permis-
sions, e. g., by adding a lifespan to it. This results
in fine-grained policy rules even though Sorbet still
deals with Boolean decisions. Also, Sorbet neither
supports data-centric nor derivation transparent
policy rules.

RetroSkeleton is an app rewriting system ca-
pable of replacing method calls with arbitrary
code fragments (Davis et al., 2012, Davis and
Chen, 2013). Its policy consists of Clojure re-
placement commands. The user is able to pos-
tulate derivation transparent, fine-grained, and
context-sensitive policy rules—provided that s/he
has the required programming skills. Since the
model itself is generic and does not map to prede-
fined permissions, it is extendable. Yet, as it only
replaces method calls, the model is not tailored
to data-centric permissions.

Constroid, which is based on the UCONABC
model (Park and Sandhu, 2004), provides subjects
(e. g., processes) with rights to operate on data
items (e. g., all business contacts) (Schreckling
et al., 2012). The data items can be associated
with attributes (e. g., contacts without a private
phone number) to restrict the access rights. Since
the access rights are related to data only, the con-
sidered operations are restricted to create, read,
update, and delete. Optional conditions specify
whether a rule is applicable under a certain con-
text. Yet, the model is not extendable and does
not support derivation transparent policy rules.

SPoX is a security policy specification lan-
guage (Hamlen and Jones, 2008). SPoX rules
define a state machine that accepts any sequences
of commands that comply with the security policy.
(Backes et al., 2013) apply this language in their
privacy system called AppGuard. So, the user is
able to formulate fine-grained policy rules, e. g.,
by limiting network access to a certain address.
As any command can be restricted by policy rules,
AppGuard’s permission model is extendable. That
way, even novel data sources are supported by App-
Guard out of the box. By chaining several rules,
the user is able to model some kind of derivation
transparency. Also the context in which a certain
command is executed can be restricted (Backes
et al., 2014). However, these restrictions only
refer to the command sequence and not to the
user’s context. Moreover, the privacy model is not
data-centric.

(Scoccia et al., 2017) introduce flexible per-
missions for Android which are called AFP. In



AFP the permissions are bound to features of
an app. That is, an app is only allowed to re-
quest a permission in order to perform a certain
task. Moreover, AFP enables users to assign fine-
grained permissions, e. g., by granting only access
to selected contacts instead of the whole contact
list. Since AFP defines its own permissions, the
model is extendable. Yet, the policy rules are
neither data-centric nor derivation transparent.

DroidForce introduces data-centric policy
rules (Rasthofer et al., 2014). OSL (Hilty et al.,
2007) is used to specify the rules. In this way,
temporal conditions as well as cardinality and
time constraints can be added to each permission.
Therefore both, fine-grained and context-sensitive
policy rules are supported. The key feature of
DroidForce is its focus on data-centric permissions.
That is, the permissions are mapped to data do-
mains (e. g., location data or contacts data) rather
than system sensor functions. However, coher-
ences between protected data sources cannot be
modeled and the applied model is not extendable.

The Privacy Management Platform
(PMP) (Stach and Mitschang, 2014) ap-
plies the Privacy Policy Model (PPM ) (Stach
and Mitschang, 2013) (see Figure 3). The
PPM is extendable and enables fine-grained
and context-sensitive policy rules. It splits apps
into self-contained Service Features. In this
way, permissions are not granted to apps, but
directly to the respective Service Features. The
permissions get an earmarking for a certain
purpose and the user can (de-)activate these
features according to his or her needs. Access
to data sources or sinks is provided via so-called
Resources. Related Resources can be pooled in a
Resource Group (e. g., GPS and WiFi positioning
are part of a location Resource Group). For each
Resource, a user can define individual Privacy
Settings (e. g., to reduce the accuracy of location
data for a certain Service Feature). The data
from the Resources is also used to add contextual
constraints to each privacy rule to define its scope
of application. So, the PPM already meets most
of the requirements towards a permission model
for the IoT. Yet, it does not support data-centric
policy rules and therefore overstrains the user in
such a heterogeneous environment. This flaw gets
obvious in the following Smart Health example:

If a user keeps an electronic health diary via
a Smart Health app for his or her Smartphone.
However, s/he only wants to track his or her fit-
ness progress including heart rate (pulse meter),
activities (accelerometer and orientation sensor),

Privacy 
Rule

[0,1]

[1,*]
createPolicy

[0,*]

define Resource

Data 
Source

Data Sink

Service 
Feature

specify

Application

[1,1]

[1,*]

[1,1]

[1,1]

[1,1]
is-a

Privacy 
Setting

[1,1]

pool

activate

Resource 
Group

[1,*]

[1,*]

[1,1]

Figure 3: The Privacy Policy Model (PPM).

and training locations (GPS). Additionally, s/he
wants to use the camera for a visual documenta-
tion of his or her training progress. For instance, a
insurance company provide a special tariff rate for
users of this app which rewards a healthy lifestyle.

Hence, a user might not want to share any
data that could indicate an illness such a the body
temperature with the app as this could lead to
a higher insurance rate. In the PPM, the user
is therefore able to prohibit this app to access a
Bluetooth medical thermometer for the purpose
of measuring the body temperature. The ther-
mometer then is represented as a Resource and
the measuring is represented as a Service Feature.

However, if we assume that the Smartphone
is equipped with a thermographic camera, the
user has to be aware of this feature. If s/he does
not consider that, such a camera is also able to
reveal his or her body temperature. To prevent
this s/he has to define an additional Privacy Rule
in the PPM for the measuring Service Feature
which prohibits the access of the camera Resource.
For any data source s/he has to reflect which
knowledge can be derived from its data.

In theory, the PPM is indeed able to secure
sensitive data also for IoT apps. However, with an
increasing number of different sensors, it is almost
impossible for a user to keep track of all the possi-
ble data leaks due to the Resource-centric Policy
Rules of the PPM. Nevertheless, the PPM is a
sound foundation for accessors which introduces
a data-centric perspective.

5 THE ACCESSORS MODEL

As shown in the previous section, the PPM is well-
suited for Smartphone apps with a manageable
amount of sensors involved. In an IoT scenario
with lots of different sensors, another approach
is required since humans tend to think in a data-
centric way. That is, a user knows which data
s/he wants to keep secret and s/he does not want



to bother about which sensor or data source could
reveal this type of data. For instance, if a user
wants to prohibit that an app has access to his
or her body temperature, this should be repre-
sented via a single rule instead of one rule per
data source which holds this information. To this
end, a permission model has to be able to map
data producers to the type of data which is pro-
vided by them. In this way, a user can select which
type of data should be available to an app (e. g.,
body temperature) and the model unfolds which
data sources have to be considered (e. g., medical
thermometer and thermographic camera). Our
approach of a data-centric permission model for
the Internet of Things—or short accessors—is
shown in Figure 4. In the following, we detail
its key components and elaborate on how they
contribute to meet the five requirements.

Rule Core. Similar to the PPM, an acces-
sors policy rule basically consists of three parts:
an access purpose, a permission to access a data
processing unit2, and a constraint. These triples
compose the rule core. Optionally, each policy
rule can be linked to a context under which it is
activated (see Paragraph Context Abstraction).

User Abstraction. Any inquiring entity—
i. e., an app, a Smart Thing, or even a user—is
able to specify one or multiple access purposes
that require access to a protected type of data.
An access purpose is a code fragment within an
app that carries out a single task. For instance,
such an access purpose in the use-case scenario
described in Section 2 could be the graphical rep-
resentation of metering locations on a map. That
way, permissions are not linked to an app but to a
certain access purpose. As a consequence, a user
can decide, which access purposes are justified for
a certain type of app and whether s/he wants to
execute the associated code fragment when it re-
quires the specified access permissions. Analogous
to the PPM, non-essential app features can be
skipped to reduce the amount of required private
data. The user abstraction assures that further
types of Smart Things can be added on demand.

Data Abstraction. The data abstraction fa-
cilitates to link permissions to both, data producers
as well as data consumers. However, the focus for
both units is on the type of data that is produced
or consumed. That is, an inquiring entity has
to specify which data it needs access to such as
location data or health data instead of a concrete
data processing unit such as GPS or a glucometer.

2A data processing unit is either a data producer or
a data consumer (see Paragraph Data Abstraction).

Data Sink Abstraction. Each data con-
sumer is associated with several data sinks such
as apps or services, data storages, or even other
Smart Things. In other words, the user can specify
policy rules how data can be preprocessed for an
app. For instance, s/he could allow an app to use
a service which stores health data for long-term
monitoring of a particular health condition.

Data Source Abstraction. Each data pro-
ducer is associated with a certain type of infor-
mation. An information is any aspect that can be
derived from raw data. That is, it can be the raw
data itself (e. g., a single blood sugar value) or any
kind of higher order data gained by combining
several sources (e. g., a health record containing
data from various metering devices). For each
type of data diverse data sources can be specified
in the accessors model. A data source does not
have to be a sensor necessarily, but also apps, data
storages, and Smart Things are qualified as data
sources. In this way, complex coherences can be
modeled (e. g., the information “activity” can be
derived either by a combination of data from an
accelerometer and a position sensor or directly by
a readout from a fitness tracker). Due to the data
sink abstraction and data source abstraction, the
policy rules remain completely detached from a
concrete technology. The rules are automatically
adapted to the available data sources and sinks.

Context Abstraction. Optionally, an acti-
vation context can be attached to each policy rule.
This context describes under which conditions
a rule has to be enforced by a privacy system.
The context is described in accordance with (Dey,
2001) as a spatio-temporal condition (e. g., a rule
should only be applied during working hours) or
as a higher order situation (e. g., a rule is only
valid in case of a medical emergency). Higher
order situations can be modeled as a combination
of values from data producers.

Constraint Abstraction. For each policy
rule various constraints can be defined. The most
basic one is a Boolean constraint to grant or deny
to process a certain type of data3. Depending
on the type of data, accessors supports three
additional constraint types: integer constraints,
enumeration constraint, and string constraints. In-
teger constraints can be used to define an upper
or lower boundary. For instance, a maximum ac-
curacy for a certain type of data such as location
data can be specified in this manner. An enu-
meration constraint defines several valid setting

3If the access permission is denied, the particular
code fragment is skipped in the app.



Context

Time / 
Date

Location Situation

is-a

Rule

activate

[1,*]

[0,1]

[1,*]
createPolicy

[0,*]

define Access

Information
Data 

Producer

Data 
Consumer

derive

Source

Application
Smart 
Thing

Sensor
Data 

Storage

is-a

Sink

Application
Smart 
Thing

Data 
Storage

is-a

ConstraintInquiring 
Entity

Application

Smart 
Thing

User

[1,*]

[1,1]

[1,1]

[1,1]

[1,1]
[1,*]

[1,*]

[1,*]
is-a

is-a

Rule Core Data Abstraction 

Data Sink Abstraction

Data Source AbstractionContext Abstraction

User Abstraction 

Access 
Purpose[1,1]

[1,1]
provide

control
[1,*]

specify

Boolean 
Constraint

Integer 
Constraint

Enum. 
Constraint

String 
Constraint

is-a

Constraint
Abstraction

derive
[1,*] [0,*]

Figure 4: accessors — The Data-Centric Permission Model for the Internet of Things.

options. For instance, for health records there
could be settings granting access only to domain-
specific record sections such as pulmonary data
or cardiac data. Finally, string constraints enable
users to enter textual conditions. For instance, a
user can declare a MAC address of a Thing with
which s/he wants to share his or her health data.
Thereby it is ensured that health data is sent to
the specified destination address, only.

All in all, accessors supports data-centric
policy rules as the focus of the permission is on
types of data instead of concrete data processing
units. Since data producers provide higher or-
der information which can be composed of data
from several sources, accessors is able to model
relations between various types of data. As the
policy rules interrelate access purposes, access
permissions, constraints, and contexts, only, they
are independent from concrete inquiring entities
or data producers and data consumers, respec-
tively. This means in effect that accessors has
two types of extensibility due to its abstraction
layers. On the one hand it can be broadened (e. g.,
by adding new Things) and on the other hand it
can be deepened (e. g., by adding new coherences
between data sources if new methods to derive a
certain kind of information from raw data are dis-
covered). Policy rules modeled with accessors
are very fine-grained. On the one hand, the multi-
valued constraints allow a highly precise vernier
adjustment of the permission rights. On the other
hand, since the permissions are bound to a certain
access purpose and need not be granted to an app

in general, the user is able to tailor the privacy
policy entirely towards his or her needs. Lastly,
each policy rule can be enriched by an activation
context. This context is highly generic, since it
can be composed of any data currently available.

When comparing the PPM (see Figure 3) with
accessors (see Figure 4), it is obvious that the
two models have several common components.
The rule core of accessors is almost equivalent to
the PPM. However, accessors has two significant
advantages: a) accessors introduces abstraction
layers for users, data, data sinks, data sources,
contexts, and constraints. b) accessors consid-
ers a different protection goal. While the PPM is
designed for Smartphones and therefore considers
only apps as potential attackers and sensors or
system functions as feasible targets (labeled as Re-
sources), accessors is entirely designed for the
IoT. On that account, not only the potential at-
tackers are interpreted in a wider sense—any kind
of inquiring entity is considered as an attacker, in-
cluding apps, Smart Things, and users—but also
the targets which are protected by accessors
have a different focus. The targets are geared to
types of data instead of data sinks or sources.

Nevertheless, it seems natural to map policy
rules defined in accessors to PPM rules, due to
the similarity of the two models, as the PPM is
already applied to existing privacy systems such
as the PMP. In this way, we can exploit this in-
frastructure in order to enforce accessors policy
rules. We describe a mapping of accessors policy
rules to PPM rules in the following section.



Resource Group ResourcesPrivacy Settings

Apple Watch

Moto 360

…

Smart Watch

Read Time

Read Heart Rate

Show Notification

…

ISmartWatch

int getTime();
int getHeatRate();

…

(a) Model of a PMP Resource Group

Health Data

…

iHealth Smart 
Glucometer

Apple Watch

Health Data 
Analytics

…
Resource Group ResourcesPrivacy Settings

Perform Metering

Read Blood Sugar Level

Process Blood Sugar Level

Read Heart Rate

Process Heart Rate

… IHealthData

int getHeatRate();

…

(b) Application of accessors in the PMP
Figure 5: Mapping of accessors Rules to PMP Resource Groups.

6 APPLICATION OF
ACCESSORS IN THE PMP

From a modeling point of view, the fine-grained
structure of accessors with its highly branched
abstraction layers is necessary in order to gain a
high expressiveness of the policy rules. However,
from a implementation point of view, the number
of utilized components should be kept low in order
to reduce complexity. On that account, a mapping
of the detailed accessors policy rules to similar
PPM rules, is also recommended.

To that end, it is necessary to convert the
access purposes specified by inquiring entities in
accessors to Service Features. However, a Ser-
vice Feature also defines certain permissions which
are required in order to execute a particular code
fragment. The focus on a broader range of possi-
ble attackers in accessors is not contradictory
to the Service Features and a one-to-one mapping
is possible without any further ado.

That is why the transition of data-centric tar-
gets modeled in accessors into PPM Resources
poses the biggest problem for the mapping. In
particular this implies that all Resources have to
be replaced by new data-centric components. Nev-
ertheless, accessors can be applied to the PMP,
due to its modular architecture. In the PMP, each
Resource Group is implemented as an independent
functional unit which can be installed individually.
Moreover, additional Resources can be added to
a Resource Group at any point of time (Stach,
2013). Therefore, existing Resources can be re-
placed by new data-centric ones in order to apply
accessors to the PMP.

Figure 5a depicts the model of a Resource
Group for Smart Watches. The Resource Group
defines a common interface for all of its Resources.
An arbitrary Resource, which provides the re-
quired functionality, can be plugged into the the
Resource Group at runtime. That is, the Re-
sources are concrete implementation artifacts of
the interface for a given hardware (e. g., an Apple

Watch or a Moto 360). The Resource Group also
defines feasible Privacy Settings, i. e., how the user
is able to restrict access to a particular Resource.

Figure 5b illustrates how this model has to be
adapted in order to make the PMP compatible to
accessors privacy rules. In the first instance, the
hardware- or service-based focus of the Resource
Groups has to be shifted to a data-centric one.
The Resource Group given in the example deals
with any kind of health-related data. This data
can be provided by legit health devices such as a
glucometer or by novel Things such as a Smart
Watch. Moreover, this Resource Group also deals
with data consumers of health data such as ana-
lytics libraries. In order to be able to plug in all of
these data processing units, the Resource Group’s
interface has to be broadened accordingly.

The PPM Resource Groups provide only a sin-
gle plug for one Resource at a time. To support
derivation transparency, i. e., to be able to model
data which is assembled from various sources, the
accessors Resource Groups need multiple plugs.
For instance, it is possible to deduce the blood
sugar level considerably accurate by monitoring
the activities of a user and his or her eating behav-
ior (Zeevi et al., 2015). So, the Resource Group for
health data has to be able to plug in a Resource
capturing physical activities and a Resource gath-
ering nutrition data, simultaneously. Furthermore,
each Resource can be associated with multiple
Resource Groups. For instance, a Smart Watch
providing both, location and health data belongs
to a location Resource Group as well as a health
data Resource Group. The Privacy Settings for
the new data-centric Resource Groups are carried
over from the PPM’s Resources that are pooled
in the respective Resource Group.

That way, accessors can be mapped to the
PPM. PPM rules are executable on the PMP and
similar privacy systems. As the PMP runs on
Android and Android is becoming increasingly
pertinent to the IoT, such an implementation con-
stitutes a serviceable privacy system for the IoT.



Table 1: Comparison of Current Permission Models.

Approach R1 R2 R3 R4 R5

Android ✗ ✗ (✓) ✗ ✗

Selective
✗ ✗ ✗ ✗ ✗

Permissions

CRêPE ✗ ✗ ✗ ✗ ✓

Apex ✗ ✗ ✗ (✓) (✓)

YAASE ✗ ✗ (✓) ✓ ✗

Sorbet ✗ ✗ ✓ (✓) (✓)

Retro-
✗ (✓) ✓ (✓) (✓)

Skeleton

Constroid ✓ ✗ ✗ (✓) ✓

AppGuard ✗ (✓) ✓ ✓ (✓)

AFP ✗ ✗ ✓ ✓ ✓

DroidForce ✓ ✗ ✗ ✓ ✓

PMP ✗ ✓ ✓ ✓ ✓

accessors ✓ ✓ ✓ ✓ ✓

7 DISCUSSION

accessors is outright data-centric since all of
its protected entities (data producers as well as
data consumers) are related to a certain type of
data (e. g., health data). Apps request access to
such data without having to specify which sen-
sor or system function provides this data. That
way, accessors enables also derivation trans-
parency. Each protected data object can origi-
nate from various sources. Additionally, multiple
sources can be combined in order to derive a cer-
tain type of data (e. g., the activity of a user can be
derived from an accelerometer in combination with
a position sensor). accessors enables to model a
single data source as the producer of highly diverse
data, e. g., an Apple Watch can produce location
data as well as health data. The accessors model
is extendable. On the one hand, additional data
sources and sinks can be added at runtime in order
to react on forthcoming hardware. For instance,
the Apple Watch is able to meter the blood sugar
level after a glucometer upgrade. On the other
hand, our model supports various types of entities.

An inquiring entity can be mapped to an app, a
Smart Thing, or a user. That way, accessors is
not committed to a fixed entity type. In the IoT
context where new Things arise frequently, such
an extensibility is essential. Moreover, accessors
is fine-grained and context-sensitive. That is,
multi-valued constraints as well as spatio-temporal
or situation-based conditions can be added to each
policy rule.

Table 1 summarizes the key characteristics of
the permission models analyzed in the work at
hand (see Section 4). Moreover, it provides a
comparison of accessors with these approaches.
The examined characteristics correspond to the
postulated requirements in Section 3, namely
[R1] data-centric policy rules, [R2] derivation
transparency, [R3] extendable permission model,
[R4] fine-grained policy rules, and [R5] contex-
t-sensitive policy rules. Due to the comprehensive
abstraction approach covering users, data, data
sinks, data sources, contexts, and constraints ac-
cessors is able to meet all requirements towards
a permission model for the IoT.

8 CONCLUSION

The IoT is becoming more and more popular.
Interconnected devices with novel sensors come
onto the market. As a consequence, innovative
apps from highly diverse domains including Smart
Homes and Smart Health are developed. Such
apps gather a lot of data about their users and
derive further information from this data. While
these apps are able to improve the quality of our
everyday life, they also pose a threat to user pri-
vacy. Therefore, technical approaches are required
to give users full control over their data.

For this reason, we postulate a requirements
specification towards permission models for the
IoT. Based on these requirements, we provide a
comprehensive overview and assessment of cur-
rently existing permission models. Since none of
these permission models is appropriate for IoT
apps, we introduce a data-centric permission
model for the Internet of Things called acces-
sors. We describe how privacy demands towards
IoT apps can be modeled in accessors. For
the implementation of accessors, we provide a
mapping of the accessors policy rules to an exist-
ing permission model, the Privacy Policy Model
(PPM ). We chose the PPM since it already fulfills
a lot of requirements towards a permission model
for the IoT. In this way, accessors policy rules



can be applied in an actual privacy system, such
as the Privacy Management Platform (PMP).
An assessment demonstrates the utility of our ap-
proach.

Since many IoT apps fall back on online ser-
vices for data processing (e. g., (Steimle et al.,
2017)), future work has to investigate, how ac-
cessors-based policy rules can be applied to a
privacy mechanism for stream processing systems.
Therefore, this research is carried on in the PA-
TRON research project4. The focus of PATRON
is on complex event processing in distributed sys-
tems and how accessors-like policy rules can be
applied in such a system (Stach et al., 2017).

ACKNOWLEDGEMENTS

This paper is part of the PATRON research project
which is commissioned by the Baden-Württemberg
Stiftung gGmbH. The authors would like to thank
the BW-Stiftung for the funding of this research.

REFERENCES

Aggarwal, C. C., Ashish, N., and Sheth, A. (2013).
The Internet of Things: A Survey from the Data-
Centric Perspective, chapter 12, pages 383–428.
Springer.

Agrawal, D., El Abbadi, A., and Wang, S. (2012).
Secure and Privacy-preserving Data Services in
the Cloud: A Data Centric View. Proceedings of
the VLDB Endowment, 5(12):2028–2029.

Aman, M. N., Chua, K. C., and Sikdar, B. (2017). Se-
cure Data Provenance for the Internet of Things.
In Proceedings of the 3rd ACM International
Workshop on IoT Privacy, Trust, and Security,
IoTPTS ’17, pages 11–14.

Backes, M., Gerling, S., Hammer, C., Maffei, M., and
Styp-Rekowsky, P. (2014). AppGuard – Fine-
Grained Policy Enforcement for Untrusted An-
droid Applications, pages 213–231. Springer.

Backes, M., Gerling, S., Hammer, C., Maffei, M., and
von Styp-Rekowsky, P. (2013). AppGuard: En-
forcing User Requirements on Android Apps. In
Proceedings of the 19th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS ’13, pages 543–548.

Barrera, D., Kayacik, H. G., van Oorschot, P. C., and
Somayaji, A. (2010). A Methodology for Empiri-
cal Analysis of Permission-based Security Models
and Its Application to Android. In Proceedings
of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 73–84.

4see http://patronresearch.de/

Conti, M., Nguyen, V. T. N., and Crispo, B. (2011).
CRêPE: Context-related Policy Enforcement for
Android, pages 331–345. Springer.

Davies, N., Taft, N., Satyanarayanan, M., Clinch, S.,
and Amos, B. (2016). Privacy Mediators: Helping
IoT Cross the Chasm. In Proceedings of the 17th

International Workshop on Mobile Computing
Systems and Applications, HotMobile ’16, pages
39–44.

Davis, B. and Chen, H. (2013). RetroSkeleton:
Retrofitting Android Apps. In Proceeding of the
11th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’13,
pages 181–192.

Davis, B., Sanders, B., Khodaverdian, A., and Chen,
H. (2012). I-ARM-Droid: A Rewriting Frame-
work for In-App Reference Monitors for An-
droid Applications. In Proceedings of the 2012
IEEE Conference on Mobile Security Technolo-
gies, MoST ’12, pages 28:1–28:9.

Dey, A. K. (2001). Understanding and Using Context.
Personal and Ubiquitous Computing, 5(1):4–7.

Enck, W., Ongtang, M., and McDaniel, P. (2009).
Understanding Android Security. IEEE Security
and Privacy, 7(1):50–57.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E.,
and Wagner, D. (2012). Android Permissions:
User Attention, Comprehension, and Behavior.
In Proceedings of the Eighth Symposium on Us-
able Privacy and Security, SOUPS ’12, pages
3:1–3:14.

Fragkaki, E., Bauer, L., Jia, L., and Swasey, D. (2012).
Modeling and Enhancing Android’s Permission
System, pages 1–18. Springer.

Google Inc. (2017). Android Things.
https://developer.android.com/things.

Hamlen, K. W. and Jones, M. (2008). Aspect-oriented
In-lined Reference Monitors. In Proceedings of
the Third ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security,
PLAS ’08, pages 11–20.

Hilty, M., Pretschner, A., Basin, D., Schaefer, C., and
Walter, T. (2007). A Policy Language for Dis-
tributed Usage Control, pages 531–546. Springer.

Istepanian, R. S. H., Hu, S., Philip, N., and Sungoor,
A. (2011). The Potential of Internet of m-health
Things “m-IoT” for Non-Invasive Glucose Level
Sensing. In Proceedings of the 2011 Annual Inter-
national Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS ’11, pages
5264–5266.

Kalkov, I., Franke, D., Schommer, J. F., and
Kowalewski, S. (2012). A Real-time Extension to
the Android Platform. In Proceedings of the 10th

International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’12,
pages 105–114.

Knöll, M. (2009). Diabetes City: How Urban Game
Design Strategies Can Help Diabetics, pages 200–
204. Springer.



Knöll, M. (2010). “On the Top of High Towers . . . ”
Discussing Locations in a Mobile Health Game
for Diabetics. In Proceedings of the 2010 IADIS
International Conference Game and Entertain-
ment Technologies, MCCSIS ’10, pages 61–68.

Kovatchev, B. P., Gonder-Frederick, L. A., Cox, D. J.,
and Clarke, W. L. (2004). Evaluating the Accu-
racy of Continuous Glucose-Monitoring Sensors.
Diabetes Care, 27(8):1922–1928.

Nauman, M., Khan, S., and Zhang, X. (2010).
Apex: Extending Android Permission Model and
Enforcement with User-defined Runtime Con-
straints. In Proceedings of the 5th ACM Sympo-
sium on Information, Computer and Communi-
cations Security, ASIACCS ’10, pages 328–332.

Park, J. and Sandhu, R. (2004). The UCONABC
Usage Control Model. ACM Transactions on
Information and System Security, 7(1):128–174.

Perera, C., Zaslavsky, A., and Christen, P. (2014).
Context Aware Computing for The Internet of
Things: A Survey. IEEE Communications Sur-
veys & Tutorials, 16(1):414–454.

Rasthofer, S., Arzt, S., Lovat, E., and Bodden, E.
(2014). DroidForce: Enforcing Complex, Data-
centric, System-wide Policies in Android. In Pro-
ceedings of the 2014 Ninth International Con-
ference on Availability, Reliability and Security,
ARES ’14, pages 40–49.

Russello, G., Crispo, B., Fernandes, E., and Zhau-
niarovich, Y. (2011). YAASE: Yet Another An-
droid Security Extension. In Proceeding of the
2011 IEEE Third International Conference on
Privacy, Security, Risk and Trust and 2011 IEEE
Third International Conference on Social Com-
puting, PASSAT ’11, pages 1033–1040.

Schreckling, D., Posegga, J., and Hausknecht, D.
(2012). Constroid: Data-centric Access Con-
trol for Android. In Proceedings of the 27th An-
nual ACM Symposium on Applied Computing,
SAC ’12, pages 1478–1485.

Scoccia, G. L., Malavolta, I., Autili, M., Di Salle, A.,
and Inverardi, P. (2017). User-centric Android
Flexible Permissions. In Proceedings of the 2017
IEEE/ACM 39th International Conference on
Software Engineering Companion, ICSE-C ’17,
pages 365–367.

Sekar, L. P., Gankidi, V. R., and Subramanian, S.
(2012). Avoidance of Security Breach Through
Selective Permissions in Android Operating Sys-
tem. ACM SIGSOFT Software Engineering
Notes, 5(37):1–9.

Sellwood, J. and Crampton, J. (2013). Sleeping An-
droid: The Danger of Dormant Permissions. In
Proceedings of the Third ACM Workshop on Se-
curity and Privacy in Smartphones & Mobile De-
vices, SPSM ’13, pages 55–66.

Sicari, S., Rizzardi, A., Grieco, L. A., and Coen-
Porisini, A. (2015). Security, privacy and trust in
Internet of Things: The road ahead. Computer
Networks, 76:146–164.

Stach, C. (2013). How to Assure Privacy on Android
Phones and Devices? In Proceedings of the 2013
IEEE 14th International Conference on Mobile
Data Management, MDM ’13, pages 350–352.

Stach, C. (2016). Secure Candy Castle — A Prototype
for Privacy-Aware mHealth Apps. In Proceedings
of the 2016 IEEE 17th International Conference
on Mobile Data Management, MDM ’16, pages
361–364.

Stach, C., Dürr, F., Mindermann, K., Palanisamy,
S. M., Tariq, M. A., Mitschang, B., and Wagner,
S. (2017). PATRON — Datenschutz in Daten-
stromverarbeitungssystemen. In Informatik 2017:
Digitale Kulturen, Tagungsband der 47. Jahresta-
gung der Gesellschaft für Informatik e.V. (GI),
25.9-29.9.2017, Chemnitz, volume 275 of LNI,
pages 1085–1096. (in German).

Stach, C. and Mitschang, B. (2013). Privacy Manage-
ment for Mobile Platforms – A Review of Con-
cepts and Approaches. In Proceedings of the 2013
IEEE 14th International Conference on Mobile
Data Management, MDM ’13, pages 305–313.

Stach, C. and Mitschang, B. (2014). Design and Imple-
mentation of the Privacy Management Platform.
In Proceedings of the 2014 IEEE 15th Interna-
tional Conference on Mobile Data Management,
MDM ’14, pages 69–72.

Stach, C. and Schlindwein, L. F. M. (2012). Candy
Castle — A Prototype for Pervasive Health
Games. In Proceedings of the 2012 IEEE In-
ternational Conference on Pervasive Computing
and Communications Workshops, PerCom ’12,
pages 501–503.

Steimle, F., Wieland, M., Mitschang, B., Wagner, S.,
and Leymann, F. (2017). Extended Provisioning,
Security and Analysis Techniques for the ECHO
Health Data Management System. Computing,
99(2):183–201.

Takabi, H., Joshi, J. B. D., and Ahn, G. J. (2010). Se-
curity and Privacy Challenges in Cloud Comput-
ing Environments. IEEE Security and Privacy,
8(6):24–31.

Vashist, S. K., Schneider, E. M., and Luong, J. H.
(2014). Commercial Smartphone-Based Devices
and Smart Applications for Personalized Health-
care Monitoring and Management. Diagnostics,
4(3):104–128.

Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M.
(2012). Permission Evolution in the Android
Ecosystem. In Proceedings of the 28th Annual
Computer Security Applications Conference, AC-
SAC ’12, pages 31–40.

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Roth-
schild, D., Weinberger, A., Ben-Yacov, O., Lador,
D., Avnit-Sagi, T., Lotan-Pompan, M., Suez, J.,
Mahdi, J. A., Matot, E., Malka, G., Kosower, N.,
Rein, M., Zilberman-Schapira, G., Dohnalová, L.,
Pevsner-Fischer, M., Bikovsky, R., Halpern, Z.,
Elinav, E., and Segal, E. (2015). Personalized
Nutrition by Prediction of Glycemic Responses.
Cell, 163(5):1079–1094.


