
– GAMEWORK –

A CUSTOMIZABLE FRAMEWORK

FOR PERVASIVE GAMES

Christoph Stach
Universität Stuttgart

IPVS

Universitätsstraße 38

70569 Stuttgart

christoph.stach@ipvs.uni-stuttgart.de

ABSTRACT

The number of pervasive games is growing in which players have to interact with their environment in order to control

their avatar. While in the past they required immense hardware equipment, nowadays, smartphones have all required

functionality built-in already. In addition, there is an upcoming trend towards software, supported with new content and

knowledge by an active community. By combining these two trends, a new genre of computer games arises, targeting not

only established gamers but also new audiences.

We build four customization classes differing in required player’s programming knowledge, support by the games and

scale of adaption potential. With Gamework we present a framework for pervasive games on modern smartphones

simplifying user-driven game customization for the identified customization methods in this paper. We also present two

games implemented with this framework. Concluding, we show the potential of these games as well as the potential of our

framework. We also report on early experiences in exploiting the customization approach of our framework.

KEYWORDS

Pervasive, mobile, customizable, games, framework, smartphones.

1. INTRODUCTION

Although pervasive games may differ in many aspects, they all somehow map an extract of real world’s context

on a virtual game [Magerkurth et al. (2005)]. Generally, this happens through a GPS-based sensor which tracks

a player’s position and uses it to control the avatar in the game. Therefore, most common pervasive games use

massive and expensive hardware assignments [Broll et al. (2006)]. Albeit, there are approaches such as AR-

Soccer [Paelke et al. (2004)], a penalty game with a virtual ball and goal, or Capture the Flag [Cheok et al.

(2006)], where two teams have to defend a flag while capturing the opponent’s one, almost all well-known

pervasive games focus on augmented reality systems – computer-based systems stimulating any human sense

especially vision [Azuma (1997)] – including backpacked laptops or even head-mounted displays [Wetzel et al.

(2008)]. In Human Pacman, a pervasive version of the original Pacman game, a player controls either the

Pacman or a ghost by moving through the streets of Singapore and has to collect points or catch the Pacman in

order to win. Therefore, every player needs a special vest or a backpack equipped with nearly all components

of a laptop [Cheok et al. (2004)]. Although, the REXplorer, an educational city-game provided by the

Regensburg Experience museum, does not need extensive technical equipment, it still has to provide due to

special technological features all players with all devices that are used in the game, which limits the number of

simultaneous players [Ballagas et al. (2007)]. Even though, these games are a lot of fun, the effort needed to

set up a game session is too high to arrange them regularly.

On the other hand, modern smartphones are shipped with components such as a big touchscreen, a GPS

sensor, Bluetooth, Wi-Fi, and much more. Thus, all of these devices fulfill nearly all requirements set by

pervasive games. In face of the given conditions, still the number of pervasive games for smartphones is very

limited. Furthermore it is astonishing that none of these few existing games allows players to bring in their

© 2010 IADIS. This is the author’s version of the work. It is posted at https://opencms.uni-
stuttgart.de/fak5/ipvs/departments/as/publications/stachch/get_10_gamework.pdf by permission of IADIS for your

personal use. Not for redistribution. The definitive version was published in Katherine Blashki (Eds.) Proceedings of

the 2010 IADIS International Conference Game and Entertainment Technologies. IADIS, Freiburg, Germany, pp. 45–
52, 2010.

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/get_10_gamework.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/get_10_gamework.pdf

own ideas and alter or enrich the original game idea, though modern operating systems for mobiles enable

everybody to develop their own additional applications for those devices [Hall and Anderson (2009)]. Without

such a feature games might lose their attraction very rapidly [Eirund et al. (2004)]. In particular, pervasive

games qualify for small customizations, as placing the playing field to another (real world) location, adding

new tasks up to extending the game logic [Wolff and Grüter (2008)]. We conclude that the programming

standards for such applications are too high for an average player.

Hence, we initially identified different customization techniques. Afterwards, we analyzed what kind of

game adaption each of them could be used for, classified our audience depending on their knowledge in

programming and determined how each of them could be assisted by a framework. Based on this preliminary

work, we created a framework for pervasive games on mobile devices in order to enable a shortened

developmental period and to involve all players in the development process by giving them the tools to

customize a game to a certain degree. While some frameworks for pervasive games already exist (e.g. FRAP

[Tutzschke and Zukunft (2009)] or our former approach for mobile browser games [Brodt and Stach (2009)]),

our new approach supports customizable pervasive games which is a unique feature. The scale a game can be

customized with our approach is determined by the game’s nature as well as the player’s expertise. But, even

players with limited programming experience will be able to make small changes on existing games within no

time, while programming experts are supported in developing new games or even new game genres. To

demonstrate this, we present prototypes of two pervasive games implemented with our framework and use

them to host a workshop in order to evaluate Gamework. As far as possible we kept our target architecture

open to stay independent from any unpredictable trend affecting smartphones’ technology.

The remainder of this paper is structured as follows: Section 2 discusses different existing customization

techniques and categorizes them. Section 3 describes the framework itself while Section 4 presents two

different games implemented with the framework. The outcome of our evaluation is presented in Section 5.

Finally, Section 6 discloses future work while Section 7 concludes the whole issue.

2. DEGREES OF CUSTOMIZATION

In some preliminary work, we studied game’s nature and how players can influence it. As a result of this work,

we were able to distinguish four different classes of customization techniques in games. These classes vary in

effort as well as scope of supply and services. In the following subsections, we deal with game customization

by using context data or user-generated content in games and adapting the game-flow or even creating new

games by only reusing the framework’s artifacts. Because of focusing on pervasive games against (human)

players we will not deal with dynamic (AI) adaption techniques, as presented in [Hunicke (2005)]. We will

conclude this section by a short comparison of these techniques.

2.1 Context in games

The easiest way to customize a game is putting the game-field right where players are located at the moment.

This adaption technique does not require any programming skills from a player. Nevertheless, it will give a

player an individual game experience because no other plays exactly that game. On the other hand, game

designers will have to include this customization ability in their game logic and not every type of game is

appropriate handling with dynamic game-field positions. E.g., the placement of games in which the players

have to interact heavily with their environment should be chosen wisely, because natural obstacles can hamper

accomplishing an aim unnecessary or even inhibit it completely. Therefore, such kind of games must go without

the presence of fixed levels. [Schlieder et al. (2006)] reckon that especially location-based versions of classical

board games suits to be modified this way.

SYGo, which is actually a pervasive adoption of the famous German board game Scotland Yard by

Ravensburger, represents such a kind of game [Schmatz et al. (2009)]. The game-field is always virtually set

in the center of London, but in reality, the player’s current position specifies where the game actually takes

place. This kind of game is characterized by ignoring a player’s absolute position but usually analyzing only

the movement relative to the starting position. While SYGo automatically adapts the game-field’s position it

still forces all players to gather within a certain region close to its center. We will even present a game without

this restriction in Subsection 4.2.

As a matter of course, this kind of customization has to be provided by each game itself and not by a

framework. But, we tried to support those players who want to use such a feature in their games in the game

development process by adding geo functions to our framework, e.g. for calculating the relative distance to a

given location.

2.2 User-generated content

Another way allowing players to customize a game is to give them the possibility to add new content to an

existing game. While this is nothing new in the Web 2.0 environment, it’s rarely used in games. We are

convinced that especially location-based games are suited for this kind of customization. [Krumm et al. (2008)]

defines pervasive user-generated content as the possibility to add some new information to a community-based

system, e.g. some comments to given points of interest. Therefore, it requires many voluntary contributors. On

the other hand, the binding within the community is tightened, thereby.

E.g., user-generated content could be used to add a new target which actually implies creating a new level

or to ease an existing search by adding some hints in a geocaching-like game. Our framework provides

functions to store additional information such as pictures or some text to existing objects and allows the player

to create completely new points of interest. In addition, Gamework includes a map-editor with a GUI which

allows even a non-technical player to create, modify or delete any object in the game just by clicking on a map.

Nevertheless, this feature must be supported by the game. If a game manages its objects by itself, the Gamework

editor cannot interact with them.

2.3 Game-flow adaption

To customize games in a major way, its game-flow has to be modified. [Taylor et al. (2006)] introduces a

technique to visualize a flow-graph for every level in an UML-like style. In the graph, not only the game-flow

with all alternatives to solve a level is represented but also the storyline and any scripted event. By merging all

flow-graphs a single graph is generated which represents the whole game. Then, all there is left to do in order

to create a new similar game is to modify or rearrange the graph’s nodes or edges.

The easiest customization using this technique would be arranging the levels in a new order or removing

some of them by moving or deleting some edges. Provided with some examples, an interested player should

also be able to add new states or branches to the graph, after a while. We considered that technique already in

our framework design phase by representing every game as a finite state machine. So, a player who understands

Java code is able to modify the game-flow, in a simple way. For players, inexperienced in the field of

programming, a WYSIWYG editor would be auxiliary but is not a part of Gamework at this moment.

2.4 Creation of new games from scratch

While there are many parameters making a game unique e.g. story, look or game-flow, some components in

games are used by nearly all games independent from their genre (e.g. the use of a finite state machine for its

logic or the need to map an item to a field) [Rollings and Adams (2003)]. So, we tried to gather those common

components in the modules of our framework to allow designers to easily reuse them. In our case, these

modules include an extensible object type for game items, single- and multi-players a login system or a

graphical editor for connecting virtual objects to coordinates or manipulating them, just to name a few. In a

framework for non-pervasive games, these packages would probably look slightly different. Due to

Gamework’s strictly modular structure, designers will only have to create the unique parts of the game while

they can include the common ones from our framework’s packages.

2.5 Comparison

To conclude this section, we summarize the prominent features of the four described customization techniques

in Table 1. As shown, the degree of customization possibilities rises with the experience of the player while

the required support by each game decreases. Anyhow, every kind of player can benefit from Gamework.

Table 1. Review of the four customization techniques

Game aspect Context in games
User-generated

content

Game-flow

adaption

Creation of new

games from scratch

Framework

support

Geo functions

(functions for

distance calculation)

Graphical editor

(alter characteristics

of game items)

FSM

(add new states or

change game-flow)

Modular structure

(reuse of common

modules)

Required game

support
Very high High Moderate Non

Programming

skills required
Non Non Moderate Very high

Degree of

customization
Low Moderate High Unlimited

3. FRAMEWORK

This approach gears on our former research ([Brodt and Stach (2009)]) using a classical three tier architecture.

As shown in Figure 1 Gamework’s main modules rest on a central server, while the mobile device is simply

used as a thin client. This means that in addition to the game’s presentation the context data retrieval is merely

accomplished by it. Therefore, not only the hardware requirements towards the mobile device is held

imaginable slight but also the required adjustments caused by a change in target architecture’s technology

would be kept to a minimum.

Figure 1. Gamework’s architecture

The framework’s central component is formed by the generic game item maintenance module. New objects

(e.g. players, items, etc.) can easily be modeled by listing its characteristics such as name, value, measurements,

and so on. This module allows the editor to embed user-generated content to a game. It also forwards the

collected context data (or input data) to the context data handling component which provides functions as

calculating relative position data from absolute position data or setting the game field to the player’s current

position. While the mobile device submits only absolute positioning data to the logic layer, we developed a

context data handling module which maps these coordinates to an in-game location or calculate a player’s

relative movement from these data in order to enable context-driven adaption. On top of the game item

maintenance module, a finite state machine is available to model all game states (for instance login → start →

… → end) as well as its different stages and even every task within these stages. Any modification here has an

impact on the game-flow. Finally, our persistence module can transfer all relevant game data to the data layer

in order to store them in or collect them from the utilized database allowing load / save functionality in the

games. Since all of these modules work independently from each other and provide well-documented

interfaces, they also can be separately used from the rest of the framework. So, completely new games can be

implemented much faster by reusing any frequently recurring functions wrapped in these modules.

Client Data layer

Module for context-driven adaption

Gamework’s module

Communication channel

Interface

Context data

collection

Editor

Database

Finite state

machine

Game item

maintenance

Context data

handling

P
er

si
st

en
ce

m
o

d
u

le

Module for user-generated content

Module for game-flow adaption

Logic layer

For our first implementation, we choose Android-bases mobile devices. We did so because of two reasons:

First of all, we are convinced that Java is one of the most popular languages by now (according to [DedaSys

LLC (2009)]). Furthermore, [Kang (2009)] identifies these devices as the fastest-growing smartphone group in

2009 by far. Even though, many developers are prejudiced against the use of Java for fast applications such as

games, new benchmarks prove, that these preconceptions against Java are either obsolete or just false [Ingles

(2006)]. Furthermore, there is a growing number of successful serious games based on Java [Davison (2005)].

The game logic modules run on a Tomcat server. Communication with the backend is arranged by Hibernate

while Apache CXF does this with the frontend. For the administration interface Grails proved to be the best

solution. For storage issues, we used a H2 database. But the kind of database as well as the frontend is easily

replaceable.

4. PROTOTYPES

In order to demonstrate Gamework’s capability, we implemented two small different pervasive games: 1-2-3…

and P2 – Pervasive Pairs. 1-2-3… is a very simple conversion of a geocaching-like search game where virtual

items are placed on a map and the player has to collect them. P2 is a location-based version of the well-known

tabletop game Memory® by Ravensburger.

4.1 1-2-3…

To give a player a small showcase how to use the GPS-interface and our finite state machine, we developed

1-2-3…. In the beginning a player creates a course by placing an arbitrary number of targets all over an area

and assigns them an order in which they have to be collected. Then he invites a friend to test his new track.

The friend sees the corresponding maps detail, her current position and the targets position. With this

information, she has to find the best way connecting all set points. Then, she has to reach all these targets in

the given order as fast as possible. Whenever her position corresponds with a target’s position, the game logic

checks whether she has already achieved all prior goals and activates the next goal.

1-2-3… can be customized by creating a new or expanding an existing track. Each target is represented by

a new state in the finite state machine. To place a new aim, a player has to create a new instance of a state

object. However, he is given not only the possibility to adjust or set a new position but also to add some

conditions to each state such as small tasks which has to be met before the next state can be reached. More

complex than adding new states is changing the order of the states because many transitions have to be edited

by hand. In a new version, we plan to describe the states and transitions with a more readable description

language in an external file to simplify the creation and modification of a course.

4.2 P2 – Pervasive Pairs

In Pairs-games at least two players have to collect as many game cards as possible until no more cards are left.

The player with the most cards is the winner. To collect a card, each player in turn is allowed to look at two

cards lying covered on a table. If the two cards show the same picture the player may collect this set.

The P2 version adopts the basic game idea and adds some new aspects to make it much more dynamic and

appropriate to the pervasive setting. Firstly, the cards are no longer real-world items but virtual objects. So,

neither their amount nor their images and not even their sizes are predetermined. They are randomly positioned

in the player’s surroundings. Consider that this means it is not necessarily required to have all players at the

same location! When a player reaches the position of a card’s center (within a certain tolerance that

compensates for GPS inaccuracies or the presence of real world obstacles), its image is revealed only to the

corresponding player and remains locked to all other players until a second card is selected. If the motives

match the card is taken out of the game and the player is rewarded. A positive match could be the same image,

but also any predefined pattern, such as the right combination of a celebrities’ given- and surname. Maybe, it

is dubious by now why the first card has to be locked for all other players. This results from the other big

difference between the tabletop game and this pervasive version. In P2 all players may move at the same time

and will not have to wait until their opponents have finished their turns. We assumed that this modification is

necessary to boost the game’s entertainment factor – without this alternation all players would have to stay at

their current position for most of the time. So not only memorize abilities determine the game’s outcome, but

also the player’s fitness level.

For the game’s implementation, we used our framework presented in Section 3. As a consequence, not only

the development time was dramatically shortened but also the whole game is customizable to a high degree.

For example, the maximum number of players, the number of cards, the size of the game field, the position of

the game field, the cards motive, the pairs value, etc. can be adapted to any desired value by only changing one

constant. With a bigger effort but still very simple coding we have experimented with forced player-dependent

waiting times between the uncovering of two cards for balancing reasons.

Figure 2. Gamework’s editor interface

Figure 2 shows the Gamework editor interface used for customizing the cards in P2. In addition to common

attributes for every element, e.g. Id, Latitude or Longitude, game specific entries as in this case ‘Symbol’ or

‘Color’ can also be managed by the editor. Within a few clicks, new cards can be added to the game or existing

cards can be modified.

4.3 Comparison

Table 2 summarizes the fundamental game aspects of 1-2-3… and P2 and documents that even our two very

simple prototypes differ so much, that they can be considered as two exponents for different game genres.

Table 2. Comparison between 1-2-3… and P2 concerning different game aspects

Game aspect 1-2-3… P2 – Pervasive Pairs

Number of players Single- and Multiplayer Multiplayer

Multiplayer mode Asynchronous Synchronous

Setting

Game type

Real world

Geocaching

Augmented world

Tabletop game

Use of position data Absolute coordinates Relative

5. EVALUATION

After we had completed our framework and our two prototypes, we decided to test and evaluate the usability

not just by ourselves or experienced students, but also by pupils who have just started to learn some

programming techniques at school. Therefore, we organized a three-day workshop for 12 pupils in which we

gave a brief overview of the Gamework framework and provided them with a couple of Android-Smartphones.

Then, they were allowed to spend one day on their own, not only by playing 1-2-3… and P2, but also by

customizing these two games and trying to create their own small games without any guidance. That way, we

wanted to evaluate how self-explanatory our framework is. After the workshop, we hand out evaluation sheets

to find out how they appraised their programming knowledge, what experiences they gained, what functionality

they missed and whether the framework met their expectations. Due to a lack of sufficient hardware and

participants this evaluation has to be seen as a first attempt to determine Gamework’s benefit.

Their feedback made one thing very clear: Gamework is actually able to provide even an inexperienced

player with everything needed to make small customizations on existing games or actually create new content

e.g. new levels. For more complex changes, neither the time nor their experience was sufficient. The only

slightly negative statements tended towards the unmet wish for chances to create a game with brilliant 3D

graphics within an afternoon without touching a single line of code. All participants stated that they really liked

the possibilities of Gamework and enjoyed the completely new experience of pervasive games.

6. FUTURE WORK

We see our framework as a huge contribution towards customizable pervasive games’ implementation,

especially location-based ones. In the future, we are planning to implement other methods to monitor the

player’s position, such as Cell-ID or locating via Wi-Fi whenever GPS is not available. This makes games in

areas with much atmospheric interference possible and even indoor games would be supported. Another issue

concerns the very limited battery life and the huge energy consumption caused by the GPS.

Even though, small customizations can be made easily by changing only some constants’ value, we plan to

source these characteristics completely out to an XML configuration file and support the import of such a file

directly by the framework. So, not only the readability can be increased but also the customizability for

unskilled players because they merely have to handle a common text editor and no recompilation is required

after these changes.

While those plans only affect the improvement of functions already implemented in the framework, we also

think about the framework’s enhancement heading towards the support of ‘real’ pervasive games. There are

so many interesting sensors built in modern smartphones (and newer models will surely come up with even

more) which we are not supporting at the moment. This could involve games where the camera is used to shoot

photos of a certain location or record some typically sound with the microphone to prove that a player was

actually at the specified place. This type of game would be appropriate to enable user-generated content as new

stages in different regions or expand existing ones by adding new targets to shoot or record.

7. CONCLUSION

In this paper, we presented a classification method for customization techniques for pervasive games. We

characterized each of these classes regarding to their adaption potential, the player’s programming expertise

and to which degree a framework can support them. With this preliminary work, we implemented a framework

supporting each of the identified customization techniques. To prove its advantages, we used it to implement

two pervasive game prototypes. Our main focus always rested on generating games which are easily adaptable

on different degrees according to the player’s knowledge. Since even players with limited programming

experience should be able to profit by our framework, we evaluated its usability by a workshop for beginners

in computer science.

We assume that the market for common computer games will stagnate or even reduce while the number of

pervasive games, especially on mobile devices, will rise in the future due to better and cheaper hardware.

Communities will form, providing these games with new content comparable with twitter or Facebook today.

Henceforward, teenagers who will probably form the majority within these Communities will be able to get in

touch with programming duties in a playful manner due to Gamework.

ACKNOWLEDGEMENT

We would like to thank our colleagues Andreas Brodt and Marko Vrhovnik as well as our students Florian

Berg, Patrick Hilsbos and Florian Mack for supporting our work. Furthermore, we would like to thank Dr.

Wieland Holfelder, Google Germany, for equipping us with Android-Smartphones, needed for the framework’s

development and prototypes’ testing.

REFERENCES

[Azuma (1997)] Azuma, R. T.: 1997, A Survey of Augmented Reality, Presence: Teleoperators and Virtual

Environments 6(4), 355–385.

[Ballagas et al. (2007)] Ballagas, R. A., Kratz, S. G., Borchers, J., Yu, E., Walz, S. P., Fuhr, C. O., Hovestadt, L. and

Tann, M.: 2007, REXplorer: A Mobile, Pervasive Spell-casting Game for Tourists, CHI ’07 Extended Abstracts on

Human Factors in Computing Systems, CHI EA ’07, pp. 1929–1934.

[Brodt and Stach (2009)] Brodt, A. and Stach, C.: 2009, Mobile ortsbasierte Browserspiele, INFORMATIK 2009:

Tagungsband der 39. GI-Jahrestagung, 28.9. – 2.10.2009, Lübeck, Vol. 154 of LNI, pp. 1902–1913.

[Broll et al. (2006)] Broll, W., Ohlenburg, J., Lindt, I., Herbst, I. and Braun, A.-K.: 2006, Meeting Technology Challenges

of Pervasive Augmented Reality Games, Proceedings of the 5th ACM SIGCOMM Workshop on Network and System

Support for Games, NetGames ’06, pp. 28:1–28:12.

[Cheok et al. (2004)] Cheok, A. D., Goh, K. H., Liu, W., Farbiz, F., Fong, S. W., Teo, S. L., Li, Y. and Yang, X.:

2004, Human Pacman: A Mobile, Wide-area Entertainment System Based on Physical, Social, and Ubiquitous

Computing, Personal and Ubiquitous Computing 8(2), 71–81.

[Cheok et al. (2006)] Cheok, A. D., Sreekumar, A., Lei, C. and Thang, L. N.: 2006, Capture the Flag: Mixed-

Reality Social Gaming with Smart Phones, IEEE Pervasive Computing 5(2), 62–69.

[Davison (2005)] Davison, A.: 2005, Killer Game Programming in Java, O’Reilly Media, Inc.

[DedaSys LLC (2009)] DedaSys LLC: 2009, Programming Language Popularity, http://www.langpop.com.

[Eirund et al. (2004)] Eirund, H., Grüter, B. and Mielke, A.: 2004, Der Spieler macht das Spiel – Mechanismen der

Autorenrolle in mobilen Spielen, INFORMATIK 2004: Tagungsband der 34. GI-Jahrestagung, 20.9. – 24.9.2004, Ulm,

Vol. 50 of LNI, pp. 184–188.

[Hall and Anderson (2009)] Hall, S. P. and Anderson, E.: 2009, Operating Systems for Mobile Computing, Journal of

Computing Sciences in Colleges 25(2), 64–71.

[Hunicke (2005)] Hunicke, R.: 2005, The Case for Dynamic Difficulty Adjustment in Games, Proceedings of the 2005

ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE ’05, pp. 429–433.

[Ingles (2006)] Ingles, B.: 2006, The Future of Java Game Development, Proceedings of the 44th Annual Southeast

Regional Conference, ACM-SE ’06, pp. 698–701.

[Kang (2009)] Kang, T.: 2009, Global Smartphone Vendor Market Share by Region: 2008, Report, Strategy Analytics.

[Krumm et al. (2008)] Krumm, J., Davies, N. and Narayanaswami, C.: 2008, User-Generated Content, IEEE

Pervasive Computing 7(4), 10–11.

[Magerkurth et al. (2005)] Magerkurth, C., Cheok, A. D., Mandryk, R. L. and Nilsen, T.: 2005, Pervasive Games:

Bringing Computer Entertainment Back to the Real World, Computers in Entertainment 3(3), 4:1–4:19.

[Paelke et al. (2004)] Paelke, V., Reimann, C. and Stichling, D.: 2004, Foot-based Mobile Interaction with Games,

Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology,

ACE ’04, pp. 321–324.

[Rollings and Adams (2003)] Rollings, A. and Adams, E.: 2003, Andrew Rollings and Ernest Adams on Game Design,

New Riders Games.

[Schlieder et al. (2006)] Schlieder, C., Kiefer, P. and Matyas, S.: 2006, Geogames: Designing Location-Based Games

from Classic Board Games, IEEE Intelligent Systems 21(5), 40–46.

[Schmatz et al. (2009)] Schmatz, M., Henke, K., Türck, C., Mohr, C. and Sackmann, T.: 2009, SYGo – a location-

based game adapted from the board game Scotland Yard, INFORMATIK 2009: Tagungsband der 39. GI-Jahrestagung,

28.9. – 2.10.2009, Lübeck, Vol. 154 of LNI, pp. 1891–1901.

[Taylor et al. (2006)] Taylor, M. J., Gresty, D. and Baskett, M.: 2006, Computer Game-flow Design, Computers

in Entertainment 4(1), 5:1–5:10.

[Tutzschke and Zukunft (2009)] Tutzschke, J.-P. and Zukunft, O.: 2009, FRAP: A Framework for Pervasive Games,

Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’09, pp. 133–

142.

[Wetzel et al. (2008)] Wetzel, R., McCall, R., Braun, A.-K. and Broll, W.: 2008, Guidelines for Designing

Augmented Reality Games, Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Future Play

’08, pp. 173–180.

[Wolff and Grüter (2008)] Wolff, S. and Grüter, B.: 2008, Context, emergent game play and the mobile gamer as

producer, INFORMATIK 2008: Tagungsband der 38. GI-Jahrestagung, 8.9. – 13.9.2008, München, Vol. 133 of LNI,

pp. 495–500.

	OLE_LINK3
	OLE_LINK4
	OLE_LINK1
	OLE_LINK2
	BIB__bib
	BIB_azuma1997
	B4B_azuma1997
	BIB_ballagas2007
	B4B_ballagas2007
	BIB_brodt2009
	B4B_brodt2009
	BIB_broll2006
	B4B_broll2006
	BIB_cheok2004
	B4B_cheok2004
	BIB_cheok2006
	B4B_cheok2006
	BIB_davison2005
	B4B_davison2005
	BIB_dedasysllc2009
	B4B_dedasysllc2009
	BIB_eirund2004
	B4B_eirund2004
	BIB_hall2009
	B4B_hall2009
	BIB_hunicke2005
	B4B_hunicke2005
	BIB_ingles2006
	B4B_ingles2006
	BIB_kang2009
	B4B_kang2009
	BIB_krumm2008
	B4B_krumm2008
	BIB_magerkurth2005
	B4B_magerkurth2005
	BIB_paelke2004
	B4B_paelke2004
	BIB_rollings2003
	B4B_rollings2003
	BIB_schlieder2006
	B4B_schlieder2006
	BIB_schmatz2009
	B4B_schmatz2009
	BIB_taylor2006
	B4B_taylor2006
	BIB_tutzschke2009
	B4B_tutzschke2009
	BIB_wetzel2008
	B4B_wetzel2008
	BIB_wolff2008
	B4B_wolff2008

