LALO — A Virtual Data Lake Zone for Composing
Tailor-Made Data Products on Demand

Christoph Stach®, Yunxuan Li®, Laura Schuiki®, and Bernhard Mitschang

Institute for Parallel and Distributed Systems, University of Stuttgart, 70569 Stuttgart, Germany
{firstname.lastname}@ipvs.uni-stuttgart.de

Abstract. The emerging paradigm of data products, which has become increas-
ingly popular recently due to the rise of data meshes and data marketplaces, also
poses unprecedented challenges for data management. Current data architectures,
namely data warehouses and data lakes, are not able to meet these challenges
adequately. In particular, these architectures are not designed for a just-in-time
provision of highly customized data products tailored perfectly to the needs of
customers. In this paper, we therefore present a virtual data lake zone for composing
tailor-made data products on demand, called LALO. LALO uses data streaming
technologies to enable just-in-time composing of data products without allocating
storage space in the data architecture permanently. In order to enable customers to
tailor data products to their needs, LALO uses a novel mechanism that enables live
adaptation of data streams. Evaluation results show that the overhead for such an
adaptation is negligible. Therefore, LALO represents an efficient solution for the
appropriate handling of data products, both in terms of storage space and runtime.

Keywords: Data Product - Virtual Data Lake Zone - Data Stream Adaptation

1 Introduction

Novel data management concepts such as data meshes [4] and data marketplaces [7]
envision data not just as valuable raw materials but as fully-fledged company assets. If
refined appropriately, data can be transformed into data products [22]. A data product is
defined as a self-contained, discoverable, and reusable dataset. To this end, it encompasses
not only the raw data, but also the metadata, code, and infrastructure required to process
and access the included information. The most important characteristic, however, is
that it has a business value [20]. Therefore, the market principles that apply to physical
products also apply to these data products [19]. With the Fourth Industrial Revolution,
these market principles were supplemented by just-in-time production of goods in order
to save storage costs, as well as virtually unlimited customization of products so that they
can be tailored perfectly to the needs of customers [26].

Common data architectures, namely data warehouses [16] and data lakes [15] as well
as lakehouses [2], which are a combination of the former two, however, are incapable of
meeting these requirements adequately: Data warehouses lack the required flexibility
to enable tailor-made data products, as they are geared towards a few use cases that
are clearly defined in advance. The data transformations required for these use cases
are applied directly to the raw data and only the resulting data are stored in the data

e In: Strauss C., Amagasa T., Manco G., Kotsis G., Tjoa A M., and Khalil I. (Eds.) 35th International Conference,
Sl DEXA 2024, Naples, Italy, August 26-28, 2024, Proceedings, Part II. Lecture Notes in Computer Science, vol

i

= by permission of Springer-Verlag for your personal use. The final publication is available at Springer via
10.1007/978-3-031-68312-1_22.

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/dexa_24_lalo.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/dexa_24_lalo.pdf
https://doi.org/10.1007/978-3-031-68312-1_22
https://orcid.org/0000-0003-3795-7909
https://orcid.org/0000-0003-1907-9591
https://orcid.org/0009-0008-0219-5485
https://orcid.org/0000-0003-0809-9159

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

warehouse. As data are therefore only available in this aggregated form, it is not possible
to define additional use cases at a later date and reprocess the underlying raw data to
meet the requirements of these new use cases. Data lakes overcome this by applying the
required data transformations only when data are accessed. Besides unprocessed raw data,
data are stored redundantly in different pre-processing stages, which leads to high storage
costs. This is made even worse by the fact that, unlike physical products, data products
are not “consumed” (i.e., depleted) when being used. As a result, the amount of data to
be managed increases significantly with each additional data product, especially as a lot
of metadata has to be maintained besides the actual data. Enabling fully customized data
products would therefore escalate storage costs.

In order to address these shortcomings and thus enable the appropriate handling of
data products, we introduce a virtual data lake zone called LALO'. In particular, our
approach enables the just-in-time provision of customizable data products in data lakes
without incurring significant storage and processing costs. To this end, we make the
following two contributions: a) We extend the data lake concept by adding a virtual
data zone. In this zone, data products are made available in a non-materialized form.
Instead, the products are generated live on access using data stream technologies. In this
way, there are no additional storage costs for data products. b) To handle this efficiently,
we introduce a novel mechanism that enables live adaptation of data streams. This
facilitates the adaptation of the manufacturing process of data products at runtime, e.g.,
due to changing customer needs. After a negligible reconfiguration time, the new and
fully tailored data product is then generated and provided to the customer. It has to be
noted that LALO is not only suitable for traditional, i.e., centralized data architectures
but also for modern distributed approaches such as data meshes.

The remainder of this paper is structured as follows: Initially, in Sect. 2, we present
today’s prevailing data architectures and discuss their shortcomings with regard to the
handling of data products. Subsequently, we look at research approaches that facilitate
the management of data products in Sect. 3. In Sect. 4, we introduce LALO, a novel
approach that enables the just-in-time provision of tailor-made data products by means
of a virtual data lake zone and the live adaptation of data streams. We evaluate in Sect. 5
whether LALO is effective in terms of storage space consumption and efficient in terms
of runtime costs. Section 6 concludes this paper and provides a brief outlook.

2 Data Architectures

As data are a valuable resource for enterprises, various data architectures have been
developed to efficiently support the collection and processing of data for specific forms
of use. Data warehouses, data lakes, and lakehouses have proven to be particularly
effective and durable in this regard, making these data architectures widely used in
practice [11]. From an enterprise perspective, however, the paradigm of data products is
becoming increasingly attractive, i.e., offering highly processed data tailored to a value-
adding business case to internal and external customers [6]. Yet, data products require
agile data management to meet the challenges of just-in-time production and unlimited

! The name LALO refers to the composer Edouard Lalo. Just as Lalo composed his music tailored
to different countries, LALO enables composing data products tailored to different customers.

289

290 Christoph Stach, Yunxuan Li, Laura Schuiki, Bernhard Mitschang

customizability. Therefore, we discuss whether the aforementioned data architectures are
suitable for this. We also look at how data meshes and data marketplaces, which have
popularized the paradigm of data products, address these data management challenges.

Data Warehouse. A data warehouse is a central data management solution designed to
gather consolidated information from various sources. It is characterized by the fact that
data from heterogeneous sources are brought into a homogeneous structured form by
means of an ETL process (extract, transform, load). The underlying relational data schema
is geared towards the intended analytical tasks. However, as relational database systems
are designed for vertical scaling, data are only stored in a highly aggregated form—in
accordance with the intended use cases—to reduce storage costs. This comes at the
expense of flexibility, as raw data are not available, and therefore it is not possible to make
ex-post adaptations for other use cases. Moreover, the ETL process is time-consuming,
which is why the data warehouse is not populated with new data in real-time [16].

Data Lake. Such rigid data schemas and high storage costs are inadequate when faced
with big data. Data lakes therefore use NoSQL technologies to store structured as well as
unstructured data in their raw format. A data lake is therefore much more flexible than a
data warehouse, as its data corpus can be used for any analytical task. This is enabled by
an ELT process (extract, load, transform), i.e., data are ingested in their original data
schema, and use-case-dependent adjustments are only applied when the data are accessed.
The high level of flexibility is thus achieved at the cost of complex data access. To reduce
these costs, data lakes often store variants of the data in different pre-processing stages in
addition to the raw data. Yet, this pre-processing is rather generic, i.e., further refinement
and customization steps are still required when accessing the data [15].

Lakehouse. A lakehouse therefore combines the flexibility and scalability of data lakes
with the optimized data structure and efficient query capabilities of data warehouses. To
this end, structured and unstructured data are stored in their raw format, while a wide
range of metadata increases the effectiveness and efficiency of query processing. These
metadata include information about the actual stored data, the underlying data formats
and schemas as well as access structures. In addition, transformation information is also
stored for the data, which describes how the data have to be pre-processed for specific
use cases. Similar to a data warehouse, this enables a structured view on the data however
without having to materialize it inevitably. Instead, the specified transformation steps can
be applied on the fly when accessing the data [2].

Data Mesh. All of these approaches have in common that they are based on centralized
data management for an entire enterprise. However, since data understanding as well
as insights into value-adding business cases—i.e., knowledge about data products in
demand—are concentrated in the respective domains, the data mesh architecture attempts
to reflect this fact. Instead of a single central data architecture, the data mesh transfers
data responsibility to the individual domains. Data are exchanged only in the form of
highly processed data products. Yet, the data mesh is primarily an organizational and not
a technical approach. This means in particular that each domain is self-administering,
i.e., they have to take care of the generation, quality assurance, and provision of their
data products. To this end, data warehouses, data lakes, and lakehouses are still used
locally in a data mesh approach for the management of data products [19].

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

Data Marketplace. A data marketplace takes the idea of a data product that is offered to
customers one step further. This approach offers a platform that brings data owners and
customers together. That is, it represents a central interface for providing, discovering,
and accessing data. Yet, it is primarily focused on the management of metadata about data
products, as a data catalog is required that describes which products are available, what
properties they have, and how they can be used. Data lakes are the predominant solution
for managing the actual data products in data marketplaces due to their flexibility [7].

Synopsis. Two aspects are particularly relevant for the appropriate handling of data
products: On the one hand, just-in-time generation must be possible to reduce storage
costs. On the other hand, customers should be able to customize data products. Yet, all five
discussed data architectures offer only limited support in this regard. The time-consuming
ETL process in data warehouses prevents just-in-time generation and the rigid schemas
impede subsequent adaptation to customer requirements. Although the ELT process
in data lakes offers more flexibility, data are only transformed when accessed, i.e.,
adaptation to use cases is entirely handled by the customer. Although it is possible to keep
pre-processed versions of the data in addition to the raw data to reduce the workload when
accessing it, such a redundant data strategy causes high storage costs. The lakehouse aims
to create the best of both worlds by offering the flexibility of a data lake and providing a
view on refined data similar to a data warehouse using metadata. The required refinement
steps are automatically applied to the data when accessed. However, as the metadata
are also geared towards a schema, customizing the data products is still not possible.

Table 1: Comparison of Existing Data Architectures in Terms of Usability for Data Products.

Data Architecture Just-in-Time Generation Customized Data Products

The time-consuming ETL process The rigid schemas are designed
Data Warehouse prevents just-in-time data product for specific use cases; subsequent
generation. adaptation is not feasible.

Use case-specific data preparation As all data products are generated

is not envisaged in the concept, i.e., when they are accessed due to the

any data product is generated just in ELT process, they can theoretically
Data Lake time from raw data. be customized at will.

Use-case-specific data transformation, i.e., customization of data prod-
ucts, must be handled externally by customers. If data are provided in
various pre-processed stages to facilitate this, high storage costs incur.

As only a non-materialized view on The underlying metadata are de-

Lakehouse data is provided, data products are signed for a specific schema and
generated just-in-time by default. adjustments are not feasible.
A data mesh is an organizational approach to promote data decentraliza-
Data Mesh
tion and data product provision but does not offer any technical solutions.
A data marketplace provides techniques to facilitate providing, discover-
Data Marketplace P p d P g

ing, and accessing data but does not address the creation of data products.

291

292 Christoph Stach, Yunxuan Li, Laura Schuiki, Bernhard Mitschang

The required metadata and access structures also cause increased storage costs. While
data meshes and data marketplaces put the spotlight on data products, neither offer any
solutions for the management of data products and fall back on other data architectures,
typically data lakes. Our main findings regarding the usability of the discussed data
architectures for the management of data products are summarized in Table 1.

3 Related Work

As the foregoing discussion has revealed that current data architectures do not provide
sufficient support for data products, we look at the state of research in the following.

Specification of Data Products. As data products are an abstract conceptual model, Hasan
and Legner [13] attempt to create a harmonized understanding. Key aspects with regard to
management are that no redundant data copies should be maintained when administering
data products and that a dedicated data product cannot be created for every use case for
reasons of scalability. This technical limitation is therefore contrary to market principles,
especially in terms of customization. Therefore, metadata must clearly define data
products so that customers can still find the most suitable ones. A formal metamodel for
data products, such as PROMOTE [5], can be used to this end. Based on such a template,
data owners can then use, e.g., a visual inquiry tool to design their data products [12].

Handling of Data Products. But even with such metadata, there is an irresolvable asymmetry
in terms of the decision as to which products are being offered as well as information
sovereignty regarding the products. By means of dedicated metrics, e.g., quality metrics,
at least the latter can be addressed to improve the findability of suitable data products [10].
Applying the serverless computing paradigm, customers can then be provided with these
products on demand [21]. Technical measures can also be implemented to increase the
trustworthiness of data products by ensuring the validity and veracity of the source data.
To this end, the lineage of data products can be traced by means of provenance data [25].
This enables customers to inspect the composition of data products. Yet, it would be
preferable if customers were able to shape their products themselves from the outset.

Management of Data Products. An extended zone architecture for data lakes can be used
for managing data products. Besides use-case-independent zones, in which generically
pre-processed data are stored alongside unprocessed raw data, use-case-dependent zones
can also be introduced. The latter stores highly specialized data that are tailored to a
specific use case [9]. However, such an architecture inevitably leads to redundant data
storage and thus to high storage costs, which increase even further with each additional use
case or data product. Moreover, due to the involved batch processing, it takes a long time
until the huge amounts of data are processed, i.e., until a new data product is available.
The Delta architecture tackles this problem. For this, the Delta Lake, a framework for
building lakehouses [1], is complemented by structured streaming functionalities. The
combination of batch and stream processing enables a continuous data flow model. As a
result, in addition to accessing data that are already stored in the data lakes, the latest
data from the sources can also be accessed in near real-time [17]. Yet, its sole purpose
is to be able to provide the latest data as quickly as possible and not to reduce storage
costs—all data are still stored redundantly in the data lake zones in the long run. This

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

is where data fabric, an integrated layer connecting data sources and data consumers,
comes into play. With this, a unified end-to-end data platform is established that provides
any kind of emerging use case with its required data products. Ingestion, transformation,
orchestration, preparation, and curation of data products are fully automated and realized
just in time. Albeit data fabric in this form is only a vision for data management [14].

Findings. As data mesh and thus the data product paradigm is a recent approach, there is
limited work on the management of data products [27]. In particular, there is a lack of

concepts that enable the just-in-time production and full customization of data products.

4 Introduction of the LALO Approach

To overcome the identified limitations of current data architectures and the state of
research in terms of managing data products, namely just-in-time production to reduce
storage costs and customization capabilities to fully meet customer needs, we introduce

LALO. LALO is intended to enable the provision of tailor-made data products on demand.

For this purpose, we draw on the current state of the art—namely data lakes—as
well as our previous work—namely BARENTS [23]. Looking at the data lake concept
outlined in Sect. 2 and its extensions discussed in Sect. 3, one notices that this data
architecture has undergone an evolution: Starting as a repository for raw data, to a zone
architecture for storing pre-processed data, culminating in lakehouses where a small
number of proprietary data products are offered via a structured access layer on top
of the data lake. This evolution of the data lake approach and its implications for the

Table 2: Evolution of the Data Lake Approach and its Ramifications Regarding Data Products.

Supported Data Ramification on Ramification on
Data Lake Approach Products Storage Costs Customization
Basic Data Lake (Raw

no support — —

Data Only)

Data Lake with Prede-
fined Zones

proprietary data
preparation

fixed costs for pre-

no customization
processed data

Data Lake with Data
Warehouse (e.g., Lake-
house or Data Fabric)

Data Lake with Cus-
tomizable Materialized
Zones (BARENTS)

Data Lake with Cus-
tomizable Virtual Zones
(LALO)

proprietary data prod-
ucts are implicitly
supported due to the
data warehouse layer

explicit support for
prefabricated tailor-
made data products

explicit support for
tailor-made data
products on demand

depends on whether
or not the data ware-
house layer is materi-
alized

high storage costs per
data product

no storage costs due to
stream processing

little scope for cus-
tomization due to the
rigid data warehouse
schema

full customization; yet
long lead times due to
batch processing

full customization at
all times due to live
adaptability

293

294 Christoph Stach, Yunxuan Li, Laura Schuiki, Bernhard Mitschang

management of data products is reflected in Table 2. However, all of these approaches
have limited support for tailor-made data products.

For this reason, we developed BARENTS as a complement to the zone architecture.
It enables users to define custom preparation steps in an ontology, which are then applied
to the relevant data via batch processing. For simplicity’s sake, the definition of the
processing steps can be assumed as a sequence of triples: source, operator, and sink.
Source and sink are data lake zones in which the required data can be found and in which
the results are to be stored. The operator is a single command—complex processing
steps can be realized by concatenating several such triples, whereby the sink of a triple
represents the source of the subsequent triple. An excerpt of such an ontology is given in
Listing 1. In it, three data preparation steps are applied consecutively: First, all raw data
with an index that is not divisible by 5 are selected (lines 2, 3, and 4). Then, data with an
empty “notes” attribute are filtered out (lines 8 and 9). Finally, the “revenue” attribute is
removed, and the result is stored in the “feature_selection” zone (lines 13, 14, and 15).

This user-defined ontology enables demand-driven data provision in data lakes. Yet,
this comes at a high price: a) Due to the materialization of all intermediate data products,
BARENTS entails high storage costs. For each data preparation step, an additional zone
has to be provided in the data lake in which the results can be stored. This also leads to
increased administration costs, as the lifecycle of the data products must be monitored so
that zones can be removed when a product is no longer required. In addition to persistent
data storages, BARENTS also supports in-memory databases. Yet, they merely shift the
problem of rising storage costs from disk storage to main memory. b) Although data
products can be fully customized with BARENTS, just-in-time production is not possible
due to its static batch-processing approach. This is further complicated by the fact that

List. 1: Excerpt from a BARENTS Ontology to Define Exemplary Data Preparation Steps.

> <rdf:Description rdf:about="http://barents.dl/raw_zone">

3 <dl:function>lambda x : x.index % 5 != 0</dl:function>
4 <dl:type>filter</dl:type>
5 <dl:partOf rdf:resource="http://barents.dl/data_selection"/>

¢ </rdf:Description>
7 <rdf:Description rdf:about="http://barents.dl/data_selection">

8 <dl:function>lambda x : x.notes</dl:function>
9 <dl:type>filter</dl:type>
10 <dl:partOf rdf:resource="http://barents.dl/data_cleansing"/>

i1 </rdf:Description>
2 <rdf:Description rdf:about="http://barents.dl/data_cleansing">

13 <dl:function>lambda x : remove_attribute(x.revenue)</dl:function>
14 <dl:type>map</dl:type>
15 <dl:partOf rdf:resource="http://barents.dl/feature_selection"/>

16 </rdf:Description>

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

Transient Data 7 n
- ... | RawData o Virtual Data| Delivery
Landing Zone Preparation Fhi Z8ne
Zone Zone 2077
S=l g
& <l | 77 | 2 o2e
s] Temporary Original Data Pre- | On-Demand Access “ ﬂﬁm
- I Data Source Data | Processing | Generation Control
Data Buffering and Delivery Customers
Sources of Tailor-
Cataloging | Single Point | Allocation to | Made Data Data
the Data of Truth Use Cases | Products | Provisioning

Data Lake Extensions Introduced by LALO
Fig. 1: Schematic Data Lake Zone Architecture of LALO Adapted from Stach et al. [23].

the composition of a data product is carried out incrementally—i.e., each processing
instruction is handled separately instead of considering the entire process from raw data
to data product. It is therefore not possible to optimize the process. This results in long
production times before a data product can be accessed.

Hence in LALO, we introduce a novel virtual data lake zone that does not incur any
permanent storage costs due to stream-based processing (see Sect. 4.1). Moreover, we
introduce a novel mechanism for the live adaptation of data streams (see Sect. 4.2), which
facilitates alterations to the data processing at runtime. To this end, we compose a script
from all the data preparation steps defined in the ontology for a data product, which is
then loaded into the data processor of the stream.

4.1 A Virtual Data Lake Zone

Our virtual data lake zone is geared towards the BARENTS zone architecture [23]. In our
zone architecture, the data from the source systems are initially ingested and cataloged
by the transient landing zone. They are then stored as is in the raw data zone. In LALO,
the raw data zone serves as single point of truth and as sole data source. Unlike other
zone architectures, we do not store data redundantly in different pre-processing stages.
The raw data zone is followed by a data preparation zone, which is configured using an
ontology of processing rules and applies those rules to the raw data. This zone would
be followed by a multitude of use-case-dependent zones, which serve as storage for the
processed results of the data preparation zone. Yet, as discussed before, such an approach
is not suitable for data products as the storage costs would be too high. Therefore, the

use-case-dependent zones are fully virtualized in LALO by using stream processing.

LALO thus adheres completely to the Kappa architecture [18], in which there is only
a single processing channel for both, batch and streaming data. All data sources are
treated as data streams and processed in real-time. Customers access data products via
the delivery zone. Here they can specify which products they are looking for, which

adjustments need to be made to existing products, or how new products are to be designed.
The schematic representation of the resulting LALO zone architecture is shown in Fig. 1.

The enhanced data preparation zone and the novel virtual data zone represent the
extensions introduced by LALO. Their implementation and the interactions with the
upstream and downstream zones are depicted in Fig. 2.

295

296 Christoph Stach, Yunxuan Li, Laura Schuiki, Bernhard Mitschang
Raw Data Zone I' Data Preparation Zone & Virtual Data Zone I Delivery Zone
[] ; Building Instructions ; Blueprints for
[CEIm. | Composer Data Products
- . @ 9
—— 1 Blueprint
File ! f
System ! @'
1 1
| Composed]
1 Instructions @ | petadata
o-¢
_.l | Live Y lto/from Data @
Dat: ;‘t_. : Adaptation ‘ : Catalog
ata Store I p J

|

1
©oy ® ®
Source Data Selected Fl i n k Data Product

Database Apache Data Apache Flink 1 Data
Kafka 1 Marketplace

&0

Fig. 2: Implementation of the Virtual Data Zone in LALO Based on the Kappa Architecture.

® A customer can use a data marketplace as conceived by Eichler et al. [7], to
discover which data products are available. In line with the just-in-time strategy, however,
this is not a materialized view on the available products, but rather an overview of the
blueprints stored in the data catalog. These blueprints are the sequences of processing
steps defined in the ontology that transform raw data into a data product. If none of
the blueprints meet the customer’s requirements, the customer can make adjustments
to an existing blueprint, resulting in a fork in the ontology, or define a completely new
blueprint, which adds an entirely new branch to the ontology.

@ Once a blueprint has been selected (respectively an existing one adapted or a new
one created), it is forwarded to the composer, which assembles the building instructions.
As the processing rules in the ontology are single-step commands, all commands that are
required to build the selected data product are consolidated in a script by the composer.
This is feasible as the source-operator-sink rules can be composed in such a way that the
input of a rule is the output of its predecessor [24]. As a result, the commands are not
handled independently and optimizations such as lazy evaluation can be applied.

® The composed script is then forwarded to the stream processing system—in
LALO we use Apache Flink for this. Our novel mechanism for the live adaptation of
data streams ensures that the script is automatically applied to the data after a negligible
reconfiguration time. For more details on this mechanism, see Sect. 4.2. For reasons of
scalability, it is possible to run several jobs in parallel in accordance with the Kappa
architecture, i.e., more than one type of data product can be produced at the same time.

@ A continuous data ingestion process extracts all data from the source systems
that are deemed relevant and loads them into the raw data zone. Therefore, the raw data
zone contains the latest data available for the production of a data product. Appropriate
metadata management ensures that these data can be accessed by all subsequent zones.

® In LALO, the streaming platform Apache Kafka is used to retrieve the data from
the raw data zone, assign a topic to them, and partition them accordingly. The data

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

required to produce the requested data product (identified via the assigned topics) are
forwarded to the stream processing system via Kafka brokers for processing.

® Each ready-to-use data product is delivered directly to the customer via the data
marketplace. In this way, the products are at the disposal of the customer as soon as they
are finalized, and no storage costs incur for the products in the data architecture.

4.2 A Mechanism for the Live Adaptation of Data Streams

To realize such a virtual data lake zone, a stream processing system is required that
provides the flexibility needed for such an agile production. In the traditional Kappa
architecture, however, a static processing logic is assumed that is to be applied to all
data from its source systems. A dynamic adaptation of the processing logic at runtime,
e.g., due to evolving customer requirements, is not envisaged. If a revision of the
processing logic is necessary, a new instance of the stream processing job with the
updated logic must be created first, then started, and all data have to be re-processed by
this modified instance. Yet, this leads to high reconfiguration costs for each adaptation.
As an alternative, a dedicated job could be started in parallel for each existing blueprint
from the outset. However, this does not only represent an unnecessarily high consumption
of resources, as presumably not all data products are required at the same time but
also limits flexibility—this approach implies that all data products are already known
in advance and no adaptations can be made to them. To this end, LALO introduces a
mechanism for the live adaptation of data streams for Apache Flink, as shown in Fig. 3.

O Incoming data from the raw data zone (represented by Dy,) are initially cached
in the stream processing system. A FIFO buffer (first in, first out) is used for this purpose
in LALO in order to maintain the sequential order of the data.

® The FIFO buffer forwards the data immediately for processing unless it receives a
retention instruction. Step @ reveals why such a retention may be necessary.

©® The raw data are transformed into data products by the data processor. This
component continuously monitors whether new building instructions are available. All
currently active production plans are stored in the building instructions buffer as Python

scripts that can be applied to the incoming data by the data processor (represented by Dy).

© If the building instructions have been fully applied to a data item, i.e., the requested

data product has been finalized, it is forwarded to the delivery zone (represented by Dy ;).

O If a customer makes alterations to the building instructions, the resulting script is
stored in the building instructions buffer and is therefore noticed by the data processor.
O If it is necessary to modify the data processing logic, the data processor instructs
the FIFO buffer to withhold the data until the update has been completed. The new script
is then automatically loaded into the data processor and processing can continue. From

then on, all data products are generated and provided according to the altered blueprint.

As the dataflow in Apache Flink is modeled as a directed acyclic graph [3], however, such
upstream communication is not supported. In LALO, we therefore use Apache Kafka as
a message broker for communication between the data processor and the FIFO buffer.

For each data product, a separate data stream is initiated when a customer requests
that data product. This allows multiple data products to be generated in parallel.

297

298 Christoph Stach, Yunxuan Li, Laura Schuiki, Bernhard Mitschang

Newly —
Composed @ | Btu”dltw
Instruction nstructions

Buffer

(O)

Input O Output
Channel o Channel
.- |D D ‘
t+1 Buffer t t-1

Data
\ Processor)

@Flink \
\§€ kdfka/ (6

Fig. 3: Implementation of the Live Adaptation Mechanism for Data Streams in LALO.

5 Discussion of the LALO Approach

After presenting LALO and especially its main components, namely the virtual data lake
zone and the mechanism for the live adaptation of data streams, our approach is critically
discussed in the following. First, we assess in Sect. 5.1 to what extent the concept of
the virtual data lake zone benefits our research goals, i.e., the reduction of storage costs
and the just-in-time composing of data products. We then evaluate the performance of
our technical implementation of this concept in the form of the live adaptation of data
streams in Sect. 5.2. Finally, we summarize our lessons learned in Sect. 5.3.

5.1 Assessment of the Virtual Data Lake Zone

LALO is designed to enable the appropriate management of data products. To this end,
two requirements have to be addressed:

Reduction of Storage Costs. To support data pre-processing geared to the needs of any
given use case, it is essential to maintain all raw data. This amount of data can therefore
be regarded as the minimum baseline for a data architecture that supports tailor-made
data products. However, current data architectures that facilitate this, such as data lakes,
store these base data redundantly in various pre-processing stages, which leads to high
storage costs. In terms of data products, such a strategy implies that each single data
product permanently requires storage space, as they are not consumed when being used.

In LALO, we take advantage of this fact, as not only data products but also raw data
are not consumed when being used. That is, it is possible to generate a data product on
demand, as these raw data can never be out of stock. Our virtual data lake zone achieves
a full virtualization of data storage. Instead of materialized data products, LALO only
provides blueprints for data products. If a customer requests a data product, it is generated
from raw data just in time using the blueprints and delivered directly to the customer

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

using stream processing. As a result, data products only incur storage costs on top of the
baseline (i.e., the raw data storage) temporarily during production.

Just-in-Time Composing. Data products offer the most benefit when they are perfectly
geared to their intended use. A generic one-size-fits-all data pre-processing, as applied in
data lakes, therefore necessitates considerable additional effort in terms of data refinement
by customers. Due to the sheer number of potential use cases, however, dedicated data
pre-processing for a few specific use cases, as it is common in lakehouses, is also not an

option. Instead, customers must be enabled to design their own tailor-made data products.

Since LALO adopts the ontology-based specification of the processing rules from
BARENTS, both the redesign and customization of such rules are straightforward. Unlike
in BARENTS, however, in LALO these rules are not applied as a sequence of isolated
commands, but rather as a composed script, which makes optimizations possible. Any
changes made to the script are applied to the data stream almost immediately.

Privacy. The focus of LALO is solely on functional aspects in order to comply with
market principles. However, there is also a need for LALO from a legal perspective. Data
protection laws, such as the European General Data Protection Regulation (GDPR), pose
special challenges to the management of personal data [8]. Such data are very valuable,
making them indispensable to any company. Therefore, companies must comply with the
principles of data minimization (Art. 5(1)(c)) and storage limitation (Art. 5(1)(e)), which
are core features of LALO. Furthermore, purpose limitation (Art. 5(1)(b)) stipulates that
different privacy requirements apply to data processing depending on the customer. This
is facilitated by the just-in-time composing of the processing logic in LALO. Finally,
data subjects have the right to rectification (Art. 16) or the right to erasure (Art. 17). If
all data are stored redundantly in different pre-processing stages and are contained in
multiple data products, this represents an administrative nightmare. By keeping the raw
data as a single point of truth and generating data products just in time, LALO facilitates
all this, as required by Article 25, by design and default. That is, LALO also provides
support for compliance with data protection laws in addition to its functional benefits.

5.2 Evaluation of the Live Adaptation of Data Streams

As LALO possesses the functional capabilities to enable appropriate management of
data products, we now evaluate whether it is also efficient. To this end, we consider data
throughput, as this is a key metric in stream processing. Yet, as throughput depends
largely on the complexity of the processing logic—i.e., it differs from one data product to
the next—we introduce a representative example. Algorithm 1 shows the five processing
steps that are necessary for our exemplary data product. In accordance with Listing 1, a

revenue dataset of a company is initially retrieved (step 1) and cleansed (steps 2 and 3).

Then, the mean shipped units per division and the accumulated notes on these shipments
are determined (steps 4 and 5). The script includes selections (selection of tuples),
projections (selection of attributes), and aggregations combined with a group-by operator
to represent a wide range of typical pre-processing tasks.

We implemented these five instructions as ontology-based processing rules, which
can be processed by LALO. We also generated five synthetic revenue datasets with

299

300 Christoph Stach, Yunxuan Li, Laura Schuiki, Bernhard Mitschang

= -3
=) A
T T

H
| |

(in seconds)
'
T
|

Processing Time

=5
T |]

1,000 k 2,000 k 4,000 k 8,000 k 16,000 k

BARENTS 1.00238 s 1.48085s 2.68044 s 5.39692s | 64.69793s
(1] LALO 0.85748 s 1.38411s 2.46149s 4.88507s | 53.87698 s

Size of Processed Dataset (in tuples)

Fig. 4: Evaluation Results for the Five Datasets: Mean Processing Time and Standard Deviation.

1,000k to 16,000 k data items, i.e., a data volume between approximately 320 MB and
5 GB. In each dataset, we increased the amount of data items by a factor of two. The
integer-based index of the data items is consecutive and starts at 0—i.e., in step 1, 20%
of the tuples are filtered out. 80% of the data items contain random notes with a length
of 128 bytes each, while the other notes are empty—i.e., another 20% of the tuples are
filtered out in step 2. All remaining attributes are filled with random values. There are
five distinct divisions in the database—i.e., five groups are formed in step 4.

To determine whether LALO is efficient, we compare it with BARENTS. For
this evaluation, each dataset is processed once by LALO and BARENTS according to
Algorithm 1 and we determine the processing time. In our prototype, we use Python 3.12.2
as the runtime environment and Polars 0.20 as the execution engine. The measurements
were carried out on a desktop computer with an Intel Core 17-1165G7 with four cores
and 16 GB DDR4-3200 of main memory. We ran these measurements ten times. The
mean processing time and the standard deviation are shown in Fig. 4.

It can be seen that a significant speedup of almost 17% can be achieved due to
the code optimizations in LALO. It also has to be noted that we have factored out the
additional I/O costs of BARENTS—actually, BARENTS would store all intermediate
results after each single command and then retrieve these data again to apply the next
command. In this light, the performance advantage of LALO is even more impressive.

Algorithm 1: Exemplary Blueprint for a Data Product Used for Evaluation.

Data: dataset: (index, division, shipped_units, revenue, notes)
Result: data product: mean shipped units per division and accumulated notes

. filter out all tuples with an index that is divisible by 5;

. remove all tuples which do not include additional notes;

. drop the revenue attribute;

. group the tuples by their division;

. aggregate the number of shipped units (mean) and the notes (concatenate);

(S I NI SR

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

We also used our prototype to determine the costs incurred by the live adaptation of
data streams. The overhead for preparing the data processing (i.e., retrieving a new script
and parsing the contained commands) is only 2.4 ms. This can be considered negligible.

5.3 Lessons Learned

The performance measurements have shown that our approach using composed scripts
achieves a distinct speedup compared to the execution of a sequence of isolated commands.
The overhead incurred when adapting a script is also negligible. Admittedly, the just-
in-time generation of data products naturally takes more time than if they are already
available ready-made in the data architecture. However, this is not reasonable given the
market principles for appropriate management of data products. For this, just-in-time
production as well as complete customization are required—both of which are provided
by LALO. Furthermore, long-term and redundant storage of preprocessed data and
finalized data products is not an option for privacy reasons as well. Accordingly, LALO
is not only an effective solution for composing tailor-made data products on demand but
also facilitates compliance with data protection laws.

Although LALO is explicitly designed for data lakes, this is not a limitation of our
approach. Combined with data fabric, data lakes provide the basis for a flexible lakehouse.
Data lakes are also a commonly used data architecture in data meshes at the domain level.
They also represent an important data backend for data marketplaces. LALO therefore
makes a substantial contribution to all current data architectures.

6 Conclusion and Outlook

The new understanding of data as a valuable commodity that can be transformed into a
profitable data product if processed appropriately implies that the same market principles
apply to data as to physical goods. This poses new challenges for the management of
data products which current data architectures are unable to cope with. In particular, this
concerns the just-in-time preparation of data products to reduce storage costs as well as
the full customization of such products so that they have the best utility for customers.
LALO addresses these challenges: a) By introducing a virtual data zone for data
lakes, we enable the virtualization of data storage. It is possible to provide blueprints
instead of materialized data products and do the actual generation just in time. This is

realized using the Kappa architecture and data streams, i.e., there accrue no storage costs.

b) A key component that makes this possible is our mechanism for live adaptation of
data streams. By composing building instructions and deploying them at runtime, we
achieve a 17% speedup in the generation of fully customized data products. This makes
LALO a valuable solution for composing tailor-made data products on demand.
Although LALO is a worthwhile contribution to the management of data products, it
marks only the first cornerstone. Our next steps focus on three aspects: First, a hybrid
BARENTS/LALO solution may be useful. Frequently used or standardized data products
could then be provided in a materialized form, while highly individualized data products
could be composed on demand. Second, a cross-domain virtualization layer could be

considered when LALO is used in a data mesh at a domain level to provide data products.

301

302 Christoph Stach, Yunxuan Li, Laura Schuiki, Bernhard Mitschang

This involves combining and harmonizing blueprints from multiple domains to support
just-in-time generation of data products that are composed of data products from several
domains. Third, the introduction of dedicated privacy operators for the blueprints to
obfuscate personal information when creating data products could further facilitate
compliance with the GDPR. However, these conceptions are just food for future work.

Acknowledgments. This paper is part of the SofDCar research project (19521002), which is
funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK).

References

1. Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy, M., Torres, J., van Hovell, H.,
Ionescu, A., Luszczak, A., undefinedwitakowski, M., Szafradski, M., Li, X., Ueshin, T.,
Mokhtar, M., Boncz, P., Ghodsi, A., Paranjpye, S., Senster, P., Xin, R., Zaharia, M.: Delta lake:
high-performance ACID table storage over cloud object stores. Proceedings of the VLDB
Endowment 13(12), 3411-3424 (2020), https://doi.org/10.14778/3415478.3415560

2. Armbrust, M., Ghodsi, A., Xin, R., Zaharia, M.: Lakehouse: A New Generation of Open
Platforms that Unify Data Warehousing and Advanced Analytics. In: Proceedings of the
11th Annual Conference on Innovative Data Systems Research, CIDR (2021), URL http:
/lcidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

3. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink™:
Stream and Batch Processing in a Single Engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 36(4), 28-38 (2015)

4. Dehghani, Z.: Data Mesh: Delivering Data-Driven Value at Scale. O’Reilly (2022)

5. Driessen, S., den Heuvel, W.J.v., Monsieur, G.: ProMoTe: A Data Product Model Template for
Data Meshes. In: Proceedings of the 42nd International Conference on Conceptual Modeling, ER
(2023), https://doi.org/10.1007/978-3-031-47262-6_7

6. Eichler, R., Groger, C., Hoos, E., Schwarz, H., Mitschang, B.: From Data Asset to Data Product —
The Role of the Data Provider in the Enterprise Data Marketplace. In: Proceedings of the
16th Symposium and Summer School on Service-Oriented Computing, SummerSOC (2022),
https://doi.org/10.1007/978-3-031-18304- 1

7. Eichler, R., Groger, C., Hoos, E., Stach, C., Schwarz, H., Mitschang, B.: Introducing the
enterprise data marketplace: a platform for democratizing company data. Journal of Big Data 10,
173 (2023), https://doi.org/10.1186/540537-023-00843-z

8. Forgd, N., Hinold, S., Schiitze, B. (eds.): New Technology, Big Data and the Law. Springer
(2017)

9. Giebler, C., Groger, C., Hoos, E., Schwarz, H., Mitschang, B.: A Zone Reference Model
for Enterprise-Grade Data Lake Management. In: Proceedings of the 2020 IEEE 24th
International Enterprise Distributed Object Computing Conference, EDOC (2020), https:
//doi.org/10.1109/EDOC49727.2020.00017

10. Guggenberger, T.M., Altendeitering, M., Schlueter Langdon, C.: Design Principles for
Quality Scoring—Coping with Information Asymmetry of Data Products. In: Proceedings
of the Hawaii International Conference on System Sciences 2024, HICSS (2024), URL
https://hdl.handle.net/10125/106928

11. Harby, A.A., Zulkernine, F.: From Data Warehouse to Lakehouse: A Comparative Review.
In: Proceedings of the 2022 IEEE International Conference on Big Data, Big Data (2022),
https://doi.org/10.1109/BigData55660.2022.10020719

https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.1007/978-3-031-47262-6_7
https://doi.org/10.1007/978-3-031-47262-6_7
https://doi.org/10.1007/978-3-031-18304-1
https://doi.org/10.1007/978-3-031-18304-1
https://doi.org/10.1186/s40537-023-00843-z
https://doi.org/10.1186/s40537-023-00843-z
https://doi.org/10.1109/EDOC49727.2020.00017
https://doi.org/10.1109/EDOC49727.2020.00017
https://doi.org/10.1109/EDOC49727.2020.00017
https://doi.org/10.1109/EDOC49727.2020.00017
https://hdl.handle.net/10125/106928
https://doi.org/10.1109/BigData55660.2022.10020719
https://doi.org/10.1109/BigData55660.2022.10020719

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

217.

A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand

Hasan, M.R., Legner, C.: Data Product Canvas: A Visual Inquiry Tool Supporting Data Product
Design. In: Proceedings of the 18th International Conference on Design Science Research in
Information Systems and Technology, DESRIST (2023), https://doi.org/10.1007/978-3-031-
32808-4_12

Hasan, M.R., Legner, C.: Understanding Data Products: Motivations, Definition, and Categories.
In: Proceedings of the 2023 European Conference on Information Systems, Research Papers,
ECIS (2023), URL https://aisel.aisnet.org/ecis2023_rp/229

Hechler, E., Weihrauch, M., Wu, Y.: Data Fabric and Data Mesh Approaches with Al: A Guide to
Al-based Data Cataloging, Governance, Integration, Orchestration, and Consumption. Apress
(2023)

Inmon, B.: Data Lake Architecture: Designing the Data Lake and Avoiding the Garbage Dump.
Technics Publications (2016)

Inmon, W.H.: Building the Data Warehouse. Wiley, 4™ edn. (2005)

Kraetz, D., Morawski, M.: Architecture Patterns—Batch and Real-Time Capabilities. In:
Liermann, V., Stegmann, C. (eds.) The Digital Journey of Banking and Insurance, Volume
III: Data Storage, Data Processing and Data Analysis, pp. 89-104, Springer (2021), https:
//doi.org/10.1007/978-3-030-78821-6_6

Kreps, J.: Questioning the Lambda Architecture. Radar Article, O’Reilly (2014), URL
https://www.oreilly.com/radar/questioning-the-lambda-architecture/

Machado, L.A., Costa, C., Santos, M.Y.: Data Mesh: Concepts and Principles of a Paradigm Shift
in Data Architectures. Procedia Computer Science 196, 263-271 (2022), https://doi.org/10.1016/j.
procs.2021.12.013

Majchrzak, J., Siwiak, M., Balnojan, S.: Data Mesh in Action. Manning (2023)

Sedlak, B., Pujol, V.C., Donta, P.K., Werner, S., Wolf, K., Falconi, M., Pallas, F., Dustdar, S., Tai,
S., Plebani, P.: Towards Serverless Data Exchange Within Federations. In: Proceedings of the
17th Symposium and Summer School on Service-Oriented Computing, SummerSOC (2023),
https://doi.org/10.1007/978-3-031-45728-9_9

Stach, C.: Data Is the New Oil-Sort of: A View on Why This Comparison Is Misleading and
Its Implications for Modern Data Administration. Future Internet 15(2), 71:1-71:49 (2023),
https://doi.org/10.3390/£115020071

Stach, C., Bricker, J., Eichler, R., Giebler, C., Mitschang, B.: Demand-Driven Data Provisioning
in Data Lakes: BARENTS — A Tailorable Data Preparation Zone. In: Proceedings of the 23rd
International Conference on Information Integration and Web Intelligence, iiWAS (2021),
https://doi.org/10.1145/3487664.3487784

Stach, C., Eichler, R., Schmidt, S.: A Recommender Approach to Enable Effective and
Efficient Self-Service Analytics in Data Lakes. Datenbank-Spektrum 23(2), 123-132 (2023),
https://doi.org/10.1007/s13222-023-00443-4

Subramanian, G., Nagabushanam, H.: Governance of Data Product in Multi-layered IoT system.
In: Proceedings of the 2022 International Conference on Electrical, Computer, Communications
and Mechatronics Engineering, ICECCME (2022), https://doi.org/10.1109/ICECCMES5909.
2022.9987960

Tien, J.M.: Toward the Fourth Industrial Revolution on Real-Time Customization. Journal of
Systems Science and Systems Engineering 29(2), 127-142 (2020), https://doi.org/10.1007/s11518-
019-5433-9

Wider, A., Verma, S., Akhtar, A.: Decentralized Data Governance as Part of a Data Mesh
Platform: Concepts and Approaches. In: Proceedings of the 2023 IEEE International Conference
on Web Services, ICWS (2023), https://doi.org/10.1109/ICWS60048.2023.00101

303

https://doi.org/10.1007/978-3-031-32808-4_12
https://doi.org/10.1007/978-3-031-32808-4_12
https://doi.org/10.1007/978-3-031-32808-4_12
https://doi.org/10.1007/978-3-031-32808-4_12
https://aisel.aisnet.org/ecis2023_rp/229
https://doi.org/10.1007/978-3-030-78821-6_6
https://doi.org/10.1007/978-3-030-78821-6_6
https://doi.org/10.1007/978-3-030-78821-6_6
https://doi.org/10.1007/978-3-030-78821-6_6
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://doi.org/10.1016/j.procs.2021.12.013
https://doi.org/10.1016/j.procs.2021.12.013
https://doi.org/10.1016/j.procs.2021.12.013
https://doi.org/10.1016/j.procs.2021.12.013
https://doi.org/10.1007/978-3-031-45728-9_9
https://doi.org/10.1007/978-3-031-45728-9_9
https://doi.org/10.3390/fi15020071
https://doi.org/10.3390/fi15020071
https://doi.org/10.1145/3487664.3487784
https://doi.org/10.1145/3487664.3487784
https://doi.org/10.1007/s13222-023-00443-4
https://doi.org/10.1007/s13222-023-00443-4
https://doi.org/10.1109/ICECCME55909.2022.9987960
https://doi.org/10.1109/ICECCME55909.2022.9987960
https://doi.org/10.1109/ICECCME55909.2022.9987960
https://doi.org/10.1109/ICECCME55909.2022.9987960
https://doi.org/10.1007/s11518-019-5433-9
https://doi.org/10.1007/s11518-019-5433-9
https://doi.org/10.1007/s11518-019-5433-9
https://doi.org/10.1007/s11518-019-5433-9
https://doi.org/10.1109/ICWS60048.2023.00101
https://doi.org/10.1109/ICWS60048.2023.00101

	LALO—A Virtual Data Lake Zone for Composing Tailor-Made Data Products on Demand
	1 Introduction
	2 Data Architectures
	3 Related Work
	4 Introduction of the LALO Approach
	4.1 A Virtual Data Lake Zone
	4.2 A Mechanism for the Live Adaptation of Data Streams

	5 Discussion of the LALO Approach
	5.1 Assessment of the Virtual Data Lake Zone
	5.2 Evaluation of the Live Adaptation of Data Streams
	5.3 Lessons Learned

	6 Conclusion and Outlook

