
© 2012 SCITEPRESS. This is the author’s version of the work. It is posted at https://opencms.uni-
stuttgart.de/fak5/ipvs/departments/as/publications/stachch/data_12_nexusdss.
pdf by permission of SCITEPRESS for your personal use. Not for redistribution. The definitive version was
published in In: Helfert, M. et al. (Eds.) Proceedings of the First International Conference on Data Technologies
and Applications - Volume 1: DATA, pp. 175–185, 2012, doi: 10.5220/0004051401750185.

NexusDSS – A System for Security Compliant Processing of Data
Streams

Nazario Cipriani1, Christoph Stach1, Oliver Dörler2 and Bernhard Mitschang1

1Universität Stuttgart, Institute of Parallel and Distributed Systems, Universitätsstraße 38, 70569 Stuttgart, Germany
2Steinäcker 54, 73773 Aichwald, Germany

{cipriani | stach | mitschang}@ipvs.uni-stuttgart.de, oliver@doerler.name

Keywords: Accessibility of Data, Privacy Policies, Data Stream Processing.

Abstract: Technological advances in microelectronic and communication technology are increasingly leading to a highly
connected environment equipped with sensors producing a continuous flow of context data. The steadily
growing number of sensory context data available enables new application scenarios and drives new processing
techniques. The growing pervasion of everyday life with social media and the possibility of interconnecting
them with moving objects’ traces, leads to a growing importance of access control for this kind of data since it
concerns privacy issues. The challenge in twofold: First mechanisms to control data access and data usage must
be established and second efficient and flexible processing of sensible data must be supported. In this paper we
present a flexible and extensible security framework which provides mechanisms to enforce requirements for
context data access and beyond that support safe processing of sensible context data according to predefined
processing rules. In addition and in contrast to previous concepts, our security framework especially supports
fine-grained control to contextual data.

1 INTRODUCTION

With the rapidly increasing density of mobile
phones equipped with GPS sensors and mobile Inter-
net connections, the usage of data stream processing
is increasing in many application areas. A GPS sen-
sor, for example, continuously produces a potentially
unbounded stream of measuring points which makes
the use of data stream processing necessary. Applica-
tion areas for data stream processing can be found in
social media applications—such as Facebook, Twitter
and Google+—as well as in location-based services
(LBSs). These applications often augment position
information of mobile devices with personal informa-
tion of the user in real time. The benefits of a LBS is
undisputed and already included in many of today’s
smartphone applications.

More and more of our social and private life is
pervaded by this kind of applications, which on the
one hand delivers a real benefit in everyday life pro-
viding location-based information which one might be
interested in. On the other hand, however, this raises
the question on how to protect this information against
unauthorized access. For the data owner it is of great
importance to express fine-grained access conditions,
defining which data can be accessed by certain entities

and how this data might be processed by, e.g., data
stream processing systems. A majority of users of
LBSs can also be found in social networks. Social
networking is easy to use and information including
personal details and the current position is available to
a wide audience. This creates a variety of usage sce-
narios, but at the same time exposes possibly sensitive
information to the public.

The upper part of Figure 1 (Application View) de-
picts such a LBS, called Friend Finder (FF). This
sample Application reveals the current location of a
user to all of his friends. Mike broadcasts his GPS
data to FF in our scenario. FF then combines his data
with additional information acquired by third-party
data providers, e.g. Google Maps. Similar services
are offered by many of todays social networks such
as foursquare. However, in these services Mike can
share all of his private information with a user or no
information at all. In contrast, our approach goes a
step further: Although, both of his friends Bob and Al-
ice have access to parts of Mike’s data, Alice receives
filtered information only. E.g., while Bob gets Mike’s
accurate location, Alice gets the country where Mike
is at the moment.

In the lower part of Figure 1 (Stream-Processing
View) the participants of this scenario are mapped to

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/data_12_nexusdss.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/data_12_nexusdss.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/data_12_nexusdss.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/data_12_nexusdss.pdf
https://doi.org/10.5220/0004051401750185

d
at

a
st

re
am

p
ro

ce
ss

in
g

sy
st

e
m

S2S1

O1 O2

Mike Friend Finder
(FF)

Bob

Alice

GPS

Map Data /
User Data Application View

Stream-Processing View

T1

T2

Bob

Alice
VisualizeCombine

FF DBGPS

FF LBS

O: Operator; S: Source; T: Target

Figure 1: Application scenario illustrating the necessity of
access control in data streaming applications.

the nodes of a data stream processing system. Mike’s
GPS and the third-party data providers act as data
sources (S1, S2) while Bob’s and Alice’s mobile de-
vices are the data sinks (T1, T2). The FF LBS processes
this data (e.g. by combining different sources O1 or by
visualizing the data O2) and ensure that Mike’s privacy
rules are respected. In order to enable these features,
the data stream processing system that performs data
integration and data processing must provide access
control to data (Anderson, 2008). Furthermore, it must
provide a way in defining a fine-grained process con-
trol to data.

A prerequisite to support a wide range of stream-
based applications—including the application scenario
sketched above—is that the data stream processing sys-
tem must be open to further application scenarios and
provide an integration mechanism for domain-specific
extensions (Cipriani et al., 2011a). This particularly
means that the required domain-specific data and pro-
cessing techniques —in terms of operators— should be
integrated into an existing system to exploit already ex-
isting functionalities and extend the system only where
necessary, reducing functional redundancy. For this
purpose we developed NexusDS (Cipriani et al., 2009),
an open, flexible, and extensible data stream process-
ing system for distributed processing of streamed con-
text data. NexusDS bases on Nexus (Nicklas and
Mitschang, 2004) as it builds upon its particular data
management and extends it by stream processing ca-
pabilities. As context-data is highly privacy-related,
also security control patterns are essential to control
data access and data processing. Thus, we extended
NexusDS by security control patterns to meet the par-
ticular requirements of context-aware applications.

The openness of NexusDS in combination with the
requirement of a fine-grained data access and a fine-
grained data processing, as described beforehand, is a
big challenge. Appropriate mechanisms must be devel-
oped to allow for both a controlled access to sensitive
context data and a controlled processing of it. For this
purpose we extended NexusDS to NexusDS Secure
(NexusDSS). We developed an access control frame-
work for data stream processing systems, which allows
a fine-grained tuning on which data is accessible and
how it might be further processed. The security frame-
work retains the openness and flexibility of the original
data stream processing system and allows—depending
on the desired level of security—to determine the set-
tings for fine-grained data access and data processing.

The remainder of this paper is organized as follows:
Section 2 defines protection goals and provides a clas-
sification for access control and processing control
mechanisms. Related work is discussed in Section 3
comparing data stream processing systems with re-
spect to the control mechanism classification from the
previous section. In Section 4 the architecture of the
security framework with all its main components is de-
scribed and its mode of operation. After that Section 5
presents the security framework which constitutes an
open and extensible mechanism to integrate custom
access control and process control. The security poli-
cies in a second step are handled by the data stream
processing system at deployment time and may change
at runtime, as described in Section 6. In Section 7 a
summary and an outlook to future work concludes this
paper.

2 PROTECTION GOALS

The definition of an access control framework for a
distributed data stream processing system is preceded
by a definition of safety and security requirements to
data. Depending on this set the actual safe processing
issues are designed. Section 2.1 first describes the
necessary terminology. After that in Section 2.2 the
access control classification is shown to ensure—in the
context of this work—safe processing by establishing
a security architecture that allows to define access
conditions and process conditions for context data.

2.1 CLARIFICATION OF TERMS

The access control framework distinguishes two dif-
ferent types of participants: Subjects and objects. Sub-
jects represent entities such as users of a system or
a process running in a system. In contrast, objects
represent entities such as files, database entries, or exe-

cutable code within a system. Subjects access objects.
However, imagine a subject which wants to change the
access conditions of another subject, such as e.g. the
user from Figure 1 limiting the position sharing to only
family members (assuming subjects can be grouped
according to their family membership). In this case,
the former user modifying the access conditions is the
subject whereas the latter user represents the object.
Throughout this work we will refer to the respective
entity type being either a subject or an object.

2.2 CLASSIFICATION OF
PROTECTION GOALS

Information can be protected under the consideration
of different protection goals, which leads to the so-
called protection targets. These protection targets in-
fluence the actual design and functioning of the system
or process concerned. The classification is build out of
four protection target classes which in turn consist of
a variety of targets. The protection target classes are:
Authentication, Access Control, Process Control, and
Granularity Control.

• Authentication: Covers all targets for the reliable
identification of the relevant subjects and objects
which are participating in the system. These in-
clude the authenticity of subjects and objects which
must have the necessary rights to join the system
as well as the action liability, which assigns each
action to a specific subject. To make these actions
traceable a storage area for trace information must
be provided.

• Access Control: Covers all targets that play an
essential role for access control. Here a target that
is of crucial importance is the data integrity, as
this ensures that objects cannot be changed uncon-
trollably and therefore guarantee that only subjects
allowed to make changes will be able to access this
data. Furthermore, the confidentiality of informa-
tion must be ensured in order to hide information
from subjects who may not be allowed to read this
information.

• Process Control: Covers all targets that influence
the processing of data. This includes acceptance
of computation environments which are going to
process the data. Assuming a distributed environ-
ment, this protection target defines the computa-
tion nodes the data might be processed on. Besides
this, also data extent is of importance, i.e., to de-
fine the amount of data that is available at one time
instant for data processing. By limiting the data
extent a limited view of the current data window is
provided.

• Granularity Control: Granularity control covers
targets which play a role in obfuscating the original
data (object) in order to, e.g., prevent conclusions
to the subject the data originates from with tech-
niques such as anonymization and pseudonymisa-
tion. Other techniques which belong to this protec-
tion target class are methods that add some fuzzi-
ness to data in order to hide detailed information
on e.g., the current position, or aggregate a certain
amount of data elements before delivering it to
subsequent operations.

These protection targets build the basis for the com-
parison of related work in the following section. The
protection targets also define the main functionalities
of our security framework which is the basis of our
system implementation, as shown in Section 5.

3 RELATED WORK

This section introduces some well-known security
concepts in the context of data stream processing sys-
tems (DSPS) and provides a comparison according to
the protection targets raised in Section 2.2. A DSPS
is characterized by an asynchronous and distributed
execution of long running queries. This represents
a major challenge since, e.g., access policies might
change at runtime which require the use of appropriate
measures in order to ensure changed security policies
being enforced. These changes on the one hand should
not influence ongoing operations as this would affect
currently running queries negatively. On the other
hand the new policies must be enforced as quickly as
possible while avoiding centralized structures as they
constitute a single point of failure. Table 1 provides a
comparison of well-known concepts in this area w.r.t.
the protection targets presented in Section 2.2. These
concepts are described in detail below.

In the year 2005, Secure Borealis (Lindner and
Meier, 2005)—which extended Borealis (Cangialosi
et al., 2005)—was one of the first DSPS which had an
integrated security concept to control data access. The
security concept is based on a general DSPS architec-
ture out of which additional components that enable
access control were derived. The query processing in
Secure Borealis is performed in a distributed fashion.
Communication between the single computation nodes
is encrypted to ensure data integrity and to prevent it
from being read by third parties. In contrast to the
query processing, the security concept of Secure Bore-
alis is based on a centralized structure to enforce the
security policies. This circumstance is a potential bot-
tleneck and represents a possible single point of failure
since all data first has to pass through this component

System
Authentication Access Control Process Control Granularity Enforcement

Authenticity Liability Integrity Confidentiality Acceptance Extent
Control

Secure
Role Subject Encryption

Centralized
— — "All or Nothing"

Centralized
Borealis Control Supervisor

ACStream Subject Subject Predicate Predicate —
Time-based

"All or Nothing" Rewrite Queries
Windows

FENCE Subject Subject Predicate SS+ Operator — — "All or Nothing"
Rewrite Queries/
Security Punct.

NexusDSS Role Subject
Encryption/

SI Filter
Computation Parametrizable

LoD Filters
Augment Queries/

Certificates Node Set Windows Security Punct.

Table 1: System comparison w.r.t. the protection targets authentication, access control, process control, the possibility of
controlling the access granularity of context data, and how the protection targets are enforced by the respective system.

before it can be forwarded to subsequent operations
or the target. This centralized component enforces
access control and consists of two parts, Object Level
Security (OLS) and Data Level Security (DLS) com-
ponents. The OLS component is active before runtime
of queries and the DLS component is active during
query runtime. The OLS component is linked to a role
model that assigns to each subject (e.g., user) a specific
role that holds its associated access permissions. Sub-
jects hereby are identified by a username and password
combination. Based on this information the OLS com-
ponent decides whether a subject is allowed to access
objects (e.g., data). All objects a subject is not allowed
to access are hidden. The DLS component enforces
the security policies at query runtime and consists of
filters that are applied to the final result of the queries
to remove objects (data elements) from the resulting
data streams to which the subject has no access. This
in turn means that the access control enforcement is
performed after the final data elements are determined,
i.e. the entire query processing is done. This strat-
egy might discard costly calculated data resulting in a
waste of resources.

The access controls in ACStream (Cao et al., 2009)
can be defined on a data stream level for data ele-
ments and their attributes. ACStream builds upon Au-
rora (Abadi et al., 2003). Access control restrictions
are defined by expressions that describe an explicit
assignment of access rights to certain subjects. To il-
lustrate this, imagine a data stream holding positions
where each data element has an ID-attribute and a loca-
tion-attribute. An expression in ACStream can define
read access for a subject A, if the ID-attribute has a cer-
tain value or the position is within a defined quadrant.
A special feature of the concept is the possibility to
define temporal constraints. A temporal restriction al-
lows access to data elements which are in a certain time
interval. The start time and end time can be explicitly

defined and the time interval is provided by defining
the absolute time interval size and the interval step size.
ACStream enforces access control by rewriting queries.
The rewrite process possibly selects security operators
instead of regular operators to carry out the defined
access control constraints. Four different types of se-
curity operators are available: Secure View processes
an input stream by applying the access restrictions and
returning a view of the data stream with only data el-
ements meeting the access restrictions. Secure Read
operators filter data elements and remove attributes,
Secure Join operators filter the output data streams
composed of multiple input data streams, and Secure
Aggregate operators control aggregate functions.

FENCE (Nehme et al., 2010, Nehme et al., 2008)
exploits security punctuations to enforce access con-
trol to data streams. A security punctuation is a data
element within a data stream that defines the access
policies on the respective data stream. I.e., the se-
curity punctuations are woven into the original data
streams when access restrictions are to be supported.
E.g., if at some point in time the GPS position stream
is restricted to a certain subset of subjects (users) a
corresponding security punctuation is generated and
is woven into the output stream to tell subsequent op-
erations about the changed access restriction setting.
Security punctuations are implemented by two punc-
tuation types. The first type is represented by a data
security predicate which controls access to data el-
ements. The second type is represented by a query
security predicate which controls access to queries. To
control data access two possible approaches are pro-
posed. The first approach is a security filter approach
which provides the use of the so-called security shield
plus operator (SS+ operator). SS+ operators are inte-
grated into the original query and filter data elements
according to security punctuations. Here filtering for
security punctuations is directly integrated within the

query processing. The second strategy consists of
rewriting the query and relying on existing operator
implementations. To support the filtering of security
punctuations the query predicates must be rewritten
such that—beside the original predicate condition—
the selection operator filters out data elements which
do not meet the access restrictions defined by the secu-
rity punctuations.

3.1 DISCUSSION

The approaches presented propose interesting fea-
tures and give valuable directions. However, the ap-
proaches are not suitable for NexusDS, our open and
distributed data stream processing system (presented
in Section 5.1). A major problem is query rewrite since
a complete rewrite functionality supposes the query
processor to semantically know all operators available
in the system. NexusDS is open and extensible, thus
allowing arbitrary operators. Even only considering
the rewrite of existing predicates might end up in un-
predictable overhead since changes to security policies
usually condition a restart of the affected query. The
centralized approach in Secure Borealis guarantees
that the security policies are enforced, but it is not fea-
sible since it represents a potential bottleneck limiting
the amount of queries that can run in parallel. Secure
Borealis and ACStream in principle allow to integrate
custom operators into the system. However, no precau-
tions are taken to prevent uncontrolled outflow of data.
Also the data access granularity is not adjustable to
domain-specific needs. Some data provider generally
permits other subjects to use its objects (context data
such as GPS positions). But eventually a subject may
also want to restrict the access and processing of the
exact objects to a certain set of subjects and provide the
data to others only less accurate. Finally, the presented
approaches only consider access control mechanisms.
However, also the way data is being processed is of
importance. E.g., certain data should not cross certain
administrative boundaries and thus processing should
be limited to a certain set of processing nodes.

Our augmentation approach is an extension on
a query graph level—denoted as stream processing
graph (SP-graph) throughout this work—and shows
some important advantages compared to the other ap-
proaches presented:

• The semantics of the operators must not be known
in order to adapt the SP-graph to meet the security
restrictions.

• The presented operator model is flexible in the
way it embeds the operator within a box. Thus also
operators which are not designed to work with the
security framework are still usable.

• Our approach allows to define and integrate arbi-
trary granularity filters to adapt the data details
and still allow to process them at the cost of some
reduction in data quality.

In the following sections we present the architec-
ture and the characteristics of our security framework
as well as the augmentation technique, that is realized
as part of the NexusDS stream processing system.

4 SECURITY FRAMEWORK

The security framework in NexusDS builds upon
the approaches presented so far and extends them to
meet the special requirements, given by an open, i.e.
extensible, DSPS. In this section we present the secu-
rity framework for security compliant processing of
streamed data. Therefore, first basic assumptions for
the security framework are presented. Thereafter, we
detail on the functional capabilities.

4.1 BASIC ASSUMPTIONS

Each subject interacting with the data stream process-
ing system must be assigned a unique identity. This
means that for each user, operator1, and compute node
a unique identity must be defined. There already exist
a variety of solutions, such as the identification by a
combination of username and password. Hence, we as-
sume here subjects can identify themselves by a valid
username and password combination. Furthermore, all
services and operators communicate using a asymmet-
ric key algorithm. This means data is encrypted with
the public key of the receiver and only the receiver
is able to read the data by using its private key. To
ensure liability, it is important to track all actions a
certain subject does. Therefore, the corresponding log
informations must be stored in a restricted and fail-safe
area.

Subjects are associated with a set of security poli-
cies which are managed by a policy management com-
ponent. These policies define access and process con-
ditions for the subjects and the affected objects. Poli-
cies are divided into the types Access Control (AC),
Process Control (PC), and Granularity Control (GC),
which are detailed in the following. Each policy type
covers a certain aspect of security according to the
protection goals.

First, we start presenting the different security con-
trol patterns. Afterwards, the underlying approach to
augment the SP-graphs with security policies is shown.

1Operator is referred to as synonymous with either a
source operator, an operator or a target operator is used.

Integrate

Operator
B

Source
A

Sink
C

Operator
B

Source
A

Sink
C

Operator
B

Source
A

Sink
C

Augment

PC-B

AC-B AC-C

PC-C

Filter

Original SP-Graph Intermediate SP-Graph Augmented SP-Graph

AC-A

Filter Filter
Filter

GC-B

GC-C

PC-A

GC-A

2

1

3

3

Figure 2: Augmentation principle of the secure framework. The original query formulated by applications is translated
to an equivalent one with access control and process control patterns. In a second step the SP-graph is augmented by the
corresponding constraints defined by the access control patterns and the filters for the process control patterns. Afterwards,
the augmented SP-graph is ready for deployment by an appropriate deployment algorithm.

This must be done before deploying the SP-graph to
ensure that all security policies are met.

4.2 SECURITY CONTROL
PATTERNS

Access Control
AC-policies ensure integrity of data and confiden-

tiality in terms of hiding data that subjects are not
allowed to access and provide a mechanism to trace
actions of subjects accessing data. Access control
policies enforce an all or nothing semantic. Thus
it ensures that objects are only accessed by subjects
having the necessary permissions. Each AC-policy
is uniquely identified by a policyID. Optionally, also
public keys might be provided to check the signatures
of the related operators and services and thus verify
their authenticity. This corresponds to the procedure
of digital signature (Merkle, 1989) and is transparently
done by the security framework.

Process Control
PC-policies ensure acceptance of the execution

environments and limit the extent of visible data. PC-
policies apply to nodes thus defining a set of comput-
ing nodes which are allowed to execute certain oper-
ators. Furthermore, it is important to limit the extent
of data, i.e. the currently visible window of data, for
the operators. This way it is possible to control the
quality of aggregates, e.g. such as traces of mobile
objects. PC-policies influence the placement of oper-
ators as part of SP-graph deployment. Therefore, we
developed and presented a flexible operator placement
strategy (Cipriani et al., 2011b) that allows to restrict
the actual placement according to given restrictions,
such as restricting the placement to certain nodes by
at the same time satisfying certain QoS-conditions.

Granularity Control
GC-policies basically define filters, that apply to

operator slots. A slot unambiguously defines an
operator-related input or output. These filters might
be applied before data is send to subsequent operators
or after data has been received by this operator. This
basically depends on the concrete configuration of the
DSPS.

4.3 MODE OF OPERATION

The principal mode of operation to augment SP-graphs
is depicted in Figure 2. The starting point is the orig-
inal SP-graph shown in the left part of Figure 2. For
each subject–object pairing there is a security policy
defined which must be met. This step is denoted by the
integration process which ends up in an intermediate
SP-graph shown in the middle of Figure 2. The inter-
mediate SP-graph has AC-policies, PC-policies, and
GC-policies attached to their operators. Each policy
type is shown in different shades of grey. Integration
ensures that relevant security policies are integrated
into the SP-graph. The integration process consists of
three steps: AC-integration, PC-integration, and finally
GC-integration.

In the AC-integration phase, it is first checked for
AC-policies relevant to the subject running the applica-
tion (and thus issuing the SP-graph) which defines data
access to the data involved into the computation task.
This is denoted by AC-A defining whether the subject is
allowed to access Source A. For example, an AC-policy
might exist for the third-party data provider from the
application scenario depicted in Figure 1 which forbids
him to receive results of the linked data. Thereafter,
the AC policies for AC-B (Operator B) and AC-C (Sink
C) are attached to the SP-graph. Note that AC-policies

for all subjects involved must be considered in this
phase. This especially means that also AC-policies for
operators must be integrated into the SP-graph.

The second phase, PC-integration, consists of
checking whether PC-policies relevant to the subject
(e.g., a user) are defined stating whether the subject
is allowed to execute the operators of the SP-graph.
Analogous to the AC-integration the respective PC-
policies are attached to the SP-graph. This is denoted
by the different PC-policies depicted in Figure 2. Be-
side the user-related PC-policies there might also exist
operator-related PC-policies that limit the execution of
a certain operator to a concrete set of nodes. Thus, all
existing PC-policies for all involved subjects (includ-
ing entities such as users, operators, or nodes) must be
attached to the SP-graph.

The GC-integration denotes the final phase before
augmentation starts. Analogously to the previous inte-
gration phases in this phase GC-policies are attached to
the SP-graph. In Figure 2 these are displayed as GC-A,
GC-B, and GC-C. The GC-policies describe data trans-
formation techniques to manipulate the original data
such that the involved subjects only access the granu-
larity of data they are allowed to. GC-policies repre-
sent a refinement of the AC-policies and PC-policies.
At this point the intermediate SP-graph consists of the
original SP-graph with security policy information for
all related subjects and objects attached to it.

After the integration process the augmentation pro-
cess translates the intermediate SP-graph to an aug-
mented SP-graph which is shown on the right side of
Figure 2. First, the security policies must be checked
for consistency before continuing. All AC-policies and
PC-policies must be checked. This especially means
that all senders must check whether the attached re-
ceivers of their data are allowed to access the data
depending of their attached PC-policy. GC-policies
need not to be checked since they are refinements to
the AC-policies and PC-policies to filter data.

The AC-policies map to interconnections between
the involved operators which semantically mean that a
certain operator is allowed to access data from a previ-
ous one. The PC-policies condition the AC-policy
interconnections since they influence the selection
of computation nodes the operator can be executed
on. The GC-policies map to filters which allow a
fine-grained access to the single data streams. The
placement of the filters may be done in three different
ways. Referring to Figure 2 they may be placed on the
sender side

�� ⊵�1 , on the receiver side
�� ⊵�2 or on both sides�� ⊵�3 . The actual placement depends on the receivers

attached to a certain output stream. In Figure 2 this is
shown for the combination Source A and Operator B.
In a nutshell,

�� ⊵�1 is always preferred and selected to

limit the transferred data volume. This is beneficial if
the receiver is a mobile device and has stringent energy
and bandwidth constraints.

�� ⊵�2 is used if there is more
than one receiver attached to the output stream. Thus,
the filters are executed on the respective receivers. For�� ⊵�3 we have a work sharing approach which is selected
if Source A and Operator B are both running on a mo-
bile device or if the filtered output stream is used by
multiple attached operators which themselves need a
dedicated filtering.

5 SECURITY FRAMEWORK
INSIGHTS

After the security pattern discussions we now ex-
plain some internals about the characteristics of our
security framework as well as its implementation
within our flexible stream processing framework called
NexusDS. We introduce the architecture of Nexus-
DSS (NexusDS Secure) with support for security com-
pliant processing of data streams. Finally, we give
some details on the operator framework and its mode
of operation.

5.1 NEXUSDSS – NEXUSDS SECURE

NexusDS (Cipriani et al., 2009) is an open data stream
processing system designed for processing context
data streams with extensive capabilities for domain-
specific adaptation and support for the protection goals
stated in Section 2.2. NexusDS has been extended
to also enable secure processing of streamed as well
as static context data, resulting in NexusDSS. Its en-
hanced organization is depicted in Figure 3. Nexus-
DSS supports the distributed processing of streamed
context data by execution of SP-graphs on a heteroge-
neous network of nodes. NexusDSS allows a flexible
adaptation of the system functionality through the in-
tegration of customized services and operators. The
SP-graph thereby can be annotated by means of re-
strictions to influence the concrete deployment and
execution of the SP-graph. For example, deployment
restrictions limiting the selection of a physical operator
can be defined in this context. This restriction has an
influence on the deployment process of the SP-graph.
Besides that, also runtime-specific restrictions can be
defined. If an operator has specific parameters, these
parameters can be adjusted to meet certain conditions.
E.g., if we imagine a domain-specific rendering opera-
tor the resolution is such a parameter that influences
the runtime behavior of the operator.

Access Control
Service (ACS)

UserDeveloper

Query
Graph

Operator
Repository

(OR)

Core Query
Service (CQS)

Monitoring
Service (MS)

develop
query graph

Identity Administration
Point (IAP)

develop application use application

Policy Administration
Point (PAP)

develop
operators

NexusDSS

Op. Execution
Service (OES)

define
policies

Figure 3: Simplified architecture of the security concept
targeted by this paper.

The Core Graph Service (CGS) performs the aug-
mentation of the SP-graph, by inserting e.g. missing
filters according to the access conditions and process
conditions defined. This task is performed by the help
of the Access Control Service (ACS). Beside others,
the ACS is composed of an Identity Administration
Point (IAP) and a Policy Administration Point (PAP).
The IAP is responsible for identifying all subjects (e.g.,
users) and objects (e.g., data) available within the sys-
tem. The IAP also provides the Public Key Infrastruc-
ture (PKI) to secure the communication of services
and the data streams between operators against unau-
thorized access. Furthermore, certificates for operators
executed in the secure environment are created with
the PKI. Certificates are needed to validate if operators
are known by the security framework and thus can
be executed. All services and operators interacting
with the secure environment need a corresponding key
and must be certified via the IAP. The PAP holds the
policies for accessing and processing data.

The fragmentation of the SP-graph into operator
groups is done by our M-TOP approach (Cipriani et al.,
2011b), a multi target operator placement approach
for heterogeneous environments. M-TOP considers
annotations at SP-graph level. These annotations in
the original work focused on QoS aspects such as "la-
tency should not exceed a certain value". However,
the annotations might also be of another kind such
as the security policies, annotated at SP-graph level
to adapt deployment decisions. The single fragments
are distributed across appropriate Operator Execution
Service (OES) which are instances of computing nodes
running a certain execution environment for the op-
erators of NexusDSS. Each OES-instance runs on a
different computing node. These services represent
the central components of NexusDSS to process data
streams. The Monitoring Service (MS) collects run-
time statistics for the computing nodes running the
operators and provides hints which OES-instances to
use for each fragment. These statistics are exploited to
enhance future placement decisions.

Secure-Operator

Operator

Encrypted Security Policy PunctuationEncyrpted Data

Encoder

Encoder

Encoder

Filteri+1Filteri

FilterjDecoder

Decoder

2

31
4 5

Figure 4: Secure operator which is part of the operator
framework supporting security policies. Dashed arrows
indicate control interaction with architectural components
and solid arrows indicates data consumed and produced.

5.2 SECURITY COMPLIANT
OPERATOR FRAMEWORK

Besides the different architectural entities necessary
for security policy management also the actual data
processing facility must support the notion of security
policies in order to make the security framework work.
For that purpose we adopt a black-box principle de-
coupling the definition of processing logic (in terms
of operators) and security policies. This facilitates the
development of operators since developers can con-
centrate on the actual processing logic. To support
security policies, also the corresponding AC, PC, and
GC policies must be defined. The SP-graph is aug-
mented by the security policies valid for the subjects
and objects involved in the SP-graph definition.

To create an environment for safe operator exe-
cution (the same holds for source operators and sink
operators) the operators are embedded within a box.
The box provides the execution facilities for operators
and includes decoders, filters, and encoders. Each of
these entities is associated to an ingoing and outgo-
ing slot. Also the operator itself is contained in the
box and only receives data that has been manipulated
complying to the security policies.

Figure 4 illustrates the embedding of an operator.
First of all, the box, not the operator, receives all in-
coming data streams

�� ⊵�1 . The decoders decrypt all
incoming data streams and signals the encoders when
to add punctuations to the outgoing streams

�� ⊵�2 . Then
the box applies the necessary filters to the incoming
data streams before they are transferred to the operator�� ⊵�3 and forwards the decrypted and filtered data to the
actual operator performing the operations

�� ⊵�4 . When
the operator has finished doing its job the box receives
the processed data from the operator and encrypts it by
the encoders which also check if a punctuation must
be inserted before the data element. Finally, the data is
passed to subsequent operators

�� ⊵�5 . For sink operators,
the figure looks similar but with the difference that for
sink operators there are no outputs.

Secure Source

Source

Encrypted Security Policy PunctuationEncyrpted Data

Encoder

Encoder

Filteri+1Filteri

Filterj

1 32

Figure 5: Secure source which is part of the operator
framework supporting security policies. Solid arrows
indicate the source’s produced data streams.

The source operator is depicted in Figure 5 and is
also embedded in a box that carries out all security
relevant operations. However, this does not show in-
puts, since the source produces data. An example for
such a source is the GPS sensor from the introductory
example in Section 1. For source operators after the
data generation process (performed by the embedded
Source) the registered filters (GC-policies) must be
applied to the respective data streams

�� ⊵�1 . As with the
operators described beforehand, different filters might
be defined for each outgoing data stream. After the
filtering the data must be encrypted and signed in order
to prevent manipulation from a third party

�� ⊵�2 . The
encrypted data is forwarded to subsequent operators�� ⊵�3 .

5.3 SECURITY CHARACTERISTICS

It is important to note that for encryption and decryp-
tion of the data streams a symmetric key approach is
used. For each SP-graph instantiated and executed
a separate key is generated. This segregates single
SP-graph instances running, maybe, on the same ma-
chine. A time to live (TTL) period is assigned to each
generated key. Before the TTL is reached a new key
is generated and propagated to the affected SP-graph
entities. This might result in a slightly higher overhead
but increases security for long running queries. The
concrete TTL assignment for the keys thus strongly
depends on the runtime of SP-graphs.

All operators (including particularly the source op-
erators and sink operators), whose access should be
controlled, are provided by the Operator Repository
Service (ORS). The good behavior of an operator is
verified by its associated certificate. Certificates are
awarded by a separate certificate authority that attests
through various checks (code check, verification or
test) the respective subject to be safe. Thus, although
no guarantee is given for good behavior nevertheless a
useful degree of control is carried out. The certificate
contains a public and a private key (according to an
asymmetric key approach). The subject—the certifi-
cate belongs to—is now able to create signatures to

ensure its correct provenance. Therefore, a subject-
related hash value (e.g. the hash value of the operator)
is computed and encrypted with the private key. This
signature is validated each time the operator is going
to be executed. Therefore, again the hash value is com-
puted and encrypted. The result is compared to the
existing signature. If they are equal execution can be
carried out. Otherwise the subject has been manipu-
lated at some point in time prohibiting the execution
of this subject in the secure environment.

6 DEPLOYMENT AND RUNTIME

According to the mode of operation and the secu-
rity control patterns discussed in the sections before, in
this section the implementation of our security frame-
work in the NexusDS system is presented. In this
regard, we illustrate the augmentation process by start-
ing with an excerpt of the original SP-graph document
in XML notation, as shown in Listing 1. Here, the
example in Figure 1 is revived as line 5 – 11 describe
the GPS data source (S1).

1 <!−− namespace definitions −−>

2 < xmlns:nsas="http://www.nexus.uni−stuttgart.de/1.0/NSAS"

3 xmlns:eas="http://www.nexus.uni−stuttgart.de/1.0/

SNSetupDescriptor/EAS" [. . .] >

4

5 <eas:block>

6 <nsas:value>

7 <eas:blockType>source</eas:blockType>

8 <eas:blockID>ResultSetSource0</eas:blockID>

9 <eas:classURI>urn:java:de.uni_stuttgart.nexus.streamFederation.

sources.extended.vispipe.resultSetSource.ResultSetSource</

eas:classURI>

10 </nsas:value>

11 </eas:block>

12

13 [. . .]

Listing 1: SP-graph excerpt for the source operator retrieving
data from third-party servers.

The first part consists of namespace definitions.
The second part consists of different sections, defining
the SP-graph structure, including operators, links and
so forth. The displayed part is an excerpt of the opera-
tor definition section. The code defines a source oper-
ator named ResultSetSource0 (also being an unique
identifier for this source operator). The class represent-
ing this source operator is defined by the eas:classURI
attribute.

integrate and augment
original query graph

Encoder

Filter

S1

O1

Encoder

Filter

S2

O2

Decoder Decoder

Encoder

Decoder Filter

T2
d

at
a

st
re

am
p

ro
ce

ss
in

g
sy

st
e

m

S2S1

O1 O2

Mike Friend Finder
(FF)

Bob

Alice

GPS

Map Data /
User Data Application View

Stream-Processing View

T1

T2

Bob

Alice
VisualizeCombine

FF DBGPS

FF LBS

Decoder

T1

Figure 6: Illustration of the augmentation concept presented. The original SP-graph on the left side is augmented by the
corresponding measurements declared in the AC, PC, and GC policies respectively.

6.1 AUGMENTING SP-GRAPHS
WITH SECURITY POLICIES

Figure 6 illustrates the most important aspects of the
augmentation process as implemented in NexusDSS.
The figure picks up the introductory example scenario
from Figure 1. The three-stage augmentation of SP-
graphs by AC-policies, PC-policies, and GC-policies
is described in the following:

First, the AC-policies are considered. Both Bob
(T1) and Alice (T2) are allowed to access Mike’s private
data. Furthermore, also the FF visualization (O2) must
be able to access the data of the previous combine step
(O1), since also operators represent a subject which
needs access permissions. Therefore, the operator-
related AC-policies attached to the SP-graph are eval-
uated. Additionally, the certificates of all operators are
verified if a signature is provided.

Thereafter, the PC-policies influence the placement
of operators for SP-graph deployment. The set of
nodes that correspond to the PC-policies is determined
by the operator itself via meta-data. E.g. the visualiza-
tion operator (O2) might need a Graphic Processing
Unit (GPU) to properly run. Additionally, the PC-
policies define a second set of nodes, that are needed
by an operator in order to process its SP-graph’s pre-
decessors data. The intersection of these two sets con-
stitute the set of nodes the operator can be executed
on. Furthermore, also the quality of aggregates can
be controlled by PC-policies by limiting the extend of
visible data.

Finally, the SP-graph is adapted according to the
GC-policies. Therefore, the GC-policies are evaluated
for each operator and the corresponding filters are
integrated into the SP-graph, e.g., when Alice (T2) gets
Mike’s coarse location.

At this point the augmentation phase is completed
and the deployment phase starts. The deployment
is out of this paper’s scope. We refer to this step
by pointing to our constraint-aware SP-graph deploy-
ment framework called M-TOP (Cipriani et al., 2011b).
Each SP-graph fragment maps to an Operator Execu-
tion Instance which executes the contained operators,
encoder, decoder, and filters. The augmented and de-
ployed SP-graph runs and generates data originating
from the two source operators A and B until the sink
operators C and D are reached.

Listing 2 resulted from Listing 1 by adding the
three policy types. Two additional sections are in-
tegrated into the SP-graph document: policies and
filters. In our example listing, for the source opera-
tor ResultSetSource0 a policy is added. This source
operator corresponds to the source operator A from
Figure 2, representing the source for the personal data
on the mobile device. Each policy has a related oper-
ator, denoted by the blockID attribute. Furthermore,
each policy also has an unique policyID attribute to
uniquely identify the corresponding policy that applies
here. The policy for the source operator A defines a
filter. This filter applies to the output slotID 0 of the
given blockID. filterS defines the signature of this fil-
ter to be sure the executed filter filterURI is the real
one. The attribute user represents the user requesting
the SP-graph execution. Finally, the attribute policyID
correlated this filter to the policy defining it.

1 <!−− namespace definitions −−>

2 < xmlns:nsas="http://www.nexus.uni−stuttgart.de/1.0/NSAS"

3 xmlns:eas="http://www.nexus.uni−stuttgart.de/1.0/

SNSetupDescriptor/EAS" [. . .] >

4

5 <eas:block>

6 <nsas:value>

7 <eas:blockType>source</eas:blockType>

8 <eas:blockID>ResultSetSource0</eas:blockID>

9 <eas:classURI>urn:java:de.uni_stuttgart.nexus.streamFederation.

sources.extended.vispipe.resultSetSource.ResultSetSource</

eas:classURI>

10 </nsas:value>

11 </eas:block>

12

13 <eas:policy>

14 <nsas:value>

15 <eas:blockID>ResultSetSource0</eas:blockID>

16 <eas:policyID>aff337fe−abcf−4077−bb3c−743f4562b424</

eas:policyID>

17 </nsas:value>

18 </eas:policy>

19

20 <eas:filter>

21 <nsas:value>

22 <eas:blockID>ResultSetSource0</eas:blockID>

23 <eas:slotID>0</eas:slotID>

24 <eas:filterS>kqiR+IjnnRwui4JmPA83zG1hRmxQj [...]

Qwa0Pv02gICiJQgxv382Pw==</eas:filterS>

25 <eas:filterURI>urn:java:de.uni_stuttgart.nexus.streamFederation.filters.

secure.resultSet.ResultSetFilter</eas:filterURI>

26 <eas:role>poweruser</eas:role>

27 <eas:policyID>aff337fe−abcf−4077−bb3c−743f4562b424</

eas:policyID>

28 </nsas:value>

29 </eas:filter>

30

31 [. . .]

Listing 2: SP-graph excerpt for the source operator retrieving
data from third-party servers.

7 CONCLUSION

With the rapidly increasing number of mobile
phones equipped with GPS sensors and mobile Internet
connections, the use of data stream processing is in-
creasing in many application areas. This work presents
a security framework dealing with the requirements
of modern applications relying on the data stream pro-
cessing paradigm. The security framework proposes
different security control patterns, i.e. AC, PC, and
GC, which can be assigned to different system enti-
ties. The defined security control patterns are exploited
to ensure a safe processing of sensible data. This is
achieved by augmenting SP-graphs with AC, PC, and
GC policies. By the proposed security framework it is
possible to optimally adjust the density of information
that is going to be processed as well as to limit access
to data.

As future work issues we want to further extend
our framework by additional mechanisms when se-
curity policies change during the execution of SP-
graphs. A current problem is that certain security

policy changes—such as the addition of a filter or the
change of a PC policy—mean to stop current execution
and restart a new modified SP-graph instance.

REFERENCES

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M.,
Convey, C., Lee, S., Stonebraker, M., Tatbul, N., and
Zdonik, S. (2003). Aurora: a new model and architec-
ture for data stream management. The VLDB Journal,
12:120–139.

Anderson, R. J. (2008). Security Engineering: A Guide
to Building Dependable Distributed Systems. Wiley
Publishing.

Cangialosi, F. J., Ahmad, Y., Balazinska, M., Cetintemel,
U., Cherniack, M., Hwang, J.-H., Lindner, W., Maskey,
A. S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., and
Zdonik, S. (2005). The Design of the Borealis Stream
Processing Engine. In Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005).

Cao, J., Carminati, B., Ferrari, E., and Tan, K.-L. (2009). AC-
Stream: Enforcing Access Control over Data Streams.
In Data Engineering, 2009. ICDE ’09. IEEE 25th In-
ternational Conference on.

Cipriani, N., Eissele, M., Brodt, A., Grossmann, M., and
Mitschang, B. (2009). NexusDS: A Flexible and Ex-
tensible Middleware for Distributed Stream Processing.
In Proceedings of the 13th International Symposium
on Database Engineering & Applications.

Cipriani, N., Grossmann, M., Sanftmann, H., and Mitschang,
B. (2011a). Design Considerations of a Flexible Data
Stream Processing Middleware. In Proceedings of
the 15th Conference on Advances in Databases and
Information Systems.

Cipriani, N., Schiller, O., and Mitschang, B. (2011b).
M-TOP: Multi-Target Operator Placement of Query
Graphs for Data Streams. In IDEAS ’11: Proceed-
ings of the 2008 International Symposium on Database
Engineering & Applications.

Lindner, W. and Meier, J. (2005). Towards a secure data
stream management system. In TEAA 2005.

Merkle, R. C. (1989). A certified digital signature. In Pro-
ceedings on Advances in cryptology.

Nehme, R. V., Lim, H.-S., and Bertino, E. (2010). FENCE:
Continuous access control enforcement in dynamic
data stream environments. In Data Engineering
(ICDE), 2010 IEEE 26th International Conference on.

Nehme, R. V., Rundensteiner, E. A., and Bertino, E. (2008).
A Security Punctuation Framework for Enforcing Ac-
cess Control on Streaming Data. In Data Engineering,
2008. ICDE 2008. IEEE 24th International Conference
on.

Nicklas, D. and Mitschang, B. (2004). On building location
aware applications using an open platform based on
the NEXUS augmented world model. Software and
System Modeling, 3(4):303–313.

