
© 2020 IEEE. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_
20_contextmodel.pdf by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in In: Julien, C. et al. (Eds.)
Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops. IEEE, Austin, Texas, USA, pp. 1–6, 2020, doi:
10.1109/PerComWorkshops48775.2020.9156101.

A Context Model for Holistic Monitoring and
Management of Complex IT Environments

Mathias Mormul and Christoph Stach
Institute for Parallel and Distributed Systems

University of Stuttgart
Universitaetsstraße 38, 70569 Stuttgart, Germany

{firstname.lastname}@ipvs.uni-stuttgart.de

Abstract—The increased usage of IoT, containerization, and
multiple clouds not only changed the way IT works but also the
way IT Operations, i. e., the monitoring and management of IT
assets, works. Monitoring a complex IT environment leads to
massive amounts of heterogeneous context data, usually spread
across multiple data silos, which needs to be analyzed and acted
upon autonomously. However, for a holistic overview of the IT
environment, context data needs to be consolidated which leads
to several problems. For scalable and automated processes, it is
essential to know what context is required for a given monitored
resource, where the context data are originating from, and how
to access them across the data silos. Therefore, we introduce the
Monitoring Resource Model for the holistic management of context
data. We show what context is essential for the management
of monitored resources and how it can be used for context
reasoning. Furthermore, we propose a multi-layered framework
for IT Operations with which we present the benefits of the
Monitoring Resource Model.

Index Terms—context model, IT Operations, AIOps, monitoring

I. INTRODUCTION

IT monitoring is a necessary prerequisite for a smooth
flow of all processes in a company and the basis of IT
Operations. Resource statistics of virtual machines (VMs) and
bare-metal servers such as CPU and RAM load are monitored
by IT infrastructure monitoring (ITIM) systems and applica-
tion statistics by application performance monitoring (APM)
systems. With the rise of containerization technologies such
as Docker1, containers are monitored and managed as well by
orchestration platforms, e. g., Kubernetes2. Static information
about the environment can be found in the cloud management
platforms such as OpenStack3 or Device Management systems.
Additionally, monitoring systems are often designed for specific
cloud platforms [1], i. e., each public cloud provider typically
provides its own monitoring system, which adds even more
monitoring systems to manage. Practice shows that no single
monitoring system exists that can take over all monitoring
tasks [2] and a recent study showed that many companies use
more than ten monitoring systems in parallel [3]. Therefore,
this lack of a cross-domain solution leads to context data being
stored in multiple silos, gathered by different teams, sometimes

This work is partially funded by the BMWi project IC4F (01MA17008G).
1https://www.docker.com/
2https://www.kubernetes.io/
3https://www.openstack.org/

with little to no communication in between [2] and leads to
a complex management of multiple monitoring systems in
parallel.

To handle the increased complexity and massive amounts of
context data, AIOps (Artificial Intelligence for IT operations),
coined by Gartner [4], introduced the use of machine learning
to the domain of IT monitoring. Desired consequences are
increased automation and a proactive approach instead of a
reactive one. Gartner recommends several functionalities to
accomplish AIOps such as historical and streaming data man-
agement, ingestion of numerical and alphanumerical data, and
methods for anomaly detection and root cause determination.
Furthermore, Gartner sees the construction of models describing
the IT environment as a requirement for AIOps.

However, neither Gartner nor any tools aiming at providing
AIOps present such a model. The definition of what context is
required for a monitored resource and further analysis, where
the context data are originating from and how to access them
across the multitude of monitoring and management systems is
essential for enabling a holistic overview of the IT environment.
For example, relevant context about a virtual machine is given
by an ITIM system (e. g., CPU load), the cloud management
platform (e. g., IP and date of creation), and Service Level
Management systems (e. g., what minimum availability was
agreed upon?).

To solve these problems and consolidate all important context
data, we introduce the Monitoring Resource Model. We aim
at providing a common basis for the functionalities required
for AIOps mentioned above. Furthermore, we propose a multi-
layered architecture describing the acquisition, management,
and analysis of context data and based-upon actions.

The remainder of this article is structured as follows:
Section II contains a small background about monitoring
systems as well as a motivating scenario. In Section III,
we introduce the Monitoring Resource Model. Section IV
describes our proposed multi-layered architecture and how
the Monitoring Resource Model benefits the individual layers.
Section V discusses related work. Lastly, Section VI contains
the conclusion of this paper as well as future work.

II. BACKGROUND AND USE CASE SCENARIO

A monitoring system is a tool to collect, store, analyze, and
visualize monitoring data [5]. The system administrator defines,

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_20_contextmodel.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_20_contextmodel.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_20_contextmodel.pdf
https://doi.org/10.1109/PerComWorkshops48775.2020.9156101

B
I
G

D
A
T
A

ITIM system

OpenStackAmazon AWS

Admins
Monitoring data

APM system

Container
Monitoring

Alerts

VM

VM App

VM
App

VM

App

Container

App

Container

IoT
Environment

Raspberry Pi

Arduino

Cloud Mgmt

Device Mgmt

SLA Mgmt

Change Mgmt

Figure 1. Examplary scenario of monitoring a complex IT environment

which Key Performance Indicators (KPIs) for which resources
are required to see the current health status of the resource. In
general, the monitoring data are stored centrally at a monitoring
server. To ease the management of a monitoring system and
present the monitoring data in a clear and concise way, a
visualization framework is used. The user can create dashboards
to visualize the current status of the monitored resources.
However, due to the large amount of monitored resources
and their metrics, visualization alone is not a viable option
to keep an overview of a monitored environment. Therefore,
automatisms are required that analyze incoming monitoring
data and alert the system administrator in case of a problem.
The default approach to this is the creation of alerting rules,
e. g., "if VM.CPU > 90 % then send email to Admin". This
rule is automatically evaluated on new monitoring data.

In the following, we introduce a motivating scenario to
demonstrate the need for a context model in IT Operations.
As shown in Fig. 1, private clouds such as OpenStack as well
as public clouds such as Amazon AWS are used. Multi-cloud
solutions are helpful when dealing with challenges, such as
resilience against data loss caused by the failing of single
cloud providers, optimization of costs, and improvement of
quality of service [6]. According to Gartner, this strategy
becomes common for 70 percent of organizations by 2019 [7].
In parallel, IoT Environments must be monitored as well.
ITIM systems are used to monitor the state of VMs and IoT
Devices, APM systems monitor applications, and Container
Monitoring systems monitor the state of containers. In addition,
static information about the monitored resources are available
in management systems. Cloud management platforms hold
information about the IPs and hypervisor of VMs, their creation
date, etc. Analogous, Device Management systems provide
information about bare-metal servers and IoT devices. SLA
management provides information about agreements with, e. g.,
the public cloud provider about a guaranteed availability of
the provided resources.

As shown, the context data are stored across multiple systems
that are not connected to each other and managed by individual
personnel. Alerting rules are defined to alert administrators

in case of any problems. As an example, the APM system
sends an alert about a non-responsive application. However, the
application is hosted within a container, which is hosted on a
VM, which in fact has a failure and is the root cause. This means
that any failure in the VM leads to several cascading alerts.
How severe this problem is can be found out by checking the
corresponding SLAs. Also the problem might be caused by an
erroneous hypervisor which again requires another monitoring
system or a look into the cloud management system.

Out of this, we derive the following challenges:
𝐶1: Data silos. Data silos are the main reason preventing a

holistic view of the IT environment [2]. Therefore, the
Monitoring Resource Model needs to consolidate context
data from multiple data sources.

𝐶2: Big Data. Multi-cloud scenarios with VMs, containers,
applications, and IoT devices lead to a plethora of
data points that must be monitored continuously and
highly frequently [8]. This leads to a massive amount
of heterogeneous data such as time-series data and log
data. The Monitoring Resource Model needs to support
this heterogeneity to be usable in heterogeneous IT
environments.

𝐶3: Alert Fatigue. In complex IT environments, often, hun-
dreds or even thousands of alerts are created per hour of
which many are noise and do not require attention. In
general, this leads to alert fatigue – a problem describing
that personnel starts ignoring alerts and therefore, might
overlook a critical alert. The Monitoring Resource Model
needs to consider alerts of the resources as well and aim
at reducing the amount of generated alerts.

III. MONITORING RESOURCE MODEL

Our goal is to provide a Single Pane of Glass to admin-
istrators, i. e., integrate information from multiple sources to
have a single unified view on a monitored resource including
all important context data from monitoring systems, static
information from management systems, and dependencies to
other resources. For this, we introduce the Monitoring Resource
Model for monitored resources in complex IT environments to
solve the above-mentioned challenges 𝐶1− 𝐶3. An excerpt
of the Monitoring Resource Model is shown in Fig. 2. Each
monitored resource is represented as a Resource and requires
following attributes:

∙ UID: Each resource is defined by a unique identification
(UID). The UID is used to differentiate the resources and
reference other resources when they are in relation to each
other.

∙ KPIs: KPIs describe a list of Key Performance Indicators
for this resource that are monitored by the respective
monitoring systems and are used to describe the health
status of a monitored resource. Each KPI is defined by
a name, e. g., CPU load in percent, and its most recent
numerical value. In addition, average values over the last
minute and 10 minutes are calculated. As single values
of, e. g., the CPU load, can spike for a few seconds,
the average over the last one and ten minutes represent

Figure 2. Excerpt of the Monitoring Resource Model

a more reliable view. A timestamp shows the actuality
of the value and and the attribute Quality shows how
accurate the value is. Furthermore, the behavior of this
KPI is classified into one of multiple classes, e. g., static,
periodical, or unpredictable.

∙ Log Data: Log data oftentimes provides more in-depth
information about a monitored resource. In comparison
to numerical context data, for which alerting rules can
be defined that continuously check if new context data
exceed predefined thresholds, log data already contains
warning or error statements, which signal and direct to
the problem. Analogous to KPIs, Log Data contains a list
of logs. Each log is defined by a name, i. e., the name of
the log file, and its most recent log entry as a string.

∙ Alerts: Alerts is a list of alerts for this resource. Each alert
is defined by an ID, name, status, count, rule, timestamp,
and severity. Since many alerts of the same type can occur
multiple times, an ID is required to distinguish them. The
name provides an easily understandable meaning of the
alert, e. g., CPU load critical. Status describes if the alert
is taken care of by personnel, i. e., open, in process, or
closed. Alerts may be sent in a regular interval if the
problem is not fixed, i. e., the status of the first alert is
set to open or in process. In this case, instead of creating
a new Alert instance, the attribute count of the original
alert is increased by one to signal a recurring alert as it
refers to the same problem. Rule describes the alerting
rule the alert originates from. Timestamp contains the date
of when the alert was sent and severity describes how
urgent the response to the alert should be.

∙ Description: Description contains a simple and short
description of the resource.

Additional attributes are based on the class of resource,
e. g., hardware resources also have a MAC address whereas

Figure 3. Exemplary MRM instance for a virtual machine

virtual resources have a hostedOn-relation. By referencing a
UID of another resource, this relation describes that a virtual
resource is hosted on another virtual resource or a hardware
resource. For example, an application is hosted on a VM,
which is hosted on a hypervisor, which is hosted on a bare-
metal server. In this way a topology of the IT environment
can be modeled which can be helpful in several ways, e. g., in
a root cause analysis as described in our motivating scenario.
VM resources may provide static information such as the IP
and the creation date, application resources a response time,
and IoT devices a battery charge. The MRM can be extended
by creating additional resource classes that further specialize
existing resource classes, e. g., Amazon EC2 instances, that
specialize the Virtual machine class and contain information
about SLAs or costs.

In Fig. 3, an exemplary MRM instance of a VM, two of
its KPIs and an according alert is shown. However, manually
creating instances of this model for each monitored resource is
a cumbersome and error-prone task and simply does not scale
since VMs and containers are started and shut off again in a
matter of minutes. Alerts and KPI value need to be updated
automatically without the need for human tasks. Therefore,
to fully utilize the Monitoring Resource Model, we need to
provide mechanisms that automate the integration of context
data and the creation of MRM instances. Therefore, in the next
section, we propose an architecture that integrates the MRM
into the IT environment.

IV. ARCHITECTURE

To enable a sensible use of the MRM, we propose a multi-
layered framework consisting of five layers that enable the
(i) acquisition, (ii) management, (iii) analysis, and (iv) pre-
sentation of context data and (v) automated responses. We
show how the MRM is used in each layer, what its benefits
are, and what additional functionalities are required to support
holistic IT Operations. As shown in Fig. 4, our goal is not to
replace currently used monitoring and management systems
that are already monitoring and managing the resources in the
IT environment. Instead, we build upon them and consolidate
all important context data to receive a common data basis for
holistic management and analysis.

DBsDBsAppsAppsVMVMVMs DBs

Acquisition Layer

Management
Layer

Analytics Layer

Action Layer

Data Stores

Resources

Root Cause
Analysis

Predictive
Analysis

Alerting Automation

Alert
Deduplication

SLAsApps

Acquisition & Transformation

…

Metadata Management

Monitoring &
Management

Cloud Mgmt.ITIM APM SLA Mgmt. …

Data flow

Data flow

User
Interface

Topologies
Presentation Layer

Monitoring Resource Model

Figure 4. Overview of the framework and its embedding in the IT environment

A. Acquisition Layer

The acquisition of all available context data in regard to the
monitoring and management of an IT environment is the first
step required for a holistic overview. To make use of the already
existing monitoring systems, adapters are created to access
important context data from the individual databases, which
are defined by the MRM of each monitored resource. Raw data
collected by the individual systems are replicated into a new
database in our framework. Based on the functionalities of the
source systems, aggregated context data are accessed as well,
e. g., KPI values averaged over one and ten minutes as defined
in the MRM. Lastly, all alert data are accessed. Afterwards,
data transformations are performed, e. g., all timestamps are
transformed to a unified date schema.

Furthermore, management systems such as OpenStack are
accessed as well. Here, we receive context data that are
not monitored, e. g., static information such as the IP or
the hypervisor of a VM. Especially event data about the
instantiation of new VMs is of importance and can be used
for the automatic creation of MRM instances of VMs. For this
and further event data, OpenStack provides a notification API
on which an adapter of our framework can listen to [9].

Of course, it is also possible to collect the raw context data
directly from the monitored resources without the need for
additional monitoring and management systems by providing
corresponding adapters. Therefore, in the future, the data silos
may vanish and only one platform is used for IT operations.

B. Management Layer

The previous layer accesses and replicates relevant context
data into the data store of our framework. However, due to the
heterogeneity of the data, we need to provide individual data
stores to support different kinds of data, e. g., Elasticsearch4

4https://www.elastic.co/

for log data or InfluxDB5 for time-series data and SQL-based
DBMS such as MySQL6 for relational data.

The MRM instances access the required context data from
the individual data stores. However, to handle the complexity
of managing massive amounts of data across multiple data
stores, a metadata management is essential across all layers of
this framework. In the Acquisition Layer, metadata must be
captured about where the context data are coming from, their
format, date of access, etc. This information is important for
MRM instances, e. g., to see how recent KPI values are. In
the Management Layer, metadata management is useful for
the management of the data stores. For example, context data
cannot be stored forever due to the massive amounts. Therefore,
retention policies must be defined to decide how long data
are stored and what happens after this period, e. g., deletion
or aggregation. Also, not all personnel may have the rights to
access all context data and MRM instances, therefore, user and
access management is required. Managing multiple retention
policies and user/access management across the different data
stores can be supported by metadata management. Furthermore,
the MRM itself has metadata such as version and revision
number. In the Analytics Layer, metadata about analysis results
such as the timestamp or the used analytics function, its
parameters, input data, etc., can be used to reconstruct and
understand a specific analysis result.

C. Analytics Layer

The Analytics Layer provides the possibilities to analyze
the context data. As mentioned in the introduction, AIOps
focuses on the use of artificial intelligence and machine learning
methods in IT Operations to gain more insights into the
IT environment. For this, both supervised and unsupervised
learning is required.

1) Unsupervised learning: In unsupervised learning such as
clustering, the goal is to find previously unknown relationships
between the data. For example, clustering can be used for the
deduplication of alerts. Deduplication describes the detection
and removal of duplicate, redundant data. In the case of alerts,
features of alerts such as their timestamp can be used to cluster
similar alerts. For example, if multiple alerts for different VMs
are sent and all their timestamps and hypervisors are the same,
then a probable root cause might be an erroneous hypervisor.
Furthermore, all those alerts could be aggregated into one
alert to reduce the amount of alerts. The same process can be
applied to different resources as well. For example, VMs can
be clustered based on their features. This way, the anomalous
behavior of single VMs can be detected when the VM is outside
of the clusters, i.e., it behaves differently than the majority of
the VMs.

2) Supervised learning: Using advanced machine learning
models, the future behavior of a KPI can be predicted. Long-
Short-Term-Memory (LSTM) neural networks can be used
for this purpose as they are intended to memorize long-term

5https://www.influxdata.com/
6https://www.mysql.com/

dependencies in time-series data [10]. Training data, i. e.,
the raw context data, are used as input to learn a model
describing the behavior of the resource. The predicted behavior
is compared with the actual behavior. Deviations outside a
certain margin are detected as anomalies, which lead to dynamic
alerting thresholds instead of statically predefined thresholds.
Furthermore, trends in the data can be recognized, e. g., the
values are rising or falling in the last minutes.

In both cases, it is important to know, which features
are relevant and where to find the context data. The MRM
provides this information and reduces manual work such as the
identification of relevant features. Furthermore, MRM instances
can be enriched with the analysis results, e. g., a recognized
trend is stored in the behavior-attribute of a KPI.

D. Action Layer

The Action Layer contains all mechanisms that act based on
data from the previous layers. Actions can be divided into two
classes: alerting and automation. Alerting creates alerts that
are sent to administrators, whereas automation aims at solving
problems without the need for human intervention.

1) Alerting: Since all alerts from the data sources are sent
to this framework first for reasons such as deduplication,
an own alerting system is required to forward the alerts to
the responsible personnel via several channels such as email,
Telegram7, Slack8, etc. Furthermore, since the MRM opens
up new possibilities for anomaly detection (described in the
previous section), new alerts need to be created as well. An
expressive alerting framework is required which needs to
support basic logical expressions such as OR, AND, and XOR,
comparative operators <, ≤, =, etc. We propose a Complex
Event Processing (CEP) engine for this purpose as it fulfills
the mentioned functions and further such as the creation of
time-windows. Furthermore, CEP is intended to handle massive
amounts of data and therefore fits our scenario well.

2) Automation: Due to the rising complexity of IT environ-
ments, automated responses to problems are essential. Instead of
alerting an administrator, the execution of a script or a workflow
can be triggered. Besides problem solving, automation also is
required to adapt to changes in the IT environment dynamically.
For example, the instantiation of a new VM may lead to the
automatic installation of a monitoring agent on said VM.

E. Presentation Layer

As long as human intervention is required, the context
data and thereby, the IT environment need to be visualized.
The Presentation Layer is the final layer and used as the
access point to the framework for administrators. Customizable
dashboards are used to display all important information of
the IT environment such as the MRM instances, analysis
results, alerting rules, and the topology of the IT environment.
Furthermore, administrative tasks regarding the framework,
e. g., retention policies for the data stores, are supported with
a graphical user interface.

7https://telegram.org/
8https://slack.com

Discussion. In the following, we assess our approach in regard
to the challenges 𝐶1− 𝐶3.

MRM instances are provided with the required context data
from all available data sources and present a holistic view on
a monitored resource. The data silos still remain, however, the
consolidation of context data via the Acquisition Layer solves
the resulting problem and therefore, challenge 𝐶1.

Heterogeneous data such as log data and numerical data are
supported by the MRM. To manage those massive amounts of
heterogeneous context data, an overarching metadata manage-
ment and multiple heterogeneous data stores in the Management
Layer enable the sensible usage of Big Data for the MRM and
thereby, solve challenge 𝐶2.

In the Analytics Layer, sophisticated analytics methods such
as clustering and neural networks can be used to reduce
the amount of alerts and create more intelligent forms of
alerting such as dynamic thresholding. The results of the
Analytics Layer act as the input for the Action Layer to either
create new alerts or trigger automatisms and thereby further
reduce the amount of alerts and diminish alert fatigue to solve
challenge 𝐶3.

V. RELATED WORK

To the best of our knowledge, in literature, there is no
context model that focusses on IT Operations. However, in
other domains such as eHealth, monitoring is required as well.
A patient’s heart rate needs to be monitored and doctors need to
be alerted in case of emergencies. There are several approaches,
e.g., by Anya et al. [11] and Guermah et al. [12], which
present context models for the eHealth domain and their benefits
such as context-aware health care applications. However, those
context models cannot be applied to IT Operations, since
essential characteristics of IT environments cannot be modeled.
The focus of our context model is on IT Operations to model
and capture all relevant context data such as the relationship
between resources.

Our proposed framework can be seen as a Big Data platform,
however, with a strong focus on IT Operations. Pääkkönen
and Pakkala [13] introduce a reference architecture for Big
Data platforms. Their high-level architecture consists of the
layers Data extraction, Data loading and pre-processing, Data
processing, Data analysis, Data loading and transformation,
and Interfacing and visualization. However, an Action Layer
or similar to trigger automation or alert personnel is missing
which is of utmost importance in IT Operations to react to
problems in the IT environment.

Based on this reference architecture, Lipčák et al. [14]
introduce a Big Data platform for anomaly detection in Smart
Grids. They describe and compare the technologies that can be
used to implement the individual layers of the platform. The
results of the anomaly detection are sent to a messaging queue.
Here as well, no subsequent actions based on the analysis
results or the data are described.

In practice, many tools exist that claim to provide AIOps such
as Moogsoft9, BMC10, Splunk11. However, essential aspects
are missing. Moogsoft is more related to Event Management
systems based on the integrations they provide [15] with
the additional usage of machine learning methods. Event
Management systems collect event data, e. g., alerts, across all
monitoring systems for the purposes such as alert deduplication
and probable root cause analysis. For this, a context model for
events is created. However, compared to our approach, only
a small fraction of context data, i. e., only event data, can
be accessed across the monitored IT environment and thus
a holistic approach to IT Operations cannot be established.
BMC presents the main components of an AIOps architecture
following Gartner’s vision which resembles our framework [16].
However, no information about data management or data
storage is given which is essential when working with Big
Data. Splunk provides advanced machine learning capabilities
with IT service intelligence tool [17]. However, no other data
sources can be used and therefore holistic management across
the whole IT environment cannot be provided.

Broadcom12 present a unified data model as the foundation
for AIOps [18]. Their model is represented as a directed graph
of attributed objects. The graph consists of nodes describing
the monitored resources that have an arbitrary number of key-
value pairs to describe their attributes, and edges in between
to describe their relationships. They describe how the model
can be used for analysis and automation. Their approach is
very similar to ours, however, no information regarding the
attributes of the context model or how the management of
context or access to the context data are given. In our approach,
we described relevant context data as well as a supporting
framework.

VI. CONCLUSION

IT environments are becoming more and more complex
due to the increased usage of IoT, containerization, and multi-
clouds. Analogous, IT Operations is becoming increasingly
complex. Massive amounts of heterogeneous context data are
stored across multiple data silos which prevents a holistic
view on the IT environment. System administrators are flooded
with alerts from multiple monitoring systems. Current tools
include the use of sophisticated machine learning methods and
the integration of multiple data sources. However, oftentimes
only a small fraction of context data is integrated, i. e., event
data, and a data model for monitored resources is missing.
Therefore, we introduce the Monitoring Resource Model for
the holistic management of context data. Furthermore, we
propose an architecture for a multi-layered framework with
the Monitoring Resource Model at its core to support the
acquisition, management, and analysis of context data as well
as an action layer for alerting and automation purposes.

9https://www.moogsoft.com
10https://www.bmc.com/blogs/what-is-aiops/
11https://www.splunk.com
12https://www.broadcom.com/

In future work, we plan to refine our context model and
the individual layers of our framework. For example, in the
Management Layer. we want to evaluate if the concepts of data
lakes can be applied to our framework to provide a scalable
and flexible data store as basis for advanced analytics and
with a sophisticated metadata management. Lastly, we want to
assess possibilities for a (fully) automated approach regarding
the creation of MRM instances, their relationships to other
instances, and connecting the context data to the instances.

REFERENCES

[1] D. Trihinas et al., “Monitoring Elastically Adaptive Multi-Cloud
Services,” IEEE Transactions on Cloud Computing, vol. 6, no. 3,
pp. 800–814, 2018.

[2] S. Niedermaier et al., “On Observability and Monitoring of Distributed
Systems – An Industry Interview Study,” in Proceedings of the 17th
International Conference on Service-Oriented Computing, ser. ICSOC
’19, Springer, 2019.

[3] Y. Pollack, The results of our 2019 "Future of Monitoring and AIOps"
survey are in, BigPanda, Inc. https://www.bigpanda.io/blog/the-results-
of-our-2019-future-of-monitoring-and-aiops-survey/, Oct. 2019.

[4] P. Prasad and C. Rich, Market Guide for AIOps Platforms, Gartner,
Inc. https://www.gartner.com/en/documents/3892967/market-guide-
for-aiops-platforms, Nov. 2018.

[5] S. Ligus, Effective Monitoring and Alerting: For Web Operations.
O’Reilly Media, Inc., 2012.

[6] D. Petcu, “Multi-Cloud: Expectations and Current Approaches,” in
Proceedings of the 2013 International Workshop on Multi-Cloud
Applications and Federated Clouds, ser. MultiCloud ’13, ACM, 2013.

[7] R. van der Meulen, What Data Center Architects Can Learn from
Building Architects, Gartner, Inc. https : / / www . gartner . com /
smarterwithgartner / what - data - center - architects - can - learn - from -
building-architects/, Oct. 2015.

[8] J. S. Ward and A. Barker, “Observing the clouds: A survey and
taxonomy of cloud monitoring,” Journal of Cloud Computing, vol. 3,
24:1–24:30, 2014.

[9] OpenStack Foundation, Notifications in Nova, https://docs.openstack.
org/nova/latest/reference/notifications.html, Jun. 2020.

[10] S. Hochreiter and J. Schmidhuber, “LSTM Can Solve Hard Long Time
Lag Problems,” in Proceedings of the 9th International Conference
on Neural Information Processing Systems, ser. NIPS ’96, MIT Press,
1996.

[11] O. Anya et al., “Context-aware knowledge modelling for decision
support in e-health,” in Proceedings of the 2010 International Joint
Conference on Neural Networks, ser. IJCNN ’10, IEEE, 2010.

[12] H. Guermah et al., “Context modeling and reasoning for building
context aware services,” in Proceedings of the 2013 ACS International
Conference on Computer Systems and Applications, ser. AICCSA ’13,
IEEE, 2013.

[13] P. Pääkkönen and D. Pakkala, “Reference Architecture and Classifica-
tion of Technologies, Products and Services for Big Data Systems,”
Big Data Research, vol. 2, no. 4, pp. 166–186, 2015.

[14] P. Lipčák et al., “Big Data Platform for Smart Grids Power Con-
sumption Anomaly Detection,” in Proceedings of the 2019 Federated
Conference on Computer Science and Information Systems, ser. FedC-
SIS ’19, IEEE, 2019.

[15] Moogsoft, Integrations, https://docs.moogsoft.com/en/integrations.html,
Jun. 2020.

[16] S. Paskin, AIOps in 2020: A Beginner’s Guide, bmc blogs, https :
//www.bmc.com/blogs/what-is-aiops/, Apr. 2020.

[17] Splunk, Inc., Splunk IT Service Intelligence (ITSI), https://www.splunk.
com/en_us/software/it-service-intelligence.html, Jun. 2020.

[18] E. Giral, “AIOps Essentials: A Unified Data Model as the Foundation
for AIOps,” Broadcom, Inc., White Paper, May 2019.

https://www.bigpanda.io/blog/the-results-of-our-2019-future-of-monitoring-and-aiops-survey/
https://www.bigpanda.io/blog/the-results-of-our-2019-future-of-monitoring-and-aiops-survey/
https://www.gartner.com/en/documents/3892967/market-guide-for-aiops-platforms
https://www.gartner.com/en/documents/3892967/market-guide-for-aiops-platforms
https://www.gartner.com/smarterwithgartner/what-data-center-architects-can-learn-from-building-architects/
https://www.gartner.com/smarterwithgartner/what-data-center-architects-can-learn-from-building-architects/
https://www.gartner.com/smarterwithgartner/what-data-center-architects-can-learn-from-building-architects/
https://docs.openstack.org/nova/latest/reference/notifications.html
https://docs.openstack.org/nova/latest/reference/notifications.html
https://docs.moogsoft.com/en/integrations.html
https://www.bmc.com/blogs/what-is-aiops/
https://www.bmc.com/blogs/what-is-aiops/
https://www.splunk.com/en_us/software/it-service-intelligence.html
https://www.splunk.com/en_us/software/it-service-intelligence.html

	I Introduction
	II Background and Use Case Scenario
	III Monitoring Resource Model
	IV Architecture
	IV-A Acquisition Layer
	IV-B Management Layer
	IV-C Analytics Layer
	IV-D Action Layer
	IV-E Presentation Layer

	V Related Work
	VI Conclusion

