
© 2018 IEEE. This is the author’s version of the work. It is posted at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_18_patron.
pdf by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in In: Roussos, G. et al. (Eds.) Proceedings of the 2018 IEEE
International Conference on Pervasive Computing and Communications Workshops. IEEE, Athens, Greece, pp. 238–243, 2018, doi: 10.1109/PERCOMW.2018.8480227.

How a Pattern-based Privacy System Contributes to
Improve Context Recognition

Christoph Stach*, Frank Dürr*, Kai Mindermann†, Saravana Murthy Palanisamy*, and Stefan Wagner†
*Institute for Parallel and Distributed Systems | †Institute of Software Technology

University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany
forename.surname@informatik.uni-stuttgart.de

Abstract—As Smart Devices have access to a lot of user-
preferential data, they come in handy in any situation. Although
such data—as well as the knowledge which can be derived from
it—is highly beneficial as apps are able to adapt their services
appropriate to the respective context, it also poses a privacy
threat. Thus, a lot of research work is done regarding privacy.
Yet, all approaches obfuscate certain attributes which has a
negative impact on context recognition and thus service quality.
Therefore, we introduce a novel access control mechanism called
PATRON. The basic idea is to control access to information
patterns. For instance, a person suffering from diabetes might
not want to reveal his or her unhealthy eating habit, which can
be derived from the pattern “rising blood sugar level”→ “adding
bread units”. Such a pattern which must not be discoverable by
some parties (e. g., insurance companies) is called private pattern
whereas a pattern which improves an app’s service quality is
labeled as public pattern. PATRON employs different techniques
to conceal private patterns and, in case of available alternatives,
selects the one with the least negative impact on service quality,
such that the recognition of public patterns is supported as good
as possible.

Index Terms—privacy, access control, pattern concealing,
stream processing, complex event processing, databases.

I. Introduction
Mark Weiser’s vision of the computer for the 21st century [1]

became true due to the ubiquitous availability of so-called
Smart Devices1. Various sensors such as cameras, microphones,
location sensors etc. can be integrated into almost any kind
of modern devices. Each single sensor captures only a certain
aspect in most cases. However, by combining the data of
different sensors, comprehensive and detailed insights about
the users of these Smart Devices can be derived.
So-called Smart Apps use these context data in order to tailor

their services to the user’s current situation and thus increase
their utility. According to Dey, the context comprises any kind
of information that can be used to draw conclusions about the
situation of a user [2]. Therefore, it is obvious that there are
many different application areas for Smart Apps, including
eHealth [3] or Industry 4.0 [4].
Due to the huge amount of sensitive data and the profound

knowledge which can be derived from this data, Smart Apps
pose threats and providing benefits at the same time. The
captured data is very informative as it contains both, knowledge

1We use the term Smart Device for any kind of device equipped with sensors
and connectivity options.

about the user’s digital life (e. g., browser history) as well
as his or her real life (e. g., visited places) [5]. Thereby, a
detailed profile about the user can be created. Such a profile
contains highly valuable information and this knowledge is
often misused. Consequently, privacy is a key issue in the
context of Smart Apps [6].
The State of the art Privacy systems applied on Smart

Devices in general either obfuscate or completely block certain
sensor data. Whereas the granularity on which these systems
operate differ—they could affect a sensor in total or only some
of its functions—such a procedure always has a negative impact
on service quality. Without access to a certain type of data
the accuracy of context recognition is reduced. Especially in
the eHealth domain such privacy systems cut both ways: On
one hand, medical data might require some reactive measures
particularly in emergency situations. On the other hand, eHealth
apps still should be able to draw conclusions about the user’s
health condition [7] to provide the promised services.
Moreover, it is difficult for common users to understand

which context information can be derived from which sensors.
This is exacrbated by the fact that they might not know which
are the additional data sources available to a certain Smart
App. On that account, users are outrightly overchallenged by
these privacy systems. The all-or-nothing approach of these
systems—privacy or service quality—has the effect that users
either grant Smart Apps unrestricted access to any requested
data or they do not use a certain app at all [8].
To improve this state of affairs, we make the following five

contributions: (1) We derive requirements of a privacy system
for Smart Apps from a real-world use case. (2) We introduce
a novel pattern-based access control system for Smart Apps
called PATRON2, where a pattern is defined as a sequence of
events, for instance, captured by sensors. PATRON conceals
private patterns from unauthorized applications, while exposing
public patterns to ensure a certain quality of service. (3) We
show the applicability of PATRON to both, real-time data
as well as history data. (4) We implement various pattern
concealing techniques in PATRON and the system selects the
most appropriate one, i.e., the one which preserves the best
data quality in terms of false positives and false negatives that
in turn affects the service quality. (5) We use a quality metric

2The acronym PATRON is short for Privacy in Stream Processing.

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_18_patron.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_18_patron.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/comorea_18_patron.pdf
https://doi.org/10.1109/PERCOMW.2018.8480227


Activity
(e.g., Smartwatch)

Blood Sugar Level
(e.g., Glucometer)

Bread Units
(e.g., Camera)

1

2

3

Sports-related
Blood Sugar Level 

Deviation

Unhealthy
Eating Habits

Sugar Shock

a

b

c

Data Sources (i.e., Sensors or Databases) Recognized Patterns (i.e., Derived Knowledge)

Data Sources

Data Knowledge

Pattern Recognition Interpretation

Figure 1. eHealth Examples for Data Sources and Derivable Knowledge Patterns.

to assess the performance of each concealing techniques in a
given situation.
In our previous work, we already discussed legal aspects

of PATRON, i. e., whether there are any legal limitations
concerning the private patterns [9]. In the paper at hand, we
examine to what extent an approach like PATRON restricts
context recognition respectively how it improves it.
The rest of this paper is organized as follows: In Section II

a real-world Smart App is introduced to point out special
requirements of such apps towards a privacy system. Section III
provides an overview on related work in the context of privacy
systems for Smart Apps. Then, our PATRON approach is
introduced in Section IV. Subsequently, Section V assesses its
practicality before Section VI concluding this work.

II. Use Case Analysis
In the health domain, Smart Apps can help to reduce medical

costs, unburden physicians, and ease dealing with a disease.
There is literally an app for any need [3]. Especially patients
with chronic conditions such as diabetes benefit from Smart
Apps, which is the reason why many health experts call
for innovative and transdisciplinary research approaches [10].
Required duties (e. g., keeping a diabetes diary including
activities, blood sugar levels, and consumed bread units) can be
facilitated by apps, e. g., by integrating them into the patient’s
daily routine in a gamified manner [11]. The required data can
be captured automatically or semi-automatically by sensors
integrated into common Smart Devices: The current activity
can be recognized by Smartwatches—even finger movement
can be captured [12]. For continuous blood glucose monitoring,
there are small sensors implanted in the upper arm [13]. The
consumed bread units can be determined by analyzing pictures
of a meal [14]. Yet, the capabilities of Smart Apps do not
end here. They are able to combine these individual readings

from multiple sensors and draw conclusions about the patient’s
condition.
Figure 1 shows three possible insights that a Smart App is

able to derive from the given data sources: If the activity sensor
detects that the patient is doing sport and the blood glucose
monitoring notices a deviation of the blood sugar level shortly
after, then Pattern 𝑎 is detected (i. e., the blood sugar level
deviation is sports-related and therefore not critical). Pattern
𝑏 can be revealed by a rising blood sugar level after eating
sweets (i. e., the diabetic patient has eating habits which are
not good for his or her health). However, if the blood sugar
level is low and the patient eats sweets as a follow-up then,
Pattern 𝑐 is recognized (i. e., the patient ate sweets to prevent
a sugar shock). Naturally, the patient wants to reveal Pattern 𝑎
and 𝑐 to his or her physician, whereas s/he wants to conceal
Pattern 𝑏 for example to an insurance company at all costs
(e. g., because of rising insurance rates in case of an unhealthy
lifestyle).
As a Smart App must not be manipulated (e. g., by forcing

it to “forget” that it has detected a certain pattern), one has to
ensure that Pattern 𝑏 is not detectable in the first place. The
most obvious approach is to block access to one of the data
sources which are required to detect the pattern (i. e., Source
2 or 3). This approach is applied in most related work (see
Section III). However, by suppressing data from Source 2 none
of the three patterns is detectable. By blocking Source 3, Pattern
𝑎 is detectable but Pattern 𝑐 is still concealed. As Pattern 𝑏 and
𝑐 dependent on the same common sources, such an attribute-
based approach cannot conceal Pattern 𝑏 and still reveal Pattern
𝑐, since it is far too restrictive. Moreover, common users do not
know the correlations between data sources and patterns [8].
This is aggravated by the fact that Smart Apps do not only have
access to real-time data, but also to history data. Some patterns
become evident, when looking at the user’s prior behavior: If



the user has a regular training session which is indicated by
previous data, one could draw conclusions about his or her
future activities, even without access to Source 1. This example
shows that a privacy system is necessary for Smart Apps that
has to meet specific requirements, which are postulated as
follows.
Requirements Specification.
𝑅1 : Pattern-based. Privacy concerns are not raised at sensor

level (i. e., raw data) but at knowledge level (i. e., sequences
of events). Therefore, privacy rules should be mapped
to patterns instead of single attributes. In conformity
with Yeye He et al. [15], we differentiate between public
patterns, i. e., patterns which should be detectable by
Smart Apps, and private patterns, i. e., patterns which
should be concealed at all costs.

𝑅2 : Source Abstraction. Since some patterns can be revealed
by several sources (e. g., Smartphones and Smartwatches
can identify the user’s activity), the pattern description
has to be source-independent.

𝑅3 : Domain Abstraction. Since each domain (e. g., health
domain or industrial domain) has its specific data process-
ing practices, domain experts have to tailor patterns to
the particular domain.

𝑅4 : Processing Abstraction. Smart Apps have access to
both, real-time data and history data. Accordingly, private
patterns have to be concealed from both, data stream
and database accesses. Any combination of real-time and
history data has to be considered as well.

𝑅5 : Quality-preserving. The service quality of a Smart App
should not be impaired by concealing private patterns.
Public patterns still have to be recognized as much as
possible, as measured by the amount of false positives
(pattern is detected, but did not actually occur) and false
negatives (pattern occurred, but is not detected).

III. Related Work
In the following, we discuss different privacy control

mechanisms for Smart Apps. We consider approaches for real-
time data (i. e., approaches for data stream systems), approaches
for history data (i. e., approaches for databases), as well as
privacy mechanisms for Smart Devices in general. In particular,
we assess the impact of these approaches on context recognition.
The discussed approaches constitute representative samples for
the many similar approaches.
Privacy Approaches for Data Stream Systems. AC-
Stream [16] provides fine-grained access control over data
streams. Its policies specify which attributes can be queried.
Constraints restrict data access further, e. g., by granting access
to aggregated data, only. However, access to information is
controlled only at the level of attributes, which limits context
recognition heavily. Kim et al. [17] introduce a delay-free
anonymization mechanism based on l-diversity. That is, this
approach also operates on attributes, only. SKY [18] enforces k-
anonymity on streaming data. By pooling multiple similar users,

private data cannot be associated to an individual. Wayne [19]
introduces a similar approach in which differential privacy
is applied. However, such approaches are not applicable in
many use cases. For instance in the health domain, a physician
needs to know exactly which health record belongs to which
patient. Assam et al. [20] introduce a refined differential privacy
approach by considering more contextual data. Thereby, their
approach provides strong privacy even for a single object.
However, this approach works only on spatio-temporal data.
StreamShield [21] adds processing rules as metadata to each
data set. These rules are executed in each streaming operator—
i. e., each operator monitors itself. However, this approach
assumes a trustworthy execution environment. Moreover, it is
also entirely attribute-based which has a negative impact on
context recognition. DEFCon [22] prevents illegal message
flows between the processing units of an event processing
system. This does not restrict the context recognition within a
Smart App since it only takes data leaks within an app into
consideration. However, this also means that it contributes little
in ensuring privacy.
Privacy Approaches for Databases. Wang et al. [23] propose
a solution for fine-grained access control in relational databases.
In their approach, certain attributes can be filtered out for each
resulting tuple. With respect to context recognition, this has the
same shortcomings as attribute-based privacy approaches for
data stream systems. Silva et al. [24] introduce a differential
privacy approach for RDF databases. This approach thus
enables accurate analyzes on the stored data are possible, while
no information about individuals are revealed. However, this
is also not applicable to Smart Apps, which provide user-
related services (e. g., eHealth apps). Olumofin and Goldberg
use Dynamic SQL in order to remove private information from
the results [25]. Query rewriting technique in this approach is
not capable of concealing complex patterns. The SDC [26] and
CURATOR [27] are secure data containers for Smart Devices.
A relational database respectively an object store is enhanced
by security mechanisms to obfuscate or remove private data
from query results. Its access control takes effect at the tuple
level. Yet, both approaches operate on attributes rather than
patterns.
Privacy Approaches for Smart Devices. Chitkara et al. [28]
address the problem that a lot of private data is gathered by
third-party libraries. These libraries—and thus their data—are
shared among several apps. Therefore their approach does not
grant particular apps access to private data. Instead, their system
tracks any data access attempt involving private information
at runtime and grants or denies it considering all currently
running apps or services. The PMP (Privacy Management for
Mobile Platforms) [29] is a fine-grained privacy system for
Smart Devices. Its policy rules take the user’s current context
into account, e. g., to apply different rules at workplace and
at home. PolEnA [30] uses bytecode instrumentation to add
monitoring components to an app. These components decide
at runtime whether or not a requested Android Permission is
granted. TrUbi [31] introduces privacy domains. These domains
represent specific use cases (e. g., usage of a private laptop for



Data Source Layer

Apps Sensors DBs

Application Layer

Apps Services

Data Processing Layer

Data Operators

Knowledge

Data

Data
Sources

Pattern
Recognition

Interpretation

Figure 2. Model Architecture for Smart Apps.

an exam). For each use case, other data access restrictions are
applied (e. g., access to the Internet is prohibited during exams).
All of these approaches operate on the level of attributes and
therefore impair context recognition significantly.

IV. The PATRON Approach

Since the currently existing privacy systems for Smart Apps
impair the service quality substantially due to their focus on
attribute-based access control, we introduce PATRON, a novel
pattern-based privacy approach. To this end, we need to keep
in mind the Smart App architecture (see Figure 2): The Data
Source Layer provides access to various data sources such as
sensors, databases, or other Smart Apps. This input data is then
processed in the Data Processing Layer. A network of various
data operators preprocesses the data progressively, as required
by the Smart App. Intermediate data or even the stream of
real-time data as a whole can be fed back to the Data Source
Layer, e. g., to preserve as data history. Smart App Components
which interact with users are part of the Application Layer.
In other words, data origins, knowledge acquisition, and

knowledge processing are strictly separated from each other.
From a privacy perspective this entails that a pattern-based
system such as PATRON has to be wrapped around the
Data Processing Layer in order to know any incoming raw
data and where the preprocessed data is forwarded to (see
Figure 3). Basically, PATRON consists of two additional layers:
A horizontal Access Control Layer and a vertical Configuration
and Verification Layer. In PATRON, a user describes his or
her privacy requirements in natural language. Domain experts
translate these requirements into public and private patterns.
In order to model these patterns and the derivable knowledge
from given data sources, e. g., ACCESSORS [32] can be used.
This translation is made semi-automatically, i. e., the domain
experts are supported by tools, indicating potential privacy
threats. According to the resulting patterns a configuration for
the Access Control Layer is compiled. To this end, a quality
metric is applied in order to find the best configuration, i. e.,
the one which reveals as many public patterns as possible while
concealing all private patterns.
The Access Control Layer monitors the input streams of the

data operators while also considering the previous knowledge
of an operator. If a private pattern can be derived then, the
Access Control Layer intervenes. To ensure privacy, different
techniques are available e. g., changing the sequence of events

Application Layer

Data Source Layer

Access Control Layer

Data Processing Layer

Configuration and 
Verification Layer

Domain
Knowledge

P PPP P

Configuration

Apps Sensors DBs

Apps Services

Data Operators

User 
Requirements

Public and 
Private Patterns

VDS Verification

Figure 3. The PATRON Architecture for Smart Apps.

or dropping events. It is noteworthy that it is not adequate to
look at the output of the Data Processing Layer and remove
private patterns from it. The layer could secretly integrate
indicators that a certain private pattern has occurred into
seemingly harmless patterns.
To persist intermediate data or history data, Virtual Data

Stores (VDS) are used. A VDS can be used like a normal
database but it provides additional security features. These
features ensure that no private patterns are revealed. The VDSs
are tightly integrated into the Access Control Layer in order
to ensure that the layer always knows all data accessible by an
operator. Otherwise, an operator could derive private patterns
by combining real-time and history data.
The results of the Data Processing Layer are sent back to the

Configuration and Verification Layer to verify that no private
patterns were revealed. In the following, we focus on the Access
Control Layer. For details on the Configuration and Verification
Layer, please refer to [33].
Privacy Mechanism for Streaming Data. Different tech-
niques can be used to conceal privacy-critical patterns in data
streams. These techniques include suppression, obfuscation, and
reordering of sensor events. These techniques are illustrated in
the following example: Assuming there is a data stream, trans-
mitting the followimg sequence of events: 𝐴→𝐵→𝐴→𝐶.
To conceal the private pattern 𝐵→𝐴, suppression drops
the second 𝐴 event (or the 𝐵 event, respectively). The
resulting data steam looks like this: 𝐴→𝐵→𝐶. Obfuscation
modifies an event to disguise it as another event. One possible
solution looks like this: 𝐴→𝐵→𝐴′ →𝐶. Finally, reordering
changes the sequence of the events in the data stream, e. g.,
𝐴→𝐴→𝐵→𝐶.
The choice on one of these techniques in a given use case

has to be decided based on two criteria: a) Concealing private
patterns must impair the recognition of public patterns as
little as possible (see the Quality Metric Section for more
information). b) An attacker might have background knowledge
about the data stream and this should also be considered while
concealing. For instance, if a probability distribution suggests
that every second event in a data stream is 𝐴, none of the
solutions proposed above is advisable. An attacker notices a
manipulation of the stream and therefore s/he is able to draw
conclusions. This background knowledge is different for every



use case and has to be taken into account by the domain experts
while configuring for PATRON.
Privacy Mechanism for History Data. VDSs persist both,
a history of raw sensor data as well as any intermediate
data accruing in the Data Processing Layer. To protect these
potentially sensitive data, various techniques are applied in
the VDSs. First of all, all stored data is completely encrypted
and only the VDS has the key. Therefore, third-parties cannot
read the data if the VDS does not authorize the access. This
approach also enables a reliable deletion of the data. If the
Data Processing Layer is compromised, the VDS can destroy
the key, making all stored data unreadable.
A VDS apply several techniques to conceal private patterns

during query processing. These techniques are divided into two
categories: On the one hand, the concealing can be enforced
a priori by rewriting incoming queries. By adding selection
operators, the scope of the returned tuples can be restricted
(e. g., only diabetes diary entries of a certain patient are
returned) whereas projection operators restrain the number of
attributes per returned tuples (e. g., only the blood sugar level
is returned for each diabetes diary entry). On the other hand,
the result set can also be concealed aposteriori. This enables
to apply filter and obfuscation operators as well as timestamp
modifiers in order to suppress private patterns. Similar to the
privacy mechanism for streaming data, the experts have to
select the best approach case-by-case based on the respective
application domain.
Quality Metric. PATRON’s quality metric rates each configu-
ration in order to determine the best one, i. e., the configuration
which provides the best service quality and conceals privacy-
critical pattern. A PATRON configuration specifies which
privacy mechanism has to be employed to both, streaming
data and history data.
The quality metric takes three aspects into account: The

total number of recognized public patterns has a positive
influence on the service quality, while the total number of
false positives—i. e., falsely recognized public patterns—has a
negative influence. False negatives are already considered by
the public pattern aspect—a false negative is synonymous with
a not recognized public pattern. If a configuration reveals
inadvertently a private pattern, the service quality is not
deteriorated. Yet, the quality metric also considers such privacy
breaches by introducing a penalty weight for this purpose.

𝑄𝑀 =
∑︁
𝑖

𝑝𝑢𝑏𝑙𝑖𝑐_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 * 𝑤𝑝𝑢𝑏_𝑖

−
∑︁
𝑗

𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑗 * 𝑤𝑝𝑢𝑏_𝑗 * 𝑝

−
∑︁
𝑘

𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑘 * 𝑤𝑝𝑟𝑖𝑣_𝑘 (1)

Equation (1) shows a simplified representation of PATRON’s
quality metric. As one can see, each of the three components
can be individually weighted. As a result, certain public patterns
can be declared as comparitively important or private patterns
as less privacy-critical. In the case of false positives, an
additional penalty weight can be specified. For instance, in the

Table I. PATRON’s Compliance with the Requirements.

Requirement Fulfillment in PATRON Experienced Impact

𝑅1

Various techniques to con-
ceal private patterns and
reveal public patterns

Improvement of context
recognition as the accessi-
ble raw data is maximized

𝑅2
Focus on event sequences
instead of data sources

Any kind of data source is
protected out of the box

𝑅3

Involvement of domain ex-
perts in pattern generation
and configuration process

Privacy mechanisms tai-
lored to requirements and
application context

𝑅4
Privacy mechanisms for
streaming and history data

Privacy protection for both,
real-time and history data

𝑅5
Quality metric rates
PATRON configurations

Least possible impairment
of service quality

eHealth domain, wrong diagnoses might have dire consequences
and therefore have to be ruled out. Theses weight parameters are
set by the domain experts when they translate a user’s privacy
requirements into PATRON patterns. In this way, PATRON’s
configuration can be adapted even better to the user’s needs
and the experienced service quality can be maximized.

V. Assessment

To assess whether PATRON is suitable as a private system
for Smart Apps, the requirements specification postulated
in Section II is applied. This assessment also analyzes the
experienced impact on behalf of the user.
PATRON is designed from scratch towards a pattern-based

processing approach. Accordingly, private patterns can be
defined, which must be concelaed at all costs. Thus, all events
from which no such pattern can be derived are forwarded to the
Data Processing Layer without compromising its accuracy. In
this way, public patterns can still be recognized. Furthermore,
PATRON introduces a source abstraction, i. e., it abstracts
completely from concrete data sources. Private patterns are
defined without having to specify from which sources the
events that form the pattern occur. Thereby the defined private
patterns are automatically applied to any currently available data
source. Also domain abstraction is considered in PATRON.
Domain experts translate user-defined privacy requirements
into domain-specific patterns. These experts have insights into
Smart Apps in their respective domain, including which data
sources are involved and which knowledge can be derived
from them. As common users do not have such a background
knowledge, this is the only way to ensure that all privacy
requirements are met. By introducing privacy mechanisms for
both, streaming data and history data, PATRON implements
a processing abstraction. That way it is ensured that Smart
Apps cannot accumulate real-time and history data in order to
draw conclusions about occurrences of private patterns. Finally,
PATRON is also quality-preserving. Based on a quality metric
the best PATRON configuration is selected. The quality of
a configuration is defined by how well it conceals private
patterns and reveals public ones, thereby having the least



possible impairment of public pattern recognition. Table I
summarizes the key findings of this assessment.
Lessons Learned.
S 1 Privacy and service quality are not mutually exclusive.
S 2 Attribute-based privacy approaches are too restrictive for
smart apps.

S 3 Attribute-based privacy rules overwhelm common users.
S 4 Pattern-based privacy approaches contribute to improve
context recognition.

S 5 A privacy system for smart apps has to consider both,
streaming data and history data.

S 6 PATRON conceals private patterns completely while
public patterns are revealed as good as possible.

S 7 A quality metric selects the concealing technique which
maximizes the experienced service quality.

VI. Conclusion
Smart Devices are becoming increasingly popular due to

the unique situation-tailored services offered by Smart Apps.
To this end, such apps require access to a lot of different
types of data about the user. From these data Smart Apps
derive comprehensive knowledge. Here users wish to benefit
from this knowledge in terms of a better service quality, while
still wanting to protect their privacy i. e., an app must not
be able to derive certain private information. Current privacy
approaches are not only incomprehensible to users but also far
too restrictive. By blocking certain attributes completely, these
approaches impair service quality significantly as apps cannot
gather the required knowledge reliably. On that account, we
introduce with PATRON a novel pattern-based privacy approach
for Smart Apps. In PATRON a user describes his or her privacy
requirements in natural language and experts translate them
into two types of knowledge patterns—a knowledge pattern
is a sequence of events. Public patterns should be detectable
by Smart Apps while private patterns must be concealed. To
suppress private patterns, PATRON uses various techniques.
It selects the one with the smallest impact on service quality.
PATRON operates on both, real-time data and history data. Due
to these features, PATRON helps to improve context recognition
and thus service quality.

Acknowledgment
The PATRON research project is commissioned by the Baden-

Württemberg Stiftung GmbH. The authors would like to thank
the BW-Stiftung for the funding of PATRON.

References
[1] M. Weiser, “The Computer for the 21st Century,” Scientific American,

vol. 265, no. 3, pp. 94–104, 1991.
[2] A. K. Dey, “Understanding and Using Context,” Personal and

Ubiquitous Computing, vol. 5, no. 1, pp. 4–7, 2001.
[3] D. Siewiorek, “Generation Smartphone,” IEEE Spectrum, vol. 49,

no. 9, pp. 54–58, 2012.
[4] C. Gröger et al., “A mobile dashboard for analytics-based information

provisioning on the shop floor,” International Journal of Computer
Integrated Manufacturing, vol. 29, no. 12, pp. 1335–1354, 2016.

[5] C. Buck et al., “Mobile Consumer Apps: Big Data Brother is Watching
You,” Marketing Review St. Gallen, vol. 31, no. 1, pp. 26–35, 2014.

[6] G. Suarez-Tangil et al., “Evolution, Detection and Analysis of Malware
for Smart Devices,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 2, pp. 961–987, 2014.

[7] L. Ohno-Machado et al., “Protecting patient privacy by quantifiable
control of disclosures in disseminated databases,” International Journal
of Medical Informatics, vol. 73, no. 7, pp. 599–606, 2004.

[8] A. P. Felt et al., “Android Permissions: User Attention, Comprehension,
and Behavior,” in SOUPS ’12, 2012.

[9] C. Stach et al., “PATRON – Datenschutz in Datenstromverar-
beitungssystemen,” in INFORMATIK ’17, (in German), 2017.

[10] M. Knöll, “Urban health games. Collaborative, expressive & reflective,”
Ph.D. dissertation, University of Stuttgart, 2012.

[11] C. Stach, “Secure Candy Castle — A Prototype for Privacy-Aware
mHealth Apps,” in MDM ’16, 2016.

[12] C. Xu et al., “Finger-writing with Smartwatch: A Case for Finger
and Hand Gesture Recognition Using Smartwatch,” in HotMobile ’15,
2015.

[13] J. A. Tamada et al., “Keeping Watch on Glucose,” IEEE Spectrum,
vol. 39, no. 4, pp. 52–57, 2002.

[14] R. Almaghrabi et al., “A Novel Method for Measuring Nutrition Intake
Based on Food Image,” in I2MTC ’12, 2012.

[15] Y. He et al., “On the Complexity of Privacy-preserving Complex Event
Processing,” in PODS ’11, 2011.

[16] J. Cao et al., “ACStream: Enforcing Access Control over Data
Streams,” in ICDE ’09, 2009.

[17] S. Kim et al., “A Framework to Preserve the Privacy of Electronic
Health Data Streams,” Journal of Biomedical Informatics, vol. 50,
pp. 95–106, 2014.

[18] J. Li et al., “Anonymizing Streaming Data for Privacy Protection,” in
ICDE ’08, 2008.

[19] L. Waye, “Privacy Integrated Data Stream Queries,” in PSP ’14, 2014.
[20] R. Assam et al., “Differential Private Trajectory Protection of Moving

Objects,” in IWGS ’12, 2012.
[21] R. V. Nehme et al., “StreamShield: A Stream-centric Approach

Towards Security and Privacy in Data Stream Environments,” in
SIGMOD ’09, 2009.

[22] M. Migliavacca et al., “DEFCON: High-performance Event Processing
with Information Security,” in USENIXATC ’10, 2010.

[23] Q. Wang et al., “On the Correctness Criteria of Fine-grained Access
Control in Relational Databases,” in VLDB ’07, 2007.

[24] R. R. C. Silva et al., “A Differentially Private Approach for Querying
RDF Data of Social Networks,” in IDEAS ’17, 2017.

[25] F. Olumofin and I. Goldberg, “Privacy-Preserving Queries over
Relational Databases,” in PETS ’10, 2010.

[26] C. Stach and B. Mitschang, “The Secure Data Container: An Approach
to Harmonize Data Sharing with Information Security,” in MDM ’16,
2016.

[27] ——, “CURATOR — A Secure Shared Object Store: Design, Imple-
mentation, and Evaluation of a Manageable, Secure, and Performant
Data Exchange Mechanism for Smart Devices,” in SAC ’18, 2018.

[28] S. Chitkara et al., “Does This App Really Need My Location?: Context-
Aware Privacy Management for Smartphones,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 1, no. 3, 42:1–42:22, 2017.

[29] C. Stach and B. Mitschang, “Privacy Management for Mobile Platforms
– A Review of Concepts and Approaches,” in MDM ’13, 2013.

[30] G. Costa et al., “PolEnA: Enforcing Fine-grained Permission Policies
in Android,” in SAFECOMP ’17, 2017.

[31] M. B. Costa et al., “TrUbi: A System for Dynamically Constraining
Mobile Devices Within Restrictive Usage Scenarios,” in Mobihoc ’17,
2017.

[32] C. Stach and B. Mitschang, “ACCESSORS: A Data-Centric Permission
Model for the Internet of Things,” in ICISSP ’18, 2018.

[33] K. Mindermann et al., “Exploratory Study of the Privacy Extension
for System Theoretic Process Analysis (STPA-Priv) to elicit Privacy
Risks in eHealth,” in ESPRE ’17, 2017.


	I Introduction
	II Use Case Analysis
	III Related Work
	IV The PATRON Approach
	V Assessment
	VI Conclusion

