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Abstract—Cloud computing passed the hype cycle long ago and
firmly established itself as a future technology since then. However,
to utilize the cloud as cost-efficiently as possible, a continuous
monitoring is key to prevent an over- or under-commissioning of
resources. In large-scaled scenarios, several challenges for cloud
monitoring, such as high network traffic volume, low accuracy of
monitoring data, and high time-to-insight, require new approaches
in IT Operations while considering administrative complexity.
To handle these challenges, we present DEAR, the Distributed
Evaluation of Alerting Rules. DEAR is a plugin for monitoring
systems which automatically distributes alerting rules to the
monitored resources to solve the trade-off between high accuracy
and low network traffic volume without administrative overhead.
We evaluate our approach against requirements of today’s IT
monitoring and compare it to conventional agent-based monitoring
approaches.

Index Terms—Cloud Monitoring; Agent-based; Alerting.

I. INTRODUCTION

Cloud computing passed the hype cycle long ago and firmly
established itself as a future technology since then. As resource
utilization may vary over time, a continuous monitoring of
cloud resources and especially an alerting system that informs
system administrators about problems to enable them to resolve
emerging issues are essential [1]. Furthermore, recently, the
term AIOps, coined by Gartner [2], introduced the usage of
machine learning to the domain of IT Operations to further
optimize monitoring, e. g., dynamic alerting thresholds based
on predictive analysis.

Usually, the collected monitoring data are stored on a
centralized monitoring server [1], [3] and in scenarios that
involve hundreds or thousands of virtual machines (VMs),
each with multiple different applications, cloud monitoring can
be classified as a Big Data problem [4]. Especially the volume
of the monitoring data quickly increases to an unmanageable
size for the network bandwidth and disk space [1], [5]. The
common solution to this problem is the use of monitoring
agents, which aggregates monitoring data before sending it to
the monitoring server [5]. However, aggregation always leads
to a loss of accuracy [6]. Aceto et al. [5] define a monitoring
system as accurate when the measures provided are as close
as possible to the real value. Therefore, an accurate and fine-
grained monitoring is, in general, not possible by aggregating
monitoring data. Especially the quality of alerting suffers from
poor accuracy and the amount of false-negatives and false-
positives leads to unnecessary remediation efforts or even to
overlooking of serious problems.
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Figure 1. Exemplary CPU Loads of a Cloud Application.

As a consequence, decentralized monitoring architectures
were created. On each VM, fully operational monitoring
systems are installed that communicate with each other. There-
fore, the monitoring data can be analyzed without generating
network traffic volume while keeping a high accuracy. However,
decentralization always leads to an increase in management
complexity, as now several servers need to be managed instead
of a single one [7]. Furthermore, as all monitoring data are
spread across several servers, holistic analysis is cumbersome
or not possible at all.

Our goal is a hybrid approach combining the advantages
of centralization and decentralization to enable fine-grained
alerting without the disadvantages of aggregation of monitoring
data or decentralized monitoring architectures. For this, we
introduce DEAR, a plugin for monitoring systems enabling
Distributed Evaluation of Alerting Rules. DEAR connects to
the alerting framework of a monitoring system and distributes
the alerting rules to the respective VMs while considering
requirements regarding accuracy, network traffic volume, time-
to-insight, and others. Required changes to the monitoring
agent and the alerting framework are performed automatically
and the management of alerting rules is kept centralized to
maintain management complexity of monitoring systems. We
evaluate the performance of DEAR and compare our approach
to centralized, agent-based monitoring approaches.

The remainder of this paper is structured as follows:
Section II introduces challenges towards cloud monitoring
derived from literature. Section III discusses how related work
handles these challenges. In Section IV, we present DEAR
and its components. In Section V, we evaluate DEAR. Lastly,
Section VI concludes this paper and gives an outlook to future
work.
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II. CHALLENGES

In this section, we show the disadvantages of aggregation
and the resulting inaccuracies based on the examples shown in
Fig. 1. Exemplary, the graphs show the CPU usage in percent
of an arbitrary cloud service over 60 seconds. The monitoring
agent samples the CPU usage every second and calculates
the mean average over 60 seconds' to reduce network traffic
volume. In Fig. 1 (left), the CPU load is rising exponentially.
However, the calculated average is below 50 % when in fact
the CPU load is already at 80 % and probably still rising. This
potential problem would only be detected after the next time
window, i.e., in total after two minutes, when the new average
suddenly is above 80 % or higher. In Fig. 1 (middle), multiple
spikes might indicate a problem with the service. However,
when aggregating the monitoring data, information about the
spikes are lost. In comparison to Fig. 1 (left), this problem
might not be detected at all as the average might not change in
the future. In Fig. 1 (right), a static workload is shown, which
is the only one that is accurately displayed by the calculated
average value as each sample value is close to it. Based on
those graphs, we derive challenges C'1 — C'4 and a universal
challenge in cloud monitoring C'5:

C1: Accuracy: Having fine-grained monitoring data is essen-
tial for a reliable monitoring of an IT environment to in-
crease accuracy [5]. For example, only then, in Fig. 1 (mid-
dle), the spikes can be detected and responded to if
required.

Big Data: Fine-grained monitoring data are gained by
frequent sampling. However, for multiple metrics across
multiple VMs, this approach leads to a large amount of
monitoring data which burdens network bandwidth and
disc space [4]. Therefore, network traffic volume needs
to be reduced while not negatively affecting accuracy.
Time-to-insight: Reducing time-to-insight (TTI), i.e.,
the time between the occurrence of an event and an
appropriate response to it, is mandatory to enable fast
reactions [5]. In Fig. 1 (left), the earlier the increase in
CPU load is detected, the earlier it can be responded
to. In Fig. 1 (middle), the spikes can be detected and
responded to if required.

Historical data: Keeping records of past monitoring
data is a must for analysis purposes [2]. In Fig. 1 (left),
predictions can be made to preemptively react to poten-
tial problems before they arise, e.g., overloaded CPU.
In Fig. 1 (right), the behavior of the application can
be learned to improve alerting rules by dynamically
narrowing upper and lower thresholds.

Administration: IT departments are oftentimes under-
staffed [8]. Therefore, new approaches need to be au-
tomated to not further burden system administrators
and support scalability [2]. Furthermore, in contrast to
decentralized solutions, a Single Point of Administration
must be maintained to ease the management of the
monitored IT environment.

C2:

C'3:

C4:

C5:

10ther forms of aggregation (MAX, MIN, etc.) lead to similar problems.

III. RELATED WORK

In the following, we discuss related work regarding different
monitoring architectures and their inadequacies in regard to
the above-mentioned challenges. In centralized monitoring
architectures, to reduce network traffic volume, the common
practice is the aggregation of monitoring data at the monitoring
agent [5]. Different aggregation strategies are considered [9],
[10]. However, aggregation always leads to a decrease in
accuracy [6], [11]. A similar approach to reduce the monitoring
data volume is to simply reduce the sampling frequency,
in which monitoring data are gathered. However, whereas
sampling frequencies at 30 or more seconds were acceptable
in the past, nowadays a fast reaction to undesirable states is
obligatory [7], [12].

Therefore, n-tier and fully decentralized monitoring archi-
tectures exist. N-tier architectures consist of a hierarchical tree
structure with the central server as the root and the monitored
resources as the leaves. In between are nodes (for n > 3), which
are fully operative monitoring systems that act as central servers
for a subset of the monitored resources. All those intermediate
monitoring systems send their results to the actual centralized
server that represents the access point for the administrator or
yet to another tier of monitoring systems. In fully decentralized
monitoring architectures, there is no centralized component,
i.e., each agent comprises a fully functional monitoring system,
which communicates with other agents in the monitored
environment. However, decentralization is always accompanied
by an increased management complexity, which oftentimes is
not acceptable [7].

Hybrid monitoring architectures aim at outsourcing parts
or functions of the monitoring system close to the data source
while maintaining a centralized component. For instance, Wang
et al. introduce Monalytics [13], [14] to perform analytics close
to the data source by defining topologies for a monitored
environment. Physical systems are partitioned into zones
and in each zone monitoring brokers receive collected data
from agents and aggregate and analyze the data to reduce
TTI and monitoring data volume. However, only lightweight
analysis can be performed and higher-level analysis must be
programmed explicitly. Furthermore, historical data is not
considered and future analysis is not possible.

Hauser et al. [1] introduce the generation of resource profiles
at the data source. For this, they develop a tool that runs on
the physical host, collects data, and produces and updates a
statistical representation of the resource utilization using, e. g.,
histograms and Markov chains. Instead of the raw monitoring
data, the resulting resource utilization model is retrieved by
tools for alerting and only when needed to reduce network
traffic and disc space. Still, monitoring data are aggregated
and accuracy is reduced. The authors claim that for alerting a
lesser accuracy is acceptable, however, neither do they present
any evidence to support this claim nor do they present the loss
in accuracy compared to traditional monitoring approaches.

Shao et al. [15] introduce a runtime model based monitoring
approach. Monitoring data are checked against predefined rules
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Figure 2. Integration of DEAR Components into Current Monitoring
Architectures and Processes (steps introduced by DEAR depicted in blue).

on the monitoring agents to perform alerts if necessary. Similar
to this, Moogsoft [16] introduces Observe data collectors
to analyze data directly at the data source. The presented
advantages are increased scalability due to less network traffic
and an immediate insight due to lower latency. In both cases,
those rules are managed directly on the monitoring agents,
which leads to high management complexity in large-scaled
environments.

Lastly, the distribution of alerting rules is related to dis-
tributed Complex Event Processing (CEP). Related works
in this domain (e.g., [17], [18]) aim at distributing the
processing of globally defined CEP queries close to the data
sources to reduce network traffic and latency. We can use these
approaches to distribute the condition part of our alerting rules.
However, our scope goes beyond these approaches through
alerting rule management, recording historical data, and the
embedding of said approaches into the monitoring landscape
such as automatic adaptations to monitoring agents and alerting
frameworks.

IV. DEAR

With DEAR, we aim at providing a hybrid approach as a
plugin for today’s centralized monitoring systems to acquire the
advantages of decentralized solutions, such as high accuracy,
low TTI and low network traffic volume without adopting their
increased management complexity. For this, DEAR needs to
blend in with the current monitoring architecture. In Fig. 2, an
extended centralized monitoring architecture with embedded
DEAR components is shown as well as five process steps
of monitoring. Exemplary, four VMs are monitored and their
monitoring data are sent to a monitoring server. Marked with
numbers (1) and (2) are the steps of agent-based monitoring
and, in addition, numbers (3), (4), and (5) mark new steps
from DEAR, which are briefly explained in the following.

(1): On each VM, a monitoring agent is installed as shown
in the detailed view of VM4 on the right in Fig. 2.
For each monitoring agent, configurations include what
needs to be monitored, e.g., CPU and RAM load, the
sampling frequency f,, and the aggregation interval I,
that defines for how long monitoring data are aggregated

before they are sent to the monitoring server. Therefore,
using aggregation, the network traffic volume is reduced
by (1— 1%) * 100% in comparison to no aggregation used
at all.

Based on those monitoring data, the system administrator
defines alerting rules in an alerting framework. The
alerting framework accesses all incoming data from the
central database and continuously evaluates all alerting
rules. If an alerting rule is violated, alerts are sent via
different communication channels, such as email or text
message to the personnel responsible. It becomes clear that
alerting is heavily impacted by the aggregation interval
I, in regard to accuracy and TTI as aggregation leads to
more coarse-grained data and monitoring data are sent at
a later point in time, i.e., after the aggregation interval
passed.

Therefore, the component Alert Transformer & Distributor
is introduced which accesses the alerting framework and
transforms the alerting rules to a common query language
so that they can be evaluated within the Evaluation Engine
on the VM (3a). The transformed alerting rules are placed
on the evaluation engine (3b) and the configuration of
the monitoring agent is changed accordingly (3c) so that
monitoring data are sent to the evaluation engine.

Now, the monitoring agent sends the fine-grained mon-
itoring data directly to the evaluation engine where the
alerting rules are evaluated. The results of the evaluation
— the alert data — are sent back to the monitoring agent
which sends them to the monitoring server. At the same
time, coarse-grained monitoring data are sent to the central
database to maintain historical data.

Furthermore, the monitoring agent sends fine-grained
monitoring data to a monitoring data buffer where they
are stored for a short amount of time so that, in case of
alerts, a fine-grained analysis of recent monitoring data is
possible, e. g., to perform a root cause analysis.

As a result of the previous steps, the communication
between the monitoring agent and the monitoring server
has changed, and step (1) is replaced by step (1°).
Aggregated monitoring data are sent regularly to the
monitoring server to maintain historical data without
stressing the network. In case of alerts, relevant monitoring
data from the monitoring data buffer are sent to the central
database.

(2):

(3):

(4):

(5):

(1'):

A. Alert Transformer & Distributor

The alert transformer and distributor is the central com-
ponent of DEAR and is responsible for the transformation
of alerting rules, distribution of said alerting rules to local
evaluation engines, and adaptations of monitoring agents. The
modular architecture supports different frameworks, agents,
and evaluation engines by the creation of adapters as shown
in Fig. 3 and explained in the following.

1) Alerting Framework Adapter: The alerting framework
adapter is used to access alerting rules from an alerting
framework. Based on the used alerting framework, the definition
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Figure 3. Components of Alert Transformer & Distributor.

and attributes of an alerting rule differ. However, a condition
and an action is always required. Furthermore, optional
arguments, such as the name and severity of the alert, help
system administrator to quickly classify an alert. As syntax
and expressiveness of alerting rules differ from framework to
framework, for each alerting framework, a new adapter needs
to be programmed. First, the rule condition of the alerting
rule is transformed into a uniform representation to reduce the
amount of required transformations when supporting n alerting
frameworks and m evaluation engines from n *m to n +m
transformations. As uniform representation, we use binary
expression trees (BETs)? [19] with inorder traversal where
the nodes represent logical operators and the leaves represent
conditions. A rule condition involving multiple conditions
and its equivalent BET are shown in Fig. 4. The BET is
used as input for the evaluation engine adapter where it is
transformed into the according query language, e.g., a CEP
query if a CEP engine is used. The original rule in the alerting
framework is replaced by a placeholder that is also used for
the calculated result in the evaluation engine. The condition
rule in Fig. 4 is changed to IF' (VM1.A1) AND (VM2.A2)
and the evaluation engine on VMI calculates (IF CPU >
90% OR RAM < 200M B) THEN (Al = true) and returns
Al. Analogous, the evaluation engine on VM2 calculates and
returns A2.

The rest of the alerting rule remains the same so the
management of alerting rules, e. g., the different communication
channels, such as email, and their configurations, can be
managed globally by the system administrator as before.

2) Core: The core component is responsible for the dis-
tribution of alerting rules based on the BET. Using inorder

2Qther representations might be feasible as well.

IF (VM1.CPU>90% OR Al=
VM1.RAM<200MB) AND -

(VM2.CPU>80%) VML.CPU>90%
VM1.RAM<200MB

Figure 4. Transformation of Alerting Rule into Binary Expression Tree.
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Figure 5. Possible Distributed Processing Strategies.

traversal, the longest BET subtrees are detected whose leaves
contain conditions for monitoring data from the same VM.
Those subtrees are transformed into the query language of
the evaluation engines by the evaluation engine adapters and
distributed to the VMs. Now, the monitoring agent needs to
send fine-grained monitoring data to the evaluation engine
instead of the monitoring server. Therefore, the configuration
of the monitoring agent is changed by the monitoring agent
adapter to reroute monitoring data accordingly.

Based on the sources of the monitoring data of the rule
condition, different distributed processing strategies can be
applied as shown in Fig. 5. To illustrate the strategies, we use
the rule condition shown in Fig. 4.

(A): All VMs evaluate their respective BET subtrees and send
their result, i.e., the alert data, to the monitoring server,
which represents the example shown in Fig. 4.

If for any reason a VM cannot perform a local evaluation,
only part of the condition rule is evaluated on the VMs
and VM2 sends its monitoring data to the monitoring
server.

It is only of interest if both BET subtrees are evaluated to
true since the highest level node of the BET is the AND-
operator. Therefore, if only one of the subtrees is evaluated
to true, alert data is sent to the monitoring server and no
alert is created. This creates unnecessary network traffic
and can be avoided by this strategy. One of the VMs sends
its alert data to the other VM instead of the monitoring
server, so that the complete BET can be evaluated before
sending alert data to the monitoring server. However, this
strategy only makes sense if the communication between
the VMs is cheap, e. g., if they belong to the same cluster.
Otherwise, e.g., in multi-cloud environments, strategy A
is preferable since no unnecessary stress is put on the
VMs.

If one VM cannot perform a local evaluation and the
communication to the other VM is cheap, raw monitoring
data can be sent between the VMs so that the complete
BET can be evaluated.

Analogous, the distributed processing strategies can be
applied to alerting rules involving more than two VMs. Which
strategy is best depends on the use case and the IT environment
(e.g., VMs in the same cluster) and therefore, must be
decided by the system administrator. For further optimization,
distribution strategies from the domain of distributed CEP (see
Section IIT) can be applied here.

(B):

(C):

(D):
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3) Evaluation Engine Adapter: Different evaluation engines
can be used, such as Esper3. For each, an evaluation engine
adapter is required to transform BET trees into the correspond-
ing query language of the evaluation engine.

4) Monitoring Agent Adapter: The monitoring agent adapter
performs the required changes to the configuration of moni-
toring agents regarding the routing of monitoring data, i.e.,
it transforms a monitoring agent as shown in Fig. 6 into a
monitoring agent shown in Fig. 7. Mormul et al. [20] introduced
a generic model for agents that describes their architecture by an
agent pipeline consisting of an input, processing, aggregation,
and output node of which processing and aggregation are
optional. In Fig. 6, the original monitoring agent is shown
for the monitoring of CPU. The monitoring agent consists of
an input to collect CPU measures in a predefined sampling
frequency fs, e.g., once per second. The collected data are
passed to an aggregator node which aggregates the CPU
measures by a certain aggregation interval [, e. g., 60 seconds.
Lastly, in the output node, the data sink is defined, i.e., the
central database. In this example, by aggregating monitoring
data, the network traffic is reduced by (1— }%) x100 = 98.3%.
The aggregated, and therefore less accurate, monitoring data
are sent to the monitoring server, stored in the central database
and analyzed by the alerting framework.

In comparison, Fig. 7 shows the agent configuration after the
transformation of alerting rules to the evaluation engine on the
VM. The routing paths RP within the monitoring agent are
annotated by RP1 — RP4. RP3 is used for the evaluation of
alerting rules. Since the monitoring data does not leave the VM,
aggregation is not needed to reduce network traffic volume.
Instead, the CPU measures are sent directly to the evaluation
engine where the alerting rule is evaluated. The evaluation
returns a boolean value A1 describing if the threshold of the
alerting rule was exceeded. Only if the value transitions from
FALSE to TRUE or from TRUFE to FALSE, the alert
data is input for the monitoring agent in RP1 and sent to the
central database.

It is clear that by evaluating the alerting rule locally, a
detachment between sampling frequency f, and network traffic
volume is made, i.e., fs can be increased to meet requirements
of use cases that require fine-grained monitoring data without
having concerns about straining the network.

3http://www.espertech.com/esper/

Legend:
—> Monitoring data

Monitoring Server

Central
Database

.] Input

[» Output ¥ Data Aggregation

Alerting
Framework

Y4 Evaluation Engine

[IF (CPU > 90% AND RAM <200MB) THEN (A1 = true); RETURN A1, |

Monitoring Agent

» Central Database |>—

[
1t
@ | »] CPU |—~>| &Aggregate H[» Central Database |>—
(
(

—'I » Evaluation Engine |——
*I & Aggregate H ®) Data Buffer |>—‘

Monitoring Data

Figure 7. New Agent Configuration and DEAR Components.

R P2 represents the original routing path as shown in Fig. 6.
Since the evaluation of the alerting rule now is performed
locally, the aggregation interval does not affect the accuracy of
monitoring data for alerting. Therefore, the aggregation interval
can be increased to decrease network traffic and required disk
space on the monitoring server.

Lastly, RP4 represents a routing path to enable fine-grained
historic analysis in the case of alerts. All monitoring data
are stored locally for a limited period. In case of a violated
alerting rule, the stored monitoring data associated with the
violated alerting rule are flushed to the central database on
the monitoring server for later analysis, e.g., a root cause
analysis. Due to disc space restrictions on the monitored VM,
aggregation can be used to decrease monitoring data volume.
However, this is only sensible if this aggregation interval
Iy _Buffer is set lower than the aggregation interval I, of
R P2 since these monitoring data are sent to the monitoring
server anyway.

RP1 and RP3 are mandatory to enable the evaluation of
alerting rules on VMs. RP2 and RP4 are optional to enable
the future analysis of coarse-grained monitoring data or root
cause analysis on fine-grained monitoring data.

B. Evaluation Engine

The evaluation engine acts as a local alerting framework on
the VMs. To handle the challenges presented in Section II, the
engine needs to support low latency to enable low TTI, and high
throughput in order to support Big Data. Furthermore, it needs
to be light-weight in terms of memory, CPU and IO usage to
minimize the additional stress on VMs, and expressive enough
to express sophisticated alerting rules including temporal
relationships from several alerting frameworks.



C. Monitoring Data Buffer

The monitoring data buffer acts as a short-term storage
for monitoring data. The purpose is to enable a fine-grained
analysis of the cause of an alert in addition to the continuous
evaluation of alerting rules. For example, CPU load spikes in
Fig. 1 could be symptomatic of an impending error. If this
behavior is unknown, the aggregated monitoring data stored in
the monitoring server does not allow the possibility to learn this
relation. Using the monitoring data buffer, recent monitoring
data is sent to the central database in case of an alert. These
data can be used for historical analysis to detect the root cause
of the alert and enable preventive measures or a faster reaction
to an impending error. A further advantage of a monitoring
data buffer is that, in case of a short failure of the central
monitoring server, no monitoring data are lost.

To ensure compatibility between the monitoring data buffer
and the central database and the interface between monitoring
agent and monitoring data buffer, the easiest solution is to
choose the same database for the monitoring data buffer as the
central database.

V. EVALUATION

In the following, first, we present the results of our evaluation.

We select different configurations, based on which we show
the advantages of DEAR. Then, we discuss the results and
how the challenges introduced in Section II are solved.

A. Evaluation Results

In our experiments, we use two VMs hosted on an OpenStack
managed private cloud* with the following characteristics for
each VM: 2 VCPU, 4 GB RAM, 40 GB Disk, Ubuntu 16.04
Server. The monitoring system used for our prototype is the
TIG-Stack (Telegraf’, InfluxDB®, Grafana’). Telegraf presents a
plugin-based monitoring agent, InfluxDB a time-series database,
and Grafana a web-based management interface with alerting
capabilities. One VM is used as a monitoring server, whereas
the other one acts as the monitored resource. We use the CEP
engine Esper as the evaluation engine and InfluxDB as the
monitoring data buffer. The rule conditions of the alerting rules
are defined as shown in Listing 1.

Al: IF CPU.load > 90 %
A2: IF CPU.load > 90 % FOR 10s
A3: IF CPU.load > 90 % FOR 60s

Listing 1. Rule conditions used for evaluation

Exemplary, we monitor CPU loads of multiple VMs to check

when a critical amount of VMs have their CPU load above 90%.

For this, each VM evaluates alerting rules A1 — A3 and sends
its results to the monitoring server where the occuring alerts
can be counted. We test three different configurations and, for
each, over one hour, we measure (i) the network traffic volume

“https://www.openstack.org/
Shttps://www.influxdata.com/time-series-platform/telegraf/
Shttps://www.influxdata.com/products/influxdb-overview/
"https://grafana.com/

Table 1
CONFIGURATIONS FOR EVALUATION.

| Parameters | Conf. 1 | Conf.2 | Conf.3 |
| Sampling frequency fs | 1/s | 1/s | 1007 |
| Aggregation interval Io \ - 10s | 60s |
| Aggregation interval I,_puyyer | - 10s | -

N between a VM and the monitoring server, (ii) the average
CPU and RAM load of Telegraf and Esper, (iii) the TTI for
A1l — A3, and (iv) the disc space on the monitoring data buffer.
Lastly, we depict the signal of a generated time-series and its
loss in accuracy for higher aggregation intervals. The evaluation
results are shown in Table II and refer to configurations Conf. 1,
Conf. 2, and Conf. 3 shown in Table 1.

Table II
EVALUATION RESULTS.

‘ ‘ Conf. 1 ‘ Conf. 2 ‘ Conf. 3 ‘

| Network Traffic Volume (KB) | 2042.52 | 203.01 | 34.12 |
Load (%) (Telegraf) CPU 0.0 0.0 23
RAM 1.1 1.1 1.3
CPU 0.11 0.10 0.52
Load (%) (Esper)
RAM 0.61 0.67 1.07
| Disc Space (KB) 300 72 | 27965
. . Traditional 28.8 6710.8 | 27211.1
Time-to-insight (ms)
DEAR 379.4 360.9 377.6

The network traffic volume is measured between the VM
and the monitoring server and is the same for the traditional
approach and our approach since I, is applied to both. As
expected, the network traffic volume is reduced by increasing
1,.

The load of Telegraf and Esper did not change noticeably
between Conf. 1 and Conf. 2. However, in Conf. 3, sampling
every 10 milliseconds results in a considerable overhead
regarding CPU load.

Disc space refers to the allocated disc space of the moni-
toring data buffer. As expected, increasing I, pf fe, Teduces
allocated disc space. Again, a very high sampling frequency in
addition with no aggregation for the monitoring data buffer in
Conf. 3 leads to comparably large amount of monitoring data,
approximately 28 MB.

To measure TTI, we create artificial monitoring data with
a value starting at 0 % and instantly increasing it to 91 % at
a random moment in time. We measure the time between the
actual violations of the alerting rules and their detection by the
alerting framework. To eliminate network delays, Telegraf and
Esper are installed on the same VM as the monitoring server.
We run alerting rule A1 for Conf. 1, A2 for Conf. 2, and A3
for Conf. 3. For each alerting rule, the experiment was repeated
20 times and the mean average was calculated. As shown in
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Table II, the TTI for Conf. I is higher than in the traditional
approach due to an extended communication path. However,
TTI remains similar across all configurations. In comparison,
in the traditional approach, TTI is heavily impacted by I,,.

B. Discussion

In the following, we discuss if the challenges C1 — C5
introduced in Section II are solved based on the evaluation
results and DEAR in general.

By distributing the evaluation of alerting rules close to
the data source, we detached network traffic volume from
granularity of monitoring data for alerting. Very fine-grained
monitoring data are available for the evaluation of alerting
rules (C'1) without increasing network traffic volume (C2). To
visualize the effect of aggregation and the resulting loss in
accuracy, Fig. 8 shows the original (black) and aggregated (red)
signal according to the aggregation intervals of Conf. I-3. Using
DEAR, the original signal is available in each configuration,
whereas the traditional approach relies on the aggregated,
less accurate signal in Conf. 2-3. Load of Telegraf and
Esper is acceptable in configurations, such as Conf. 2, where
there are already advantages over the traditional approach.
However, CPU load is noticeable for high sampling frequencies.
Therefore, such frequencies should be used with care and only
when required.

When no aggregation (I,) is used, TTI in DEAR is increased
in comparison to the traditional approach. However, as we
aimed at detaching network traffic volume from accuracy,
it is not sensible to use DEAR without aggregation. When
using aggregation (Conf. 2 & Conf. 3), TTI in DEAR remains
similar whereas TTI in the traditional approach is increased
heavily based on the degree of aggregation. Therefore, when
aggregation is used, TTI is decreased and challenge C3 is
solved.

Still, aggregated monitoring data can be sent to the monitor-
ing server (see RP2 in Fig. 7) to maintain historical data for
analysis purposes. Those data can be used to analyze the general
behavior of a VM where a comparably high aggregation interval
can be set, e.g., to detect if one VM behaves significantly
different than the rest. For long-term predictions, e. g., the rise
or fall of workload in the next hours or days, fine-grained
data may not be as important. For example, machine learning
models may overfit the data if there are too many outliers
and noise, which may even reduce the accuracy of the models
and, therefore, the predictions. By aggregating monitoring

data, fine-grained monitoring data becomes trend data. Noise
and outliers in the data can be reduced. Therefore, predictive
models may produce better predictions and, furthermore, system
administrators gain a more intuitive overview and understand
the system state at a glance. However, long aggregation intervals
mean that VMs do not communicate with the monitoring server
and failed VMs are not detected within this period. In this case,
light-weight heartbeat messages are required to periodically
check the responsiveness of VMs or push notifications from
the cloud management system in case of failures. In addition, a
monitoring data buffer stores most recent monitoring data for a
limited period. In case of alerts, the monitoring data associated
with the violated alerting rule are flushed to the central database.
This way, on-demand fine-grained monitoring data can be used,
e. g., to analyze root causes of alerts. However, selecting an
appropriate retention for local data is important to not allocate
too much disc space on the monitored VMs. In conclusion,
historical data are maintained and C4 is solved.

Lastly, since only the rule conditions are distributed, the
management of alerting rules is maintained centrally at the
monitoring server and their management does not change. The
distribution itself is fully automated and does not increase
administration complexity (C'5). Therefore, our goal to present
a hybrid approach combining the advantages of both centralized
and decentralized approaches without their disadvantages is
reached. However, more configurable parameters exist and
different distributed processing strategies are available. To
support decision making for those configurations, metadata
about the cloud environment, e. g., hypervisors and VMs, and
others can be useful. For instance, Mormul et al. [21] introduce
a framework for the holistic management of monitoring data
and their metadata. These metadata can help decision making
for the distributed processing strategies shown in Fig. 5, e. g.,
by providing the information if the VMs involved in the
distribution process are in the same cloud.

VI. SUMMARY AND FUTURE WORK

The monitoring of complex cloud environments can lead
to several challenges, such as high network traffic volume
and high TTI. We analyze those challenges and introduce
the hybrid approach DEAR as a plugin for agent-based
monitoring systems to automatically distribute the evaluation
of alerting rules to the data sources. We present the Alert
Transformer & Distributor that accesses alerting rules from
alerting frameworks, transforms them so that evaluation engines
on the monitored resources can evaluate them, and adapts
monitoring agents accordingly. Fine-grained monitoring data
are sent to the evaluation engine whereas aggregated monitoring
data and alert data are sent to the monitoring server. We evaluate
our approach by measuring network traffic volume, load of the
monitoring agent and evaluation engine, time-to-insight, and
allocated disc space.

For future work, we plan to evaluate existing distributed
processing strategies from the domain of distributed CEP and
their application to our approach.
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