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Abstract. More and more people suffer from chronic diseases such as the

chronic obstructive pulmonary disease (COPD). This leads to very high

treatment costs every year, as such patients require a periodic screening of

their condition. However, many of these checks can be performed at home

by the patients themselves. This enables physicians to focus on actual

emergencies. Modern smart devices such as Smartphones contribute to the

success of these telemedical approaches. So-called mHealth apps combine

the usability and versatility of Smartphones with the high accuracy and

reliability of medical devices for home use. However, patients often face

the problem of how to connect medical devices to their Smartphones

(the device interoperability problem). Moreover, many patients reject

mHealth apps due to the lack of control over their sensitive health data

(the information security problem).

In our work, we discuss the usage of the Privacy Management Platform

(PMP) to solve these problems. So, we describe the structure of mHealth

apps and present a real-world COPD application. From this application

we derive relevant functions of an mHealth app, in which device interop-

erability or information security is an issue. We extend the PMP in order

to provide support for these recurring functions. Finally, we evaluate the

utility of these PMP extensions based on the real-world mHealth app.

Keywords: mHealth · Device Interoperability · Information Security · COPD.

1 Introduction

Due to long stand-by times and multiple built-in sensors, the Smartphone became
our ubiquitous companion. New use cases are constantly emerging. Especially
in the health sector, the use of Smartphones can be highly beneficial to save
treatment costs and help patients who cannot visit their physicians regularly [33].
The usability of Smartphone apps in the health sector—the so-called mHealth
apps—is limitless. There is an app for almost any situation [32].

While there are some mHealth apps for medical reference (that is, apps
providing information about diseases) as well as hospital workflow management
apps (i. e., apps supporting physicians in their everyday duties), mHealth apps
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are mainly from the health management domain [23]. The latter includes cardio
fitness, medication adherence, and chronic disease management. To this end,
these apps support two essential features: self-observation and feedback [21]. That
is, the patient performs health measurements instructed by the app, transmits
the measured values to the app and the app performs analyses on these values.
Based on the results, the app gives the user medical recommendations.

Since mHealth apps involve the patient actively into the treatment and
monitoring process, s/he gets more aware of his or her condition. So, mHealth
apps change the physician patient relationship especially for patients with a
chronic disease. These patients have to visit their physician periodically in order
to check certain health values. However, such a metering can be performed by
the patients autonomously, if they receive a proper guidance tailored to their
know-how. That is, with the help of an mHealth app they are able to do the
monitoring in a telemedical manner. This take the load off both, patients as
well as physicians. Patients benefit from the freedom to do the metering at any
arbitrary place and time while physicians are able to concentrate on emergencies.
This is not just a huge saving potential but also improves the quality of healthcare
at the same time [30].

To capture health data, mHealth apps make use of various sensors. In addition
to the already broad spectrum of sensors built into modern Smartphones that can
be used for healthcare (e. g., a heart rate sensor, a camera, or a microphone), even
medical devices for home-use can be connected to a Smartphone. The Vitalograph

copd-6 bt is an example for such medical device.
Yet, the data interchange between medical devices and Smartphones often

fails because of non-uniform communication protocols. The device interoper-

ability of Smartphones and medical devices is a key challenge for the success
of mHealth apps [6]. Also the assurance of information security is vital for
mHealth, as patients have to trust their apps [1]. Thus, we address these two
challenges in our work. Therefore, we come up with a concept for an enabler for
device interoperability and information security in mHealth apps. To achieve
this objective, we proceed as follows: (I) We analyze a real-world mHealth app
regarding the collected data and used devices. (II) We deduce a generic data
model for mHealth apps. Due to this data model, our approach is applicable for
any kind of mHealth app. (III) We identify five recurring tasks within mHealth
apps for which device interoperability and information security are key require-
ments, namely login, metering, localization, data storage and analytics, and data
transmission. For each of these tasks, we introduce an extension for the Privacy
Management Platform (PMP) [37], to ensure interoperability and information
security. (IV ) We use these extensions to revise the analyzed mHealth app in
terms of sensor support and the patients’ privacy. With this revised app, we
assess the practical effect of our approach.

This paper is the extended and revised version of the paper entitled “The
Privacy Management Platform: An Enabler for Device Interoperability and Infor-
mation Security in mHealth Applications” [41] presented at the 11th International
Conference on Health Informatics (HEALTHINF) 2018.
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The remainder of this paper is as follows: The layer architecture of mHealth
systems is introduced in Sect. 2. Section 3 discusses a real-world application
scenario from the mHealth domain, namely ChronicOnline, an mHealth app for
COPD patients. Then, Sect. 4 takes a look at related work concerning connection
techniques used by medical device as well as information security mechanisms
in mHealth apps. Based on these findings, we introduce a generic interchange
data model for mHealth apps and induct briefly in the PMP, the foundation
platform for our solution approach in Sect. 5. Then, Sect. 6 details on the key
components of our approach and demonstrates their applicability, using the
example of a COPD app. In Sect. 7 we assess how our approach contributes
to solve information security and interoperability problems for mHealth apps.
Section 8 concludes this work and gives an outlook on some future work.

2 Design of an mHealth System

Typically, mHealth systems consist of three layers [18]. The Sensor Layer manages
the access to any sensor required by mHealth apps, i. e., it collects the sensors’
raw data and provides it to subsequent layers. In the Smartphone Layer, this
data is collected, assessed, and processed. The processing step transforms the
raw data to information. An optional analysis phase can derive events from the
information, e. g., to detect a seizure automatically. The data can also be stored
on the Smartphone, e. g., to monitor the progress of the disease. Additionally, the
data is forwarded to on-line servers managed by the Back-End Layer. While the
Smartphone Layer holds health data of a single patient, in the Back-End Layer
the data of multiple patients is assembled (e. g., to derive new insights into the
course of a disease or to prepare the data for subsequent in-depth analyses). Via
this layer physicians are able to perform analyses and receive diagnosis support
for each of their patients. For this purpose, there is sometimes an additional
Presentation Layer. This fourth layer preprocesses the health data stored in the
back-end and presents the relevant data in a user-friendly manner. So, physicians
are able to interpret the results.

Figure 1 shows the interaction of these four layers. A metering device can
be connected to a Smartphone via Bluetooth. A patient can install an mHealth
app on his or her Smartphone and use the medical data recorded by the external
metering device. This data can be enriched by data from the Smartphone’s built-
in sensors (e. g., location data). The app sends the gathered data to an mHealth
back-end for thorough analyses and to store the data at a central repository.
Physicians can access the repository via their diagnosis tools to find an adequate
method of treatment.

Concerning the two key issues addressed in this paper, namely device inter-
operability and information security, several components have to be taken into
consideration. Any data interchange between two layers is a problem, since there
are heterogeneous interchange formats and multiple connection standard. This
concerns especially the data interchange between Smartphones and medical de-
vices, since these devices commonly define proprietary communication protocols.
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Fig. 1: Design of an mHealth System [based on 41].

Yet, the harmonization of the medical data formats used by mHealth apps and
back-ends has to be considered as well. While there are several approaches towards
a server-sided unified data model for health data (e. g., in the HealthVault [2]),
there are no such approaches for apps.

Information security has to be considered at any layer. However, as users
cannot influence the security mechanisms implemented in sensors, data protection
has to be assured mainly on the Smartphone Layer. While there are approaches
to protect sensitive data on the Back-End Layer (e. g., [15]), an adequate solution
for the Smartphone Layer is missing. The Presentation Layer does not create any
sensitive data.

We focus on the Sensor Layer and the Smartphone Layer in our work regarding
device interoperability and information security, as there are solutions for the
other layers to solve theses issues. Yet, the usability and security of an mHealth
system is impaired by its weakest component. That is, the existing usability
and security solutions for the Back-End Layer and the Presentation Layer are
worthless with respect to the whole system, as long as there are no appropriate
approaches for the Sensor Layer and the Smartphone Layer as well [34].
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3 Application Scenario

The chronic obstructive pulmonary disease or short COPD is an obstructive
lung disease. COPD patients suffer from a poor airflow which worsens over
time. According to the World Health Organization, approximately 6% of all
deaths in 2012 resulted directly from COPD [51]. Even though COPD is not
curable, a fast and persistent therapy can slow the progression of the disease
significantly down. For this purpose telemedicine is very appropriate, since the
required measurements can be carried out very easily with affordable medical
measuring devices [46].

In the following, we introduce a real-world mHealth app for COPD patients
which is based on the ECHO project1. This example covers all four mHealth layers
introduced in the previous section: Patients get an app for Smartphones (see
Sect. 3.2) which gathers various health data from medical devices (see Sect. 3.1).
The app sends health data to a data analysis back-end and receives medical
outcomes from it likewise. Physicians can also access their patients data via
the back-end, e. g., via diagnosis tools running in the Presentation Layer (see
Sect. 3.3).

3.1 The Vitalograph COPD-6 BT

The Vitalograph copd-6 bt2 is used to screen the pulmonary function. So, patients
with respiratory conditions can perform the metering by themselves. It records
various lung function parameters including the Peak Expiratory Flow (PEF)
and the Forced Expiratory Volume (FEV) among others. PEF and FEV are key
readings for the diagnosis of COPD. The measurement results are transmitted via
Bluetooth LE. As today’s Smartphones support this battery-saving connection
standard, the Vitalograph copd-6 bt provides a sound hardware foundation for
telemedical mHealth apps.

For data interchange the proprietary Terminal I/O protocol [45] is used
which operates on top of Bluetooth LE GATT [5, 11]. The basic idea behind this
protocol is that a client (e. g., a Smartphone) has to request credits from the
server (i. e., the Vitalograph copd-6 bt). Following this, the client can retrieve
data from the server (e. g., health data); for each message the client has to pay
one credit. Hereby it is ensured that the client is able to make a specific number
of requests without having to wait for a response from the server. However, as
soon as the client runs out of credits, it has to wait for the server’s response
in order to get additional credits. For more information on the Terminal I/O
protocol, please refer to the literature [45]. The application of such proprietary
protocols impedes the development of mHealth apps since only a limited number
of device types supports the respective protocol. As a common communication
standard is not in sight, app developers are in great need of other approaches
with which the device interoperability is enhanced.

1 see http://chroniconline.eu
2 see https://vitalograph.com/product/162427



218 Christoph Stach, Frank Steimle, and Bernhard Mitschang

(a) Login Screen (b) Questionnaire

Fig. 2: The ChronicOnline App’s Key Functionality [41].

3.2 The ChronicOnline App

mHealth apps are good for regularly recording various parameters but they are
insufficient for a comprehensive COPD screening. For this reason, the University
of Stuttgart, the University of Crete, and OpenIT launched the ECHO project
in 2013. Within the scope of this project several mHealth apps collect various
health data and gather the data in a Cloud infrastructure [3]. Online services are
available for physicians enabling various data analytic functions and giving them
an holistic overview of their patients’ condition. In addition to it, the patients
and the physicians remain in contact with each other whereby the physicians
can give their patients advices by sending them messages via their mHealth app.
The ChronicOnline app [4] is a mobile front-end for the ECHO project. Its key
functions (access control and a COPD questionnaire) are shown in Fig. 2.

Initially, the user has to log in his or her account (see Fig. 2a). The app
differentiates two user groups, patients who have only access to their personal
account and physicians who monitor several patients. The login process as well
as any other communication between the app and the ECHO back-end is realized
by REST calls.

After authorization is complete, the patient has access to several tabs. The
most significant tab is the questionnaire tab (see Fig. 2b). Here the user has to
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answer five questions about his or her condition. Each question can be answered
with ‘yes’ or ‘no’. Depending on the given answers up to six subquestions appear to
refine the medical finding. Afterwards, the results are transferred to the back-end
as a JSON object. More details on the data format are given in Sect. 5.1.

This app is a representative sample for the innumerable COPD apps available
in various app stores. We could use any of them without a loss of argument.

3.3 The ECHO Back-End

After the patient has submitted his or her answers, the back-end performs
analyses and preprocesses the data for physicians. The incoming data—i. e., the
answers to the questionnaire as well as health data from metering devices such
as the Vitalograph copd-6 bt—is processed by the ECHO back-end using a
rule execution engine. This strategy is loosely based on the If This Then That

(IFTTT) approach3. That approach allows users to define the behavior of their
IoT devices in a simple but yet highly versatile manner [22]. Via this so-called
trigger-action approach, it is also possible for non-IT experts (e. g., physicians or
medical experts) to configure the rule execution engine [47].

Figure 3 shows how the ECHO back-end operates. All incoming data from
data sources such as apps (queries) or sensors (medical data) is initially stored as
raw data for documentation and subsequent analyses. Then, the data is forwarded
to the rule execution engine. All defined rules have a simple IFTTT-like structure:

Trigger → Action (1)

A trigger is a boolean expression describing which conditions have to apply
in order to initiate a particular action. The action defines messages being sent to
actuators, which carry out the actual action. The following example illustrates
this: IF Questions 1 AND Question 3 have been answered with ‘yes’ THEN

send inform the patient, that s/he should call his or her physician immediately.
As an ECHO data processing rule, this would look like this:

Q1 == true ∧ Q3 == true → send_mail(′Call physician′) (2)
3 see https://ifttt.com
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Since the results obtained from the questionnaire are only indicators for a
possible aggravation, the discussion of the medical findings still has to take
place in a personal meeting with the physician. If the app has also access to
data from medical devices, the rules for the analysis could be adapted to to
get more useful information about the patients’ condition. In case of COPD,
examples for important measurements to monitor the patients condition would
be Peak Expiratory Flow (PEF) or the Forced Expiratory Volume (FEV). Using
these values, it could be even possible to skip the personal meeting with the
physician while getting a more detailed diagnosis of the patients health condition.
This diagnosis could the be used to cope with the disease in a personalized
manner. In order to enable the physician to create personalized rules for his
or her patients, concepts for editing the rules for the analysis are needed. In
the domain of manufacturing, such concepts are already being developed to
promote digitalization [49]. The goal is to enable every worker in manufacturing
environments to create easy-to-use rules similar to the ones described above to
link events to corresponding actions [50]. These concepts can easily be transferred
to mHealth apps, such that a physician can define monitoring rules for special
groups of patients or even personalized rules for individual patients.

As the definition of the triggers gets complex when more data sources are
involved, domain experts can define reusable patterns:

Critical_Condition :== Q1 == true ∧ Q3 == true (3)

Then, this pattern can be used in Eq. (2) in order to simplify the left part of
the rule (Critical_Condition → send_mail(′Call physician′)).

Obviously, the action can also be used to control apps on the Presentation
Layer. Thereby history data from the back-end loaded into the app, e. g., to display
former questionnaire answers. Detailed analysis results and history charts can
also be preprocessed to include them in web-based dashboards for physicians [43].
Thus, we cover all four layers of an mHealth system with this example, starting
with the Sensor Layer up to actuators, i.e., the Presentation Layer.

Please note that the back-end is out of this paper’s scope. More information
about the back-end can be found in [44]. However, we give a brief outlook about
PATRON4 (see [35, 36]), a data privacy mechanism for the processing of sensitive
data in such a back-end in Sect. 8.

4 Related Work

In the context of device interoperability in mHealth apps, a lot of work is done
concerning the back-end systems. For this purpose, these systems introduced
harmonized data models for health data and provide generic interfaces so that
any kind of mHealth app can use them to collect and share heath data. One
of the biggest systems is the HealthVault [2]. It supports various health-related
data types ranging from fitness data to entire personal health records. The
4 PATRON is an acronym for “Privacy in Stream Processing”.
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HealthVault acts as a middleman between the data producers—i. e., the mHealth
apps—and the data consumers—i. e., analysis systems. Concerning app-sided
device interoperability and information security, such a system provides no
help. Google Fit [24] is another back-end for storing and processing health data.
Google’s system deals with fitness data (e. g., the heart rate), only. Google Fit
provides interfaces for app developers which enhance the device interoperability
and facilitate the reading of sensors in third-party devices—at least for devices
that are supported by Google Wear5. As especially medical devices are not
supported by Google Wear, [29] discuss, how Smartphones can be connected with
these devices. However, their solution aims for physical connections and not for
harmonized communication standards. [17] recommend to use IoT techniques to
solve this problem. In their proposal all sensors are connected to the Internet and
send their data to a Cloud-based database which is also accessible for mHealth
apps. Even though there are secure transfer protocols for health data (e. g., [20]),
a permanent and unrestricted transmission of such sensitive data to an unknown
server is ineligible for most users. For that reason, [10] introduce an approach with
which the patient stays in total control over his or her data; the mHealth app has
full access to the health data while external services (e. g., apps for physicians)
only get access as long as the patient grants it. In [27] an mHealth app is
introduced which relies on a full encryption of the health data when the data is
stored or transmitted. Yet, both approaches assume that only external entities
constitute a threat for the security of health data. However, as studies prove,
two out of three apps handle their data either carelessly or even maliciously [9].
Thus, none of these approaches solves the device interoperability and information
security issues of mHealth apps. Despite the benefit of mHealth apps especially
the device incompatibility and the mistrust in app developers repel patients from
using such apps [28]. For this reason, we introduce a general approach dealing
with both issues in the following sections.

5 Interoperability and Security Reflections

In order to come up with a design methodology for interoperable and secure
mHealth apps, a secure data management, data input techniques, and defined
data access conditions are required. Our solution to this is built upon the PMP.
When looking at the ChronicOnline app, it does not take advantage of the full
potential of the ECHO back-end and the prevailing hardware. With its analytic
functions and notification services, the back-end is able to process more complex
data such as location data or respiratory data in addition to the replies to
the disease-specific questionnaire. By the integration of medical devices, the
ChronicOnline app becomes a full-fledged telemedicine solution.

Therefore we extend the ChronicOnline app by adding location services6.
Studies show that the location can have a relevant influence on the progression
of a disease [16]. Moreover, we provide support for various third-party Bluetooth
5 see https://www.android.com/wear
6 Location based services in general constitute a severe threat to a user’s privacy [19].
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respiratory monitors. The measurement results are added to the electronic health
record (see Sect. 5.1 for its data model) and transferred to the ECHO back-end.
There, the data can be automatically pre-analyzed which not only unburdens
the physicians in charge, but also results in a faster feedback for the patients. As
a consequence this enhanced app has to deal with increasing interoperability and
security issues.

1 DailyReport {
2 patientId (integer): Unique Identifier of the Patient,
3 recordId (integer): Unique Identifier of this Record,
4 date (string): Date of Report,
5 q1 (boolean): Answer to Question 1,
6 q1a (boolean): Answer to Question 1a,
7 q1b (boolean): Answer to Question 1b,
8 q1c (boolean): Answer to Question 1c,
9 q2 (boolean): Answer to Question 2,

10 ...
11 q5 (boolean): Answer to Question 5
12 }

List. 1: The ChronicOnline Data Model (Excerpt) [based on 41].

Amulet, a tiny Smart Device operating as an information hub, tries to solve
both problems [12]. It confirms the user’s identity and identifies any available
devices in the surrounding belonging to him or her. Then, Amulet ascertains
that only trusted third-party devices can be used for the metering and ensures
a secure connection to these devices. Moreover, Amulet provides mechanisms
to protect the health data against external attackers. In order to transfer the
data to (trusted) servers for further processing, Amulet is able to connect to
a Smartphone and use it for transmission. Unfortunately, this approach has a
severe drawback: The user has to possess another device in addition to his or
her Smartphone and the actual medical device. This causes further costs and
it is unpractical since the user has to carry the Amulet all the time. The PMP
(see Sect. 5.2) is a middleware for application platforms which provides similar
features.

5.1 The Internal Data Model

The ChronicOnline app sends up to eleven boolean values, representing the
answers to the questionnaire, to the ECHO back-end. For this reason, its data
model for the data exchange is quite plain (see List. 1). In addition to the
questionnaire answers, a daily report entails an ID for the patient and for the
report itself as well as the submission date. Please note that authorization data
to confirm the identity of the submitter is not part of this data model. The
authorization is managed via the authorization header of the HTTP protocol.
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We add latitude and longitude to this basic schema to support location data
as well as entries for the most relevant COPD readings, including the Peak
Expiratory Flow and the Forced Expiratory Volume among others (see List. 2).

1 DailyReport {
2 patientId (integer): Unique Identifier of the Patient,
3 ...
4 q5 (boolean): Answer to Question 5,
5 lat (number): Latitude of GPS Location.,
6 lon (number): Longitude of GPS Location,
7 pef (integer): Peak Expiratory Flow,
8 fev1 (number): Forced Expiratory Volume (First Second),
9 fev10 (number): Forced Expiratory Volume (Ten Seconds),

10 fef2575 (number): Mid-Breath Forced Expiratory Flow,
11 ...
12 }

List. 2: The Extended Data Model (Excerpt) [based on 41].

Since the JSON format is well-suited for the data exchange between the app
and the back-end, but not for the data processing within the app, we apply
wrapper classes for the conversion of such JSON files to Java objects and vice
versa.

5.2 Overview of the PMP

We use the PMP in order to realize interoperability and security features as
needed by mHealth apps. We give a brief overview of the PMP at first and
describe in detail the new components, which are developed in this work in the
next section. The PMP is an intermediate layer between apps and the operating
system. It prevents any (potentially malicious) app from accessing sensitive data.

When an app needs access to such data, it has to ask the PMP for permission.
The PMP operates several data provisioning services, the so-called Resources.
Each Resource is responsible for a certain type of data but it is not committed
to a certain technology; e. g., the Location Resource is able to provide location
data from a GPS provider or from a network provider. Thereby it can adapt its
functionality to the available hardware. In addition to it, the user can define how
accurate the data should be in order to obfuscate his or her private data. Further
Resources can be hooked into the PMP at runtime need-based.

A Resource defines Privacy Settings which restrict the usage of the correspond-
ing Resource. By default, there is a Privacy Setting for granting or permitting
the usage of a Resource. Furthermore, a Privacy Setting can be more specific
depending on the type of Resource. For instance, the Location Resource can
reduce the location’s accuracy.
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At installation time an app has to register at the PMP. The PMP identifies
which Resources are required and installs missing Resources if necessary. The
user then postulates an initial policy rule for this app defining, which data should
be given to the app and how accurate this data should be. This registration
process is shown in Fig. 4.

Since the user is able to deny that an app gets access to a certain Resource,
the app model of the PMP encapsulates logically coherent parts of the app in
so-called Service Features. So, the withdrawal of access rights simply deactivates
the affected Service Features but the app itself can still be executed. Moreover,
the user can modify access rights of individual Service Features at runtime. The
permission allocation is shown in Fig. 5.

The PMP is primary a fine-grained permission system with additional privacy
features (e. g., data obfuscation). However, in the context of interoperability and
uncertainty of available hardware, the PMP serves a dual purpose. Each Resource
is abstracted from a certain technology and can have several implementations. As
a consequence, the app developer only has to request a certain type of data (e. g.,
respiratory data) and the dedicated Resource ensures that it gets this data from
the available hardware (e. g., a Vitalograph copd-6 bt). If no hardware providing
this kind of data is available—which is similar to a user-defined prohibition to
use the hardware via the PMP—then the app gets informed and adapts to this
condition by deactivating affected Service Features.

The PMP is able to degrade an app’s functionality when it cannot access
all of its requested data. Certain Services Features can be deactivate instead of
feeding an app with random data. Especially, in the context of mHealth apps,
the usage of random medical values is inappropriate. For this reason, the PMP’s
data obfuscation for health data is severely restricted. For further details on the
PMP, please refer to the literature [37, 38].
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6 Design of mHealth PMP Resources

In the following we introduce five PMP Resources which are developed for
mHealth apps, namely a secure authentication Resource, a metering Resource,
a localization Resource, a data storage Resource, and a connection Resource.
In addition, a Resource for health data encryption is introduced. Finally, we
revise the ChronicOnline app with the help of these Resources.

6.1 The Dialog Box Resource

In the ChronicOnline app a user has to enter credential information which is
forwarded to an ECHO server for verification. While the back-end is operated by
a trusted organization (e. g., a hospital), any developer can implement apps for
ECHO. Thus the front-end is potentially insecure—yet the user has to reveal his
or her login data to it.

In order to solve this problem, we introduce an isolated Dialog Box Resource.
An app can invoke the dialog box and specify the displayed text as well as where
the entered information should be forwarded to. The server’s response is sent
back to the invoking app. In this way, the dialog box is completely generic and
can be used in any context where the user has to enter private data. The dialog
box is executed as a part of the PMP and is completely isolated from the invoking
app. No information is passed to the app except for the back-end’s reply. The
user cannot only grant or permit the usage of the dialog box, but also specify
which back-ends are legit recipients.

6.2 The Metering Resource

One of the biggest problems for mHealth apps is the integration of third-party
medical devices as there is currently no uniform standard for intercommunication
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with such devices. This is why most of the currently available apps support some
hand-picked medical device only.

That is why we introduce a Metering Resource with a simple, yet generic
interface (see List. 3). In order to support as many use-cases as possible, we
designed a new data type for health data, called HealthRecord. A HealthRecord
consists of an id, the answers to the questionnaire, the health data itself, location
data, and a timestamp (see List. 2). The HealthRecord is able to maintain
any kind of health data via the generic attributes that can be made up of any
(i. e., unspecified or schema-less) JSON object. As a consequence, the Metering
Resource defines no fixed schema for the health data, but processes this data as
a JSON object. Currently, we adhere to the data schema which is defined by the
particular data source and use the same schema for the JSON object. However,
as soon as a common standard for electronic health records is defined, we can
switch to this standard internally without having to revise any app using the
Metering Resource.

1 interface IMetering {
2 SealedHealthRecord performMetering();
3 }

List. 3: Interface of the Metering Resource.

Since most modern medical devices exchange their data with Smartphones
via a Bluetooth connection, we focus our work on this kind of connection. As
there is no common Bluetooth transmission protocol, the Metering Resource has
to be able to support several protocols. Currently, we implemented interfaces for
the ISO/IEEE 11073 Personal Health Data (PHD) standards [14] as well as the
Terminal I/O protocol [45] of the Vitalograph Lung Monitor. Further protocols
(e. g., Android Wear) or other connection standards (e. g., USB) can also be
supported in the future due to the modular expandability of PMP Resources
(see [42]). The Metering Resource defines no fixed schema for health data, but
processes this data as a JSON object with an attribute for every measured value.

As the Metering Resource autonomously connects to any available device,
an app developer simply has to request the health record from the Resource.
However, concerning information security, the app should not be able to read the
health record. Thus, the PMP encrypts the JSON object containing the health
data. As a consequence, authorized Resources can process the health data while
(potentially malicious) apps cannot access the data. Nevertheless, sometimes an
app needs access to certain values of the health data, e. g., in order to display
the data. For this purpose, the Unsealer Resource (see Sect. 6.6) can be used in
order to decrypt certain excerpts of the record.

Moreover, the user is able to restrict which devices are allowed to provide
health data for a certain app via a Privacy Setting of the Metering Resource.
For instance, s/he can permit an app to use the Metering Resource, but only a
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Revised ChronicOnline App
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Fig. 6: Service Features of the COPD App and Their Applied PMP Resources [41].

certain kind of data from a specific smart watch such as the heart rate is sent
back by the Resource. A manipulation or randomization of the health data for
privacy reasons is disregarded, since this kind of data has to be as accurate as
possible in order to be useful.

6.3 The Location Resource

Since it is relevant for some medical outcomes to know the location where a
reading has been recorded in order to detect potential relationships between a
patient’s condition and his or her whereabouts, we provide a special Location

Resource for mHealth apps. Android supports different location providers—mainly
the Network Location Provider for cell tower and Wi-Fi based location and the
more accurate GPS Provider—which periodically report on the geographical
location of the device. Our Location Resource always requests the most accurate
location provider which is currently available. Additionally, also indoor positioning
can be realized, e. g., by using accelerometers and gyroscopes [13], barometric
pressure sensors [53], or compass sensors [52]. All of these sensors are available
in today’s Smartphones.

Normally, in Android an app has to subscribe for location updates and the
provider sends any update to the app during its lifetime. Especially for the GPS
Provider this consumes a lot of energy. However, such a behavior is not necessary
in the context of a metering app which requires location data only once after
the metering is executed. As a consequence the Location Resource supports
two modes of operation (see List. 4): On the one hand, an app can request
a periodical location update for a certain time (from startLocationLookup
to endLocationLookup), check for updates (isUpdateAvailable), and obtain
location data (getLocation). On the other hand, an app can also request a
singular location (getSingularLocation) or even add it directly to an existing
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HealthRecord (addPosition). For the latter mode, the Resource arranges the
subscription to and unsubscription from a location provider automatically—since
a Resource can be used mutually by several apps, already existing results from
another app’s location request are utilized for this purpose.

1 interface ILocation {
2 void startLocationLookup();
3 void endLocationLookup();
4 boolean isUpdateAvailable();
5 Location getLocation();
6 Location getSingularLocation();
7 void addPosition(inout SealedHealthRecord record);
8 }

List. 4: Interface of the Location Resource.

In order to respect the user’s privacy, the Location Resource provides a
Privacy Setting to reduce the accuracy of the location data. The user is able to
stipulate a maximal accuracy in meters. If the provided location data is more
accurate then the Resource adds a random factor depending on the user settings
to the latitude and longitude in order to reduce the accuracy. The user is also
allowed to use completely random location data, so that his or her location
remains unknown to the app.

6.4 The Secure Database Resource

Since Android stores its data in a clear-text readable form, attackers may harvest
all stored data. The in Android 5.0 introduced file system encryption functions are
no solution for this threat, since the encryption is not kept up during operation,
i. e., as soon as the system is fully booted. So, sensitive data such as health data
requires additional security features. For this very reason, additional security
features are required in order to ensure information security for sensitive data. The
Secure Data Container (SDC) is a Secure Database Resource for the PMP [39].
It encrypts the stored data with AES-256 encryption and only the PMP has the
key. The SDC has a fine-grained access control to share the stored data with
selected apps. Performance measurements show that the thereby caused overhead
is within reasonable limits.

We tailor the SDC slightly to our requirements: The database’s internal data
model is comparable to a key-value store. In accordance with CURATOR [40], the
Secure Database Resource operates with JSON objects and adopts the therein
defined keys and values directly. As several stored JSON objects can use a
common key, an internal id is applied to each object. The database’s primary
key consists of this id and the key. The Secure Database Resource partitions the
stored data in several SQLite tables internally (one per app) for performance
and security reasons.



Interoperability and Security in mHealth Applications 229

The Secure Database Resource’s interface (see List. 5) is minimalistic, yet
demand-actuated. A JSON object can be stored (store), obtained (get), and
deleted (delete) via its id. In addition to it, the Secure Database Resource
supports the usage of HealthRecords which can be passed as a total and the
Resource arranges the decryption of the health data and the decomposition into
key-value pairs. Obtaining complete HealthRecords operates analog.

1 interface IDatabase {
2 int store(in JSONObject data);
3 JSONObject get(in int id);
4 boolean delete(in int id);
5 boolean storeRecord(in SealedHealthRecord record);
6 boolean storeAll(in List<SealedHealthRecord> records);
7 SealedHealthRecord getRecord(in int id);
8 List<SealedHealthRecord> getAllRecords();
9 }

List. 5: Interface of the Secure Database Resource.

The most important contribution of the Secure Database Resource concerning
information security is indeed its full encryption. Shmueli et al. [31] describe
various attack models against databases and assess different database encryption
schemata that should prevent these attacks. The result of their study is quite
simple: Only by encrypting the whole database as a total, information leakage
as well as unauthorized modifications can be prevented reliably. Therefore, each
SQLite file is encrypted in the Secure Database Resource with an AES-256
encryption and only the PMP has the key. This encryption causes an overhead.
However, by the partitioning of the data this overhead is within reasonable limits
and the fact that the Resource is meant for sensitive data such as health data, any
overhead is justified. Moreover, modern Smartphones possess sufficient computing
power, whereby this overhead becomes negligible.

6.5 The Connector Resource

Nowadays, most apps do not only operate locally on a single Smartphone, but
include various external services. This is why almost every app requests the
permission to establish a network connection. The user is not even informed
about this request. However, an app having this permission is able to upload
sensitive data to any server. To use external services in a secured way, we introduce
the Connector Resource.

Within the Connector Resource various trusted external services can be
included. An app is able to either upload data to or retrieve data from one of
these services (e. g., the ECHO back-end or Amazon’s SNS). Additional domain-
specific information protection policies can be applied within the Connector
Resource (such as the Mobile access to Health Documents profile [26] or the
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Audit Trail and Node Authentication profile [25]), if they are supported by the
back-end.

Currently, only the basic functionality for the ECHO back-end is supported.
Hence, the current Resource’s interface (see List. 6) comprises three func-
tions: Analog to the Secure Database Resource, HealthRecords can be stored
(storeRecord), obtained (getRecord), and deleted (deleteRecord). Certainly,
this interface needs to be extended, when further services are added.

1 interface IConnector {
2 boolean storeRecord(in SealedHealthRecord record);
3 SealedHealthRecord getRecord(in int id);
4 boolean deleteRecord(in int id);
5 }

List. 6: Interface of the Connector Resource.

Concerning interoperability, the Connector Resource handles any interface
changes of the external services for the apps. I. e., adjustments have to be done
only once at the Resource and not for every app. Additionally, it has protective
function. Since an app can only pass sensitive data to the Connector Resource
and has no further connectivity it is guaranteed that the data is only sent to
the appointed service—only connections to trusted services are provided by the
Resource. Additionally, the user can remove any service s/he does not trust via
the Resource’s Privacy Settings.

6.6 The Unsealer Resource

As mentioned above, the health data within the HealthRecord gets encrypted as
soon as it is passed from any Resource to any app by the PMP. As a consequence,
the app does not have access to this sensitive data. Basically, the health data is
only processed in Resources and therefore the encryption represents no constraint
for the user (cf. [48]). However, in rare cases it might be necessary for an app to
get access to excerpts of the health data, e. g., to display it. For this very reason,
we introduce the Unsealer Resource. Its interface consists of a single function
which converts a SealedHealthRecord into a HealthRecord (see List. 7).

1 interface IUnsealer {
2 HealthRecord unseal(in SealedHealthRecord sealedRecord);
3 }

List. 7: Interface of the Unsealer Resource.

However, the user is not only able to grant or permit the usage of the Unsealer
Resource, but s/he can also define via a Privacy Setting which excerpt of the data
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Device ID: 0000167630

PEF: 333 FEV075: 3.83

FEV1: 4.47 FEV10: 591

F1/F10: 76 % FEF2575: 3.97

Date: 20-08-15 Time: 13:49:23

Lat: 48.75 Lon: 9.11

Reset Message Box

History Transfer Data

Lung Monitor Location

Unseal Questionaire

(a) Unsealed Data Screen

Device ID: 0000167630

PEF: N/A FEV075: N/A

FEV1: N/A FEV10: N/A

F1/F10: N/A FEF2575: N/A

Date: 20-08-15 Time: 13:49:23

Lat: 48.75 Lon: 9.11

Reset Message Box

History Transfer Data

Lung Monitor Location

Unseal Questionaire

(b) Sealed Data Screen

Fig. 7: The ChronicOnline Privacy-Driven App [41].

should be revealed. To that end, the Resource provides a multi-state selection
(e. g., general information, lung-related content only, etc.) in order to facilitate the
configuration. Since the health data is stored as a JSON object, any unrevealed
data is simply cut out of it. For the user’s safety also the Unsealer does not
provide falsified values, as such an approach is disregarded for the processing of
health data.

6.7 Revised ChronicOnline App

Based on these Resources, we revise the ChronicOnline app by including sen-
sor data (e. g., respiratory meters or location sensors) while regarding device
interoperability and information security.

After the user has answered the questionnaire, the revised app expects respi-
ratory data from a connected device via the Metering Resource. The user only
has to push the “Lung Monitor” button and the connection and data transfer
is arranged automatically by the PMP. When the measured data is available,
the results of the questionnaire are applied to the DailyReport (see List. 2) and
the location data is inquired. Then, the complete DailyReport object is stored
internally (e. g., if the data cannot be transmitted immediately) and is transferred
subsequently to the ECHO back-end (see Fig. 7a). Please note, that for this
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capture any data is unsealed for demonstration purpose. The user is informed
in each step about the collected data. So, s/he is in total control over the data.
The effect of a deactivated Unsealer Resource is shown in Fig. 7b. Without the
Unsealer Resource only data which are not related to any health issues are known
to the app.

In order to react properly to the restriction of a Resource, an app needs to
define Service Features. Figure 6 shows the 8 Service Features of the revised
ChronicOnline App (denoted as SF) and which Resources are required for each
of them. Not every Service Feature necessarily requires data from a Resource
(e. g., the Questionnaire SF). The Service Features have a modular design and
can be plugged in and out at runtime (e. g., when the corresponding Resource
is deactivated). In the app’s program flow these features are skipped. However,
since the authentication of the user is mandatory, the Login SF and therewith
the Dialog Box Resource cannot be deactivated or else any other Service Feature
is also deactivated.

7 Assessment

Concerning information security, the literature speaks of 7 key protective goals,
namely auditability, authenticity, availability, confidentiality, integrity, non-

repudiation, and privacy [7, 8]. The original ChronicOnline app only fulfills
the authenticity goal and the confidentiality goal directly due to its login mech-
anism and the auditability goal, the integrity goal, and the non-repudiation
server-sided due to the security mechanism of the ECHO back-end. However, as
soon as real health data is processed by the app, the user cannot rely on the
prevailing mechanisms. Our revised app supports all 7 protective goals due to the
used Resources. The auditability as well as the non-repudiation is guaranteed,
since the PMP logs any Resource access of an app. The authenticity is given via
the login mechanism and since the login data is not shared with the app, it cannot
commit an identity theft. The availability is given, as all data is stored on the
device using mature database technologies. The confidentiality is ensured, since
any app functionality is only usable after the login process is completed. The
integrity is guaranteed since any relevant data is encrypted and therefore cannot
be manipulated by third-parties. Privacy is retained, as the user decides, which
data can be used by an app and s/he can specify for any non-health data how
accurate or even randomized it should be provided. As an app cannot access any
data without using the PMP, data access is strictly constrained by the Resources’
interfaces. Thus, from an information security’s point of view the revised app
satisfies all requirements.

Concerning device interoperability, the modular expandability of the Resources
turns out to be beneficial. For instance, support for additional devices can be
added to the Metering Resource need-based at runtime. An app developer only
has to code against a Resource’s interface, no matter which hardware is actually
available. Therefore, complex and labor-intensive coding is required only once
(for the Resource) and it can be reused many times (in the apps). Additionally,
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Table 1: Feature Summary of the Implemented PMP Resources [based on 41].

PMP Resource Device Interoperability Information Security

Dialog Box
• tailoring of dialog text • app has no access to data
• tailoring of data processing

Metering • support of different devices • device restriction

Location
• different location sensors • restriction of accuracy

• different modes of operation • randomized location data

Secure Database • generic data model • full database encryption

Connector • support of different services
• no direct network access

• restriction of usable services

Unsealer • limited access to health data

due to their generic design the Resources are usable in many different application
scenarios even for non-mHealth apps. Thus, from an interoperability’s point of
view the PMP Resources satisfy all requirements regarding compatibility and
reusability. Table 1 lists the key contributions of the introduced Resources.

8 Conclusion and Outlook

Today’s medical devices for home use can often be connected to Smartphones
via Bluetooth. On the one hand, health data can be sent from the medical
device to the Smartphone for processing or presentation. On the other hand,
the Smartphone can be used to control the medical device. By connecting to
several medical devices, the Smartphone virtually becomes a health hub for the
pants pocket. This provides entirely new possibilities for telemedicine. This is
particularly beneficial for the treatment of chronic diseases such as COPD. The
treatment of such a disease makes it necessary for patients to undergo regular
screenings. This results in increasing treatment costs as well as overburdened
physicians. However, mHealth Apps can drastically reduce the number of visits
to the physician. Yet, the patients’ confidence in mHealth apps is impaired due
to device interoperability and information security issues.

We address these problems in our work. For this purpose, we describe the
multilayered architecture of mHealth apps and analyze one particular mHealth
app for COPD patients. Based on this analysis, we create a generic data model
for mHealth apps. Furthermore, we derive relevant functions of an mHealth app,
in which device interoperability or information security is an issue. We design and
implement Resources for the PMP (a privacy-aware data provisioning system)
which support each of these mHealth functions. To evaluate the practical effect
of these PMP extensions, we re-engineer the analyzed COPD app and integrate
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our Resources into it. Based on this revised app, we assess whether our approach
contributes to solve the device interoperability and information security issues.

While our approach is a solution to the device interoperability issue, further
comprehensive measures have to be taken regarding information security. As the
analysis of the multilayered architecture of mHealth apps shows (see Sect. 2), the
health data is preprocessed on the Smartphone, only. Most of the data processing
takes place on external servers. A large number of different data sources are
combined on these servers. Thus an immense amount of data is available for
this external data processing, from which a lot of knowledge about the patients
can be derived. Therefore, information security measures for Smartphones, as
presented in this paper, are not sufficient. If a user has control over the data on
his or her Smartphone, the back-end might still be able to obtain the same data
from other sources. Thus, an holistic information security approach has to be
applied to both, the Smartphone Layer as well as the Back-End Layer. Therefore,
future work has to determine, how a information security system for back-ends
such as PATRON [35, 36] can be integrated in our PMP-based approach [34].
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