
In: Mori P. et al. (Eds.) Information Systems Security and Privacy. ICISSP 2018. Com-
munications in Computer and Information Science, vol 977. Springer, Cham, pp. 40–65,
2019. © 2019 Springer-Verlag. This is the author’s version of the work. It is posted
at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/
ccis_19_accessors.pdf by permission of Springer-Verlag for your personal use. The final
publication is available at Springer via 10.1007/978-3-030-25109-3_3.

Elicitation of Privacy Requirements for the

Internet of Things Using ACCESSORS

Christoph Stach and Bernhard Mitschang

Institute for Parallel and Distributed Systems, University of Stuttgart,

Universitätsstraße 38, D-70569 Stuttgart, Germany

{stachch,mitsch}@ipvs.uni-stuttgart.de

Abstract. Novel smart devices are equipped with various sensors to

capture context data. The Internet of Things (IoT) connects these devices

with each other in order to bring together data from various domains.

Due to the IoT, new application areas come up continuously. For instance,

the quality of life and living can be significantly improved by installing

connected and remote-controlled devices in Smart Homes. Or the treat-

ment of chronic diseases can be made more convenient for both, patients

and physicians, by using Smart Health technologies.
For this, however, a large amount of data has to be collected, shared, and

combined. This gathered data provides detailed insights into the user of

the devices. Therefore, privacy is a key issue for such IoT applications.

As current privacy systems for mobile devices focus on a single device

only, they cannot be applied to a distributed and highly interconnected

environment as the IoT. Therefore, we determine the special requirements

towards a permission models for the IoT. Based on this requirements

specification, we introduce ACCESSORS, a data-centric permission model

for the IoT and describe how to apply such a model to two promising

privacy systems for the IoT, namely the Privacy Management Platform
(PMP) and PATRON.

Keywords: Permission Model · Data-Centric · Derivation Transparent ·
Fine-Grained · Context-Sensitive · Internet of Things · PMP · PATRON.

1 Introduction

Today there is a trend to equip everyday objects, such as wristwatches, with a
variety of sensors. Due to new, low-cost and power-saving connection standards,
these devices can also be easily interconnected. Due to their versatility and easy
handling, these Things1 get into the focus of the general public [4]. As a result,
the so-called Internet of Things (IoT) is becoming increasingly popular [14]. This
opens up a wide range of possible application scenarios for the IoT, including
Smart Homes [9], Smart Health [50], and Smart Cars [62].

These versatile fields of application are facilitated by the two key characteris-
tics of the Things: On the one hand, the built-in sensors are able to capture any

1 We use the term “Thing” for any device equipped with sensors and Internet access.

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/ccis_19_accessors.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/ccis_19_accessors.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/ccis_19_accessors.pdf
https://doi.org/10.1007/978-3-030-25109-3_3


Elicitation of Privacy Requirements for the Internet of Things 41

kind of context information, such as location data, surrounding sounds, or even
health data. As these Things are common everyday objects, they are no longer
perceived by the user as computers and are always carried along naturally [67].
This makes it possible to capture data about users on a permanent basis.

On the other hand, the Things are interconnected. As a result, they are able
to exchange autonomously the captured data with each other [31]. Thus, it is
sufficient if only a limited number of sensors are installed in each Thing in order
to gain comprehensive contextual knowledge about their users. This knowledge
can be used in IoT applications (or apps) to adapt their functionalities to their
users’ private lives. By this, IoT apps are able to predict the most likely user
demands in the prevailing situation and provide the currently most beneficial
services [36]. So, they contribute to improving the quality of life.

The IoT apps are also not constrained by the usually limited computing power
of the Things. By transmitting the data to the Cloud (or upstream components,
such as Fog Instances), IoT apps have access to virtually unlimited resources in
terms of computing power, memory, or storage. Studies show that, despite this
transmission, data processing can be realized in almost real-time [44].

However, these unlimited processing possibilities result in new threat sce-
narios [35]. Machine learning techniques can be applied to IoT apps in order
to detect connections between existing data sources and derive more knowledge
from the available data [29]. Users are extremely worried about the overwhelming
potential of these apps [11]. Individuals cannot only be monitored permanently
without their knowledge, but also additional information about them can be
generated from the collected data. Therefore, privacy has to be a key issue for
any IoT app [1].

While there are unambiguous regulations for the processing of personal
data from a legal point of view (e. g., the European General Data Protection
Regulation [64]), there is a lack of technical approaches for the implementation
of comprehensive privacy mechanisms for the IoT [26]. In this respect, it is
important that the entire IoT app is taken into account, i. e., effective privacy
mechanisms have to be applied to both, the Things as well as their back-ends [53].
Yet, even simple privacy management systems, i. e., systems that restrict access
to a certain data processing unit, overwhelm users already [20]. Moreover, users
don’t know which information can be derived from which data [41] and whether
this information poses a privacy threat [19]. For instance, a proximity sensor can
disclose the absolute location of a user also, when it gathers the distance to a
Thing with a stationary location [24].

For this very reason, we introduce a data-centric and thus comprehensible
privacy approach for the IoT, tackling both, Things as well as their back-ends.
To that end, we provide the following five contributions in our work:

(1) We deduce requirements towards a permission model for IoT apps from a
use case scenario.

(2) We analyze permission models which are applied in existing privacy systems
and provide a comprehensive overview of their features and their applicability
in the IoT domain.



42 Christoph Stach and Bernhard Mitschang

(3) We construct a data-centric permission model for the Internet of Things,
called ACCESSORS.

(4) We apply ACCESSORS to both, mobile devices (PMP [56, 57]) and dis-
tributed stream processing systems (PATRON [54, 55]), that is, the back-end
of IoT apps. However, we could use any of the many similar privacy systems
as a foundation for our model without a loss of argument.

(5) We evaluate our model and assess its utility.

This paper is the extended and revised version of the paper entitled “AC-
CESSORS: A Data-Centric Permission Model for the Internet of Things” [58]
presented at the 4th International Conference on Information Systems Security
and Privacy (ICISSP) 2018. This extended paper considers all layers of IoT apps,
whereas the original paper focuses at the Sensor and Smartphone Layer, only.

The remainder of this paper is as follows: Section 2 introduces a real-world use
case scenario to illustrate the challenges for a permission model for IoT apps. Then,
Sect. 3 postulates five key requirements for such a permission model. Section 4
discusses various existing permission models. Our model—ACCESSORS—is
introduced in Sect. 5. Section 6 describes how to apply ACCESSORS to a privacy
system. Finally, Sect. 7 assesses our approach before Sect. 8 concludes this work
and gives a short outlook on future work.

2 Use Case Scenario

The application of IoT technologies for non-invasive glucose level sensing and
diabetes management is described by Istepanian et al. [28]. Figure 1 shows
the architecture of such an application. Various sensors (e. g., a glucose meter)
initially record a wide range of health data (e. g., blood sugar level) at the Sensor
Layer. The measurement data of an individual patient is transmitted to his or her
Smartphone and consolidated at the Smartphone Layer [61]. However, patients
do not know exactly what data is being passed on, especially since such a device
is capable of collecting different types of data—e. g., some devices add location
data to any glucose measurement, as this information might be relevant for later
diagnostic analyses [33, 52, 59].

The Back-End Layer accumulates the data of several patients (e. g., grouped
by the attending physician) at a central server in order to enable comprehensive
analyses [8]. By combining the gathered data, further knowledge can be derived.
For instance, a combination of blood sugar values and location data enables to
draw inferences about the user’s eating behavior as a rising blood sugar level
shortly after walking past a candy shop indicates that the user has bought some
sweets [32]. The Presentation Layer provides tools to present the results to health
professionals. However, patients have neither insight into which data is collected
at the back-end nor which information can be derived from it via data mining.

Despite this insecurity concerning the processing of sensitive data, the number
of IoT health devices available is growing significantly. With each generation
more sensors and a larger range of features are introduced [65]. The accuracy of



Elicitation of Privacy Requirements for the Internet of Things 43

AnalyticsData 

Storage

Online Health Service

Metering Device

Connection to Smart 

Device (e.g., Bluetooth)

Smart Health App for 

Smart Devices

Connection to Back-

End (e.g., REST calls)

Smart Health

Back-End

Smart Health App for 

Physicians (e.g., 

Diagnosis Tools)

S
e

n
s

o
r

L
a

y
e

r

S
m

a
rt

p
h

o
n

e

L
a

y
e

r

B
a

c
k

-E
n

d

L
a

y
e

r

P
re

s
e

n
ta

ti
o

n

L
a

y
e

r

Fig. 1. Architecture of an IoT Health Application [60].

the sensors is also improving [34]. But not every IoT app requires this high level
of accuracy. This implies that from a privacy perspective, data quality should be
downgraded in order to conceal private information which is not required for the
app to run. While some of the data provided by such IoT devices is uncritical
from a privacy point of view or so vital that the data is required all the time,
other sensitive data is required only in case of an emergency. For instance, in case
of an insulin shock, health has priority over privacy and thus, any available data
should be sent to the physician to provide the best possible medical attendance.

Such a scenario requires a privacy system—or more precisely its permission
model—to meet several novel requirements in order to be effective [49]. For
instance, focusing on data-centric protection goals is becoming increasingly
important [2]. This is further amplified by the fact that IoT apps assemble
its data from various sources, some of them even unknown to the user [63].
Moreover, since new devices with all-new sensors are constantly being released,
the permission model must adapt to such an evolving environment [1].

3 Requirements Specification

As the scenario given in Sect. 2 shows, the IoT defines some novel requirements
towards a permission model, that are detailed in the following.



44 Christoph Stach and Bernhard Mitschang

[R1] Data-Centric Policy Rules. To be understandable and manageable
for the user, the permissions have to refer to types of data (e. g., blood sugar
level) instead of data providers (e. g., glucometer). Although it is evident that a
glucometer measures the blood sugar level, some devices are also able to capture
location data. If policy rules are solely based on data providers, a user might
allow a health app to use his or her glucometer without knowing that s/he also
gave access to non-medical data (e. g., location data) in the process. The same
type of data can even be provided by several devices (e. g., the blood sugar level
is provided by glucometers and Apple Watches). If a user wants to prohibit access
to this data, then a respective rule has to be applied to any possible provider.

[R2] Derivation Transparency. An IoT app has access to various types
of data via several sensors. However, by combining this data, new information
can be derived. Such coherences have to be representable by a permission model.
For instance, if A can be derived from B and C and a user prohibits access to A,
then an app must not be allowed to access B and C at the same time. This can
be archived by describing what information can be derived from which sources.
The user can then assign permissions at data level and the privacy system must
apply appropriate rules to the respective sources.

[R3] Extendable Permission Model. The IoT is constantly evolving as
new sensor technologies or communication standards emerge. A static permission
model, that is, a model with a fixed set of protected entities, quickly becomes
obsolete. Therefore, the model must be dynamically extendable. In particular, all
extensions must be backward compatible, i. e., the extension of the model must
not invalidate previous rules.

[R4] Fine-Grained Policy Rules. In order to give a user the opportunity to
manage his or her data confidentially, s/he needs full control over the distribution
and dissemination of information. This means that the permission model has to
support fine-grained policy rules in two respects: On the one hand, the protected
entities have to be fine-grained. For instance, Android provides a Bluetooth
permission which restricts access to any device connected via Bluetooth. Yet, this
permission does not address a specific type of data or sensor. As a consequence,
users have to permit apps to use a Bluetooth headphone and a Bluetooth medical
device at the same time via a single permission. On the other hand, a user has
to have several choices how to constrain a certain permission. Most permission
models follow a binary logic, only (grant or deny). However, a permission for
location data also could restrict the accuracy of the data.

[R5] Context-Sensitive Policy Rules. Since IoT apps are often context-
aware, i. e., an app reacts on the situation it is currently used, the policy rules
should be context-sensitive as well. For instance, a medical app should have
access to any kind of data in case of an emergency. Otherwise, more restrictive
policy rules should be applied. Dey defines context as “any information that can
be used to characterize the situation of an entity” [17].



Elicitation of Privacy Requirements for the Internet of Things 45

4 Related Work

Based on these requirements, we analyze permission models which are currently
used in the IoT context. In the following, we differentiate between privacy solutions
for the Back-End Layer (Sect. 4.1) and privacy solutions for the Smartphone
Layer (Sect. 4.2). The other two layers of an IoT app do not have to be considered
specifically, since no data processing is done here, i. e., privacy solutions for the
Smartphone and Back-End Layer also cover the privacy issues of these two layers.

4.1 Privacy Solutions for the Back-End Layer

Several methods have been developed to control the information flow in stream
processing [68] and event processing systems [25]. These systems can also be
applied to analyses performed at the Back-End Layer of an IoT app. Most access
control mechanisms currently existing for these systems such as DEFCON [37]
are attribute-based. That is, these systems ensure that certain attributes (in the
stream of events) are only visible to authorized processing operators. However,
this is overly restrictive since it implies that operators either always have access
to certain attributes or never. In other words, the underlying permission model
simply assigns to each attribute either the label “granted” or “denied”. Some
stream processing systems such as ACStream [10] provide context-based access
control. That is, they add to each attribute permission pair also information about
the context under which the respective privacy rule should be applied. In other
words, these triples allow a more fine-grained access control to information. Yet,
the access is still controlled at the level of attributes. A different approach towards
privacy for the Back-End Layer called PATRON is introduced in Sect. 6.2.

However, all these approaches are not designed for the end user, but for IT
specialists. Therefore it is also not possible to enforce individual privacy rules
for each user with these approaches, as it is the focus of this paper. Rather, it is
intended to provide a simple way to regulate access to vast amounts of data in
accordance with a general policy. Therefore, all of the applied simple permission
models are not suitable for our purposes.

4.2 Privacy Solutions for the Smartphone Layer

Due to the highly heterogeneous IoT landscape and the various operating systems
available for the Things, a lot of different privacy systems and thus permission
models are being used at the Smartphone Layer. Yet, there are several efforts
to establish Android as the key operating system for the IoT, e. g., Android
Things [22] or RTAndroid2 [30]. Although we focus on Android-based privacy
systems in our work, the findings can be applied to any mobile platform, as they
also use comparable permission-based privacy systems [7].

Android applies a quite simple permission model (see Fig. 2). Each Permission
regulates either the usage of a system functions (e. g., adding entries to the
2 A refined version of RTAndroid called emteria.OS is available at https://emteria.com.



46 Christoph Stach and Bernhard Mitschang

Rule
[1,*]

createPolicy
[1,1]

define
Access 

Permission

System 

Function

Sensor

Application
[1,1]

[1,1]

[1,1]
is-a

Fig. 2. The Permission Model Applied in Android [58].

calendar) or access to a sensor (e. g., the camera). An app has to request the
appropriate permissions before it is able to use such a resource. For normal
permissions a policy rule is created when an app is installed (i. e., they are
automatically granted), while dangerous permissions have to be granted at
runtime [18].

When new permission types are added or existing permissions are relabeled,
app developers have to add these permissions to their already released apps in
order to keep them operative [48]. Yet, several system functions and sensors can be
controlled by a single permission. This makes it very hard for users to comprehend
the permissions [20]. Moreover, there are so many different permissions right now
(even for noncritical operations such as the usage of the vibration function) [20]
which makes it even harder to grasp the permissions. As a consequence, Google
no longer informs about noncritical permissions. However, Google classifies even
access to the Internet or the usage of Bluetooth device as noncritical operations
(see Fig. 3). Yet, both can have a severe impact on the user’s privacy. Thus, such
a basic permission model is not applicable for the IoT.

Sekar et al. [47] introduce Selective Permissions. This means that every
Android permission requested by an app is stored in a Shadow Manifest that
can be changed at runtime. This allows a user to revoke certain permissions
similar to Android runtime permissions. However, Selective Permissions have two
advantages. On the one hand, a user can revoke any permission; on the other
hand, a missing permission does not lead to a security exception. Instead, a null
value is returned to the app. However, this approach does not change the Android
permission model and therefore does not meet any of the requirements defined in
Sect. 3.

CRêPE introduces a context-sensitive permission model [12]. Each access to
a data source, i. e., each permission request, can be linked to a spatio-temporal
context. This context defines a condition under which the permission is granted.
However, the rules are mapped to Android permissions and therefore CRêPE
has the same shortcomings as the Android permission model.

Apex introduces an XML-based policy language to restrict the use of Android
permissions [39]. For instance, the user can define how often a particular per-
mission can be used or in which chronological order permissions can be assigned.
Apart from such constraints, the permission model does not allow extensive con-
textual constraints or fine-grained permission settings. Furthermore, the model is



Elicitation of Privacy Requirements for the Internet of Things 47

Android 

Permission

Normal 

Permission

BLUETOOTH

INTERNET

NFC

…

Dangerous

Permission

CALL_PHONE

CAMERA

READ_SMS

…

Fig. 3. Classification of Android Permissions [based on 58, 66].

neither data-centric nor derivable and it cannot be extended because it is based
on Android permissions.

In YAASE, a user defines which operations a particular application may
perform on a resource, that is, either a content provider or a service provider [43].
Data from these resources can be tagged„ for example, to distinguish between
public and private data provided by the same resource. The user defines whether
only resources with a certain tag are accessible for an app. S/he can also define
operations that must be performed before the data is forwarded to an app, such
as a filer operation to remove sensitive data. In this way YAASE is able to
define very fine-grained policy rules. However, these rules are not data-centric,
transparent or context-sensitive. In addition, the extensibility of the model is
limited to specified operations.

Sorbet addresses the unrestricted information flows between apps [21]. There-
fore, the underlying permission model allows to specify information-flow con-
straints to prevent privilege escalation, i. e., the transfer of permissions between
apps. This can also be used to introduce a kind of context-sensitivity in Sorbet.
Furthermore, the Sorbet is able to protect any kind of component (e. g., services
or content providers). So, its permission model is extendable. Moreover, it is pos-
sible to define constraints in the model to limit the usage of certain permissions,
e. g., by adding a lifespan to it. This also reduces the risk of privilege escalation.
Therefore, Sorbet has fine-grained, yet Boolean policy rules. Also, Sorbet neither
supports data-centric nor derivation transparent policy rules.

RetroSkeleton introduces an app rewriting system. So, it is able to replace
method calls with arbitrary code fragments [15, 16]. The replacement rules are
specified as Clojure command sequences. The user can draw on the full expression
power of Closure to define derivation transparent, fine-grained, and context-
sensitive policy rules—provided that s/he has the required skills. As the model is
generic and does not rely on preexisting permissions, it is extendable. Yet, as it
only replaces method calls, RetroSkeleton’s permission model is not data-centric.



48 Christoph Stach and Bernhard Mitschang

Constroid grants subjects (e. g., processes) the rights to process data items
(e. g., all business contacts) [45]. Constroid relies on the UCONABC model [40].
Each data item can be associated with attributes (e. g., contacts without a private
phone number) to restrict the access rights. As access rights are linked to data,
Constroid considers only create, read, update, and delete operations. Optional
conditions specify whether a rule is applicable under a certain context. Yet, the
model is not extendable and does not support derivation transparent policy rules.

SPoX is a specification language for security policies [23]. SPoX rules define
a state machine that accepts all command sequences that comply with the
security policy. Backes et al. [5] use this language in their data protection system
AppGuard. This enables the user to formulate fine-grained policy rules, e. g., by
limiting network access to a specific address. AppGuard’s permission model is
extensible, because each command can be restricted by policy rules. Thus, new
data sources are also supported by AppGuard out of the box. By linking several
rules, the user is able to model a kind of derivation transparency. The context
in which a particular command is executed can also be restricted [6]. However,
these restrictions only apply to the command sequence and not to the context of
the user. Furthermore, the data protection model is not data-centric.

Scoccia et al. [46] introduce flexible permissions for Android called AFP. In
AFP, permissions are assigned to features of an app. This means that an app
may only request a permission to perform a specific task. Furthermore, AFP
enables the assignment of fine-grained permissions, e. g., by granting access only
to selected contacts instead of the entire contact list. Since AFP defines its own
permissions, the model is extensible. Nevertheless, the policy rules are neither
data-centric nor derivation transparent.

DroidForce introduces data-centric policy rules [42]. OSL [27] is used to specify
the rules. This enables users to add temporal conditions as well as cardinality
constraints and time constraints to each permission. Therefore, both fine-grained
and context-sensitive rules are supported. The main feature of DroidForce is its
focus on data-centric permissions. This means that the permissions are mapped
to data domains (e. g., location data or contact data) and not to sensors or
system functions. However, relationships between protected data sources cannot
be modeled and the model used cannot be extended.

The Privacy Management Platform (PMP) [57] introduces the Privacy Policy
Model (PPM) [56] (see Fig. 4). The PPM is extendable and enables fine-grained
and context-sensitive policy rules. Therefore, it defines so-called Service Features.
These are self-contained fragments of an app which can be (de-)activated in
order to meet the users’ demands. That way, permissions can be directly granted
to specific Service Features. Each permission is restricted to a certain purpose
to reflect the privacy requirements as good as possible. Resources manage the
access to data sources or sinks. Related Resources can be pooled in a Resource
Group (e. g., GPS and WiFi positioning are part of a location Resource Group).
So-called Privacy Settings can be defined for each Resource (e. g., to reduce the
accuracy of location data for a certain Service Feature). The Resources can also
be used to define contextual constraints. These constraints specify a scope of



Elicitation of Privacy Requirements for the Internet of Things 49

Privacy 

Rule

[0,1]

[1,*]
createPolicy

[0,*]

define Resource

Data 

Source

Data Sink

Service 

Feature
specify

Application

[1,1]

[1,*]

[1,1]

[1,1]

[1,1]
is-a

Privacy 

Setting

[1,1]

pool

activate

Resource 

Group

[1,*]

[1,*]

[1,1]

Fig. 4. The Privacy Policy Model (PPM) [based on 56, 58].

application for each privacy rule. Due to these features, the PPM meets most of
the requirements towards a permission model for the IoT. However, the missing
support of data-centric policy rules overstrains users unjustifiably. The following
Smart Health example illustrates this issue:

If a user manages his or her electronic health data record on his or her
Smartphone, s/he can use a Smart Health app. However, s/he only wants this
app to gather certain health data, e. g., his or her fitness progress including heart
rate (pulse meter), activities (accelerometer and orientation sensor), and training
locations (GPS). Additionally, s/he wants to use the camera of the Smartphone
for a visual documentation of his or her training progress. S/he could use this
electronic health data record to get a special tariff rate from his or her insurance
company in which a healthy lifestyle is rewarded.

It is obvious that such a user does not want to share any additional data with
his or her insurance company which might indicate an illness (e. g., a high body
temperature), as this could lead to a higher insurance rate. The PPM enables
to prohibit the Smart Health app to access a Bluetooth medical thermometer
for the purpose of measuring the body temperature. The thermometer then is
represented as a Resource and the measuring is represented as a Service Feature.

However, if we assume that the Smartphone is equipped with a thermographic
camera, the user must be familiar with this feature. If s/he does not consider
this functionality of his or her device, such a camera can also display the body
temperature. To prevent this, s/he must define an additional privacy rule in
the PPM for the measuring Service Feature that prohibits access to the camera
Resource. For each data source, s/he must reflect what knowledge can be derived
from his data.

Although the PPM is able to secure sensitive data in IoT apps, with an
increasing number of different sensors, it is almost impossible for a user to keep
track of all the possible data leaks due to the Resource-centric Policy Rules of
the PPM. Nevertheless, the PPM is a sound foundation for ACCESSORS.



50 Christoph Stach and Bernhard Mitschang

Rule Core
User 

Abstraction

Constraint 

Abstraction

Context 

Abstraction

Data 

Abstraction

Data Source 

Abstraction

Data Sink 

Abstraction

Fig. 5. Basic Structure of an ACCESSORS Permission.

5 The ACCESSORS Model

The study of the related work shows that there is currently no suitable permission
model for IoT apps. Exisiting models are too superficial and general-purposed.
However, the PPM is well suited for the Smartphone Layer of IoT applications
as long as a manageable number of sensors are involved. In an IoT scenario
with many different sensors, a different approach is required because humans
are used to think data-centric. This means that a user knows what data s/he
wants to conceal and s/he does not want to worry about which sensor or data
source could disclose this type of data. Current approaches, by contrast, require
a separate rule for each data source that contains this information. For this
purpose, a permission model must be able to map data producers to the type
of data they provide. In this way, the user can select the type of data to be
made available to an app (e. g., body temperature) and the model unfolds, which
data sources must be considered (e. g., medical thermometer and thermographic
camera). Our approach of a data-centric permission model for the Internet of
Things—ACCESSORS for short—achieves this by introducing six abstraction
levels.

Figure 5 shows the basic structure of an ACCESSORS permission. In the
following, we detail its seven key components (Rule Core, User Abstraction, Data
Abstraction, Data Sink Abstraction, Data Source Abstraction, Context Abstraction,
and Constraint Abstraction) and elaborate on how they contribute to meet the
five requirements, specified in Sect. 3.

Rule Core. Similar to the PPM, an ACCESSORS policy rule essentially has
three main parts: an access purpose, a permission to access a data processing
unit3, and a constraint. These triplets form the rule core. Optionally, each policy
rule can be associated with a context in which it is activated (see Paragraph
Context Abstraction).

User Abstraction. Each inquiring entity—i. e., an app, a Smart Thing, or even a
user—can specify one or more access purposes that require access to a protected
3 A data processing unit is either a data producer or a data consumer (see Paragraph

Data Abstraction).



Elicitation of Privacy Requirements for the Internet of Things 51

type of data. An access purpose is a code fragment within an app that performs a
single task. For example, such an access purpose in the use case scenario described
in Sect. 2 could be the graphical representation of all locations on a map where
the user measured his or her blood sugar level. In this way, the permissions are
not granted to an app in general, but they are valid for a specific access purpose,
only. As a consequence, a user can decide which access is justified for a particular
type of app and if s/he is willing to grant the specified access rights for the
offered service. Similar to PPM, non-essential app features can be skipped to
reduce the amount of required private data. User abstraction ensures that other
types of Smart Things can be added as needed.

Data Abstraction. Data abstraction enables the linking of permissions with both,
data producers and data consumers. However, the focus for both units is on the
type of data that is produced or consumed. This means that an inquiring entity
must indicate which data it requests access to, e. g., location data or health data,
instead of a specific data processing unit such as GPS or a glucometer.

Data Sink Abstraction. Every data consumer is linked to multiple data sinks
such as apps or services, data stores or other Smart Things. That is, the user
can set policy rules on how data can be preprocessed for an app. For example,
s/he could allow an app to use a service that stores health data for long-term
monitoring of a particular health condition.

Data Source Abstraction. Each data producer is associated with a certain type
of information. Information is any aspect that can be derived from raw data.
This means that it can be the raw data itself (e. g., a single blood glucose level
metering) or any other type of higher order data obtained by combining several
sources (e. g., a health record with data from different meters). Different data
sources can be specified for each data type in the ACCESSORS model. A data
source does not necessarily have to be a sensor, but apps, data storages, and Smart
Things are also qualified as data sources. In this way, complex relationships can be
modeled (e. g., the information “activity” can be derived either by a combination
of data from an accelerometer and a position sensor or directly by readings from
a fitness tracker). By data sink abstraction and data sources abstraction, the
policy rules remain completely detached from a specific technology. The rules are
automatically adapted to the available data sources and sinks accordingly.

Context Abstraction. An activation context can optionally be assigned to each
policy rule. This context describes the conditions under which a rule must be
enforced by a privacy system. In accordance with Dey [17], we describe the context
as a spatio-temporal condition (e. g., a certain rule should only be applied during
working hours) or as a higher order situation (e. g., a certain rule only applies in
the case of a medical emergency). Higher order situations can be modeled as a
sequence of values provided by data producers.



52 Christoph Stach and Bernhard Mitschang

Context

Time / 

Date
Location Situation

is-a

Rule

activate

[1,*]

[0,1]

[1,*]
createPolicy

[0,*]

define Access

Information
Data 

Producer

Data 

Consumer

derive

Source

Application
Smart 

Thing
Sensor

Data 

Storage

is-a

Sink

Application
Smart 

Thing

Data 

Storage

is-a

ConstraintInquiring 

Entity

Application

Smart 

Thing

User

[1,*]

[1,1]

[1,1]

[1,1]

[1,1]
[1,*]

[1,*]

[1,*]
is-a

is-a

Rule Core Data Abstraction 

Data Sink Abstraction

Data Source AbstractionContext Abstraction

User Abstraction 

Access 

Purpose[1,1]

[1,1]
provide

control
[1,*]

specify

Boolean 

Constraint

Integer 

Constraint

Enum. 

Constraint

String 

Constraint

is-a

Constraint

Abstraction

derive
[1,*] [0,*]

Fig. 6. The Data-Centric Permission Model for the Internet of Things [58].

Constraint Abstraction. Different constraints can be defined for each rule. The
most fundamental constraint is a Boolean constraint to grant or deny access to
certain type of data4. Depending on the type of data, ACCESSORS supports
three additional constraint types. Integer conditions can be used to define an
upper or lower limit. For example, maximum accuracy for a particular type
of data, such as location data, can be specified in this way. An enumeration
constraint defines several valid setting options. For example, for medical records,
there may be settings that only allow access to domain-specific data records such
as pulmonary data or cardiac data. Finally, string constraints allows to enter
textual conditions. For example, a user can specify a MAC address of a Thing
with which s/he wants to share his or her data. This ensures that the health data
is only sent to the specified destination address.

Figure 6 shows the detailed ACCESSORS model with all components of
the Rule Core and the six abstraction layers. Overall, ACCESSORS supports
data-centric policy rules, since the focus of the permissions is on data types
instead of actual data processing units. Since data producers provide higher order
information, which can be composed of data from several sources, ACCESSORS
is able to model relationships between different types of data and sources. Since
the policy rules only link access purposes, access permissions, constraints, and
contexts, they are independent of specific inquiring entities or data producers /
data consumers. This means that ACCESSORS has two types of extensibility
due to its abstraction layers. On the one hand it can be extended (e. g., by
adding new Things) and on the other hand it can be advanced (e. g., by adding
new relationships between data sources when new methods to derive a certain
kind of information from raw data are discovered). Policy rules modeled with
ACCESSORS are highly fine-grained. On the one hand, the multi-value constraints

4 If the access permission is denied, the particular code fragment is skipped in the app.



Elicitation of Privacy Requirements for the Internet of Things 53

enable highly precise fine-tuning of permission rights. On the other hand, since
the permissions are bound to a certain access purpose and do not have to be
granted to an app in total, the user can tailor the privacy policy precisely to his
or her needs. Each policy rule can be enriched by an activation context. This
context is generic, as it can be composed of all currently available data sources.

A comparison of the PPM (see Fig. 4) with ACCESSORS (see Fig. 6) shows
that the two models have several common components. The rule core of ACCES-
SORS almost matches the PPM. However, ACCESSORS introduces additional
abstraction layers for users, data, data sinks, data sources, contexts, and con-
straints. Furthermore, ACCESSORS takes a different protection goal into account.
While the PPM is designed for Smartphones and therefore only considers apps as
potential attackers and sensors or system functions as possible targets (labeled
as Resources), ACCESSORS is outright designed for the IoT. For this reason,
not only the potential attackers are interpreted in the broader sense (inquiring
entities such as apps, Smart Things, or users), but also concerning the protected
targets, ACCESSORS has a different focus. The targets are tailored to the types
of data instead of data sinks or data sources.

Nevertheless, it appears to be obvious to map the policy rules defined in
ACCESSORS to PPM rules due to their great similarities. Moreover, as the PPM
is already applied to an existing privacy systems for the Smartphone Layer, the
PMP, we can use this infrastructure to enforce the ACCESSORS rules as well.
The following section describes how to map ACCESSORS policy rules to PPM
rules. Furthermore, we show how ACCESSORS can also be used in a privacy
system for the Back-End Layer. To this end, we introduce PATRON, a privacy
mechanism for stream processing systems. PATRON focuses at two goals: On
the one hand, it hides private information from unauthorized parties and on the
other hand, it ensures quality of service of the controlled IoT apps. ACCESSORS
is a great support in achieving these goals.

6 Application of ACCESSORS in IoT Privacy Systems

As ACCESSORS is not committed to a certain privacy system, it can be applied
to any given privacy system in order to control access to any kind of private
data. Due to its similarities to the PPM, the usage of the model in a privacy
system for end devices is the most reasonable use case. This case of application
is described in Sect. 6.1 using the example of the PMP.

However, ACCESSORS can also be used to identify the privacy demands of
users. Due to the systematic yet human comprehensible notation of ACCESSORS,
it is also possible to express complex correlations between gathered data and
derivable knowledge in an automated processable way. This enables end-users to
configure privacy systems for the Back-End Layer of IoT apps. This is described
using the example of PATRON in Sect. 6.2.



54 Christoph Stach and Bernhard Mitschang

Resource Group ResourcesPrivacy Settings

Apple Watch

Moto 360

…

Smart Watch

Read Time

Read Heart Rate

Show Notification

…

ISmartWatch

int getTime();
int getHeatRate();

…

Fig. 7. Model of a PMP Resource Group [58].

6.1 Application of ACCESSORS in the PMP

From a modeling point of view, the fine-grained structure of ACCESSORS
with its highly branched abstraction layers is necessary in order to gain a high
expressiveness of the policy rules. However, from a implementation point of
view, the number of utilized components should be kept low in order to reduce
complexity. On that account, a mapping of the detailed ACCESSORS policy
rules to similar PPM rules, is also recommended.

To that end, it is necessary to convert the access purposes specified by inquiring
entities in ACCESSORS to Service Features. However, a Service Feature also
defines certain permissions which are required in order to execute a particular
code fragment. The focus on a broader range of possible attackers in ACCESSORS
is not contradictory to the Service Features and a one-to-one mapping is possible
without any further ado.

That is why the transition of data-centric targets modeled in ACCESSORS
into PPM Resources poses the biggest problem for the mapping. In particular this
implies that all Resources have to be replaced by new data-centric components.
Nevertheless, ACCESSORS can be applied to the PMP, due to its modular
architecture. In the PMP, each Resource Group is implemented as an indepen-
dent functional unit which can be installed individually. Moreover, additional
Resources can be added to a Resource Group at any point of time [51]. Therefore,
existing Resources can be replaced by new data-centric ones in order to apply
ACCESSORS to the PMP.

Figure 7 depicts the model of a Resource Group for Smart Watches. The
Resource Group defines a common interface for all of its Resources. An arbitrary
Resource, which provides the required functionality, can be plugged into the the
Resource Group at runtime. That is, the Resources are concrete implementation
artifacts of the interface for a given hardware (e. g., an Apple Watch or a Moto
360). The Resource Group also defines feasible Privacy Settings, i. e., how the
user is able to restrict access to a particular Resource.

Figure 8 illustrates how this model has to be adapted in order to make
the PMP compatible to ACCESSORS privacy rules. In the first instance, the
hardware- or service-based focus of the Resource Groups has to be shifted to a
data-centric one. The Resource Group given in the example deals with any kind



Elicitation of Privacy Requirements for the Internet of Things 55

Health Data

…

iHealth Smart 

Glucometer

Apple Watch

Health Data 

Analytics

…

Resource Group ResourcesPrivacy Settings

Perform Metering

Read Blood Sugar Level

Process Blood Sugar Level

Read Heart Rate

Process Heart Rate

… IHealthData

int getHeatRate();

…

Fig. 8. Application of ACCESSORS in the PMP [58].

of health-related data. This data can be provided by legit health devices such as
a glucometer or by novel Things such as a Smart Watch. Moreover, this Resource
Group also deals with data consumers of health data such as analytics libraries.
In order to be able to plug in all of these data processing units, the Resource
Group’s interface has to be broadened accordingly.

The PPM Resource Groups provide only a single plug for one Resource
at a time. To support derivation transparency, i. e., to be able to model data
which is assembled from various sources, the ACCESSORS Resource Groups
need multiple plugs. For instance, it is possible to deduce the blood sugar level
considerably accurate by monitoring the activities of a user and his or her eating
behavior [69]. So, the Resource Group for health data has to be able to plug in a
Resource capturing physical activities and a Resource gathering nutrition data,
simultaneously. Furthermore, each Resource can be associated with multiple
Resource Groups, e. g., a Smart Watch providing both, location and health data
belongs to a location Resource Group as well as a health data Resource Group.
The Privacy Settings for the new data-centric Resource Groups are carried over
from the PPM’s Resources that are pooled in the respective Resource Group.

That way, ACCESSORS can be mapped to the PPM. PPM rules are exe-
cutable on the PMP and similar privacy systems. As the PMP runs on Android
and Android is becoming increasingly pertinent to the IoT, such an implementa-
tion constitutes a serviceable privacy system for the IoT.

6.2 Application of ACCESSORS in PATRON

While the PMP provides access control to private data on Things such as
Smartphones, the PATRON research project5 adopts a different approach. As
stream processing systems have proven to be a powerful means to process sensor
information [13], they are of major importance for large-scale IoT apps for data
processing in the Back-End Layer. For instance, the stream processing system
of an IoT Smart Health app could process the users’ heart rate, blood pressure,
and GPS position to calculate their fitness levels or discover health problems.
While many users want to benefit from such apps (e. g., to share their fitness data
5 see http://patronresearch.de



56 Christoph Stach and Bernhard Mitschang

Presentation Layer

Sensor & Smartphone Layer

Back-End Layer Domain

Knowledge

P PPP P

Configuration

Apps Sensors DBs

Apps Services

Data Operators

User 

Requirements

Public / Private 

Patterns

Verification

Access Control Layer

Configuration and 

Verification Layer

Fig. 9. Simplified PATRON Architecture [based on 54, 55].

with their health insurance in order to get a bonus), most users are afraid of the
knowledge, which can be gained in addition (e. g., if a disease is discovered and
the insurance fee rises). That is, users are not afraid of the data that is processed
by an IoT app, but they want to conceal complex patterns (e. g., the disease in
the example given above) within the data.

The blocking of certain attributes is therefore far too restrictive, as this also
prevents the recognition of non-critical patterns (e. g., the fitness level). So, the
user defines private patterns, i. e., patterns that have to be concealed, and public
patterns, i. e., patterns that can be used in an IoT app, in PATRON. For the
concealing of patterns, several techniques are available. PATRON selects the
concealing technique which has the least negative impact on the quality of service.

Figure 9 shows the basic architecture of PATRON. In addition to the four
layers of an IoT app (Sensor Layer, Smartphone Layer, Back-End Layer, and
Presentation Layer), PATRON introduces two novel layers: the Configuration
and Verification Layer and the Access Control Layer.

Configuration and Verification Layer. The Configuration and Verification Layer
enables users to specify their requirements concerning privacy. This specification
is made in natural language in order to also enable users who are not IT experts
to express their requirements. For instance, a user might define the requirement
“My insurance company must not be able to detect my unhealthy lifestyle based
on the provided data.”. Moreover, s/he can also express requirements towards
the provided service of an IoT app such as “The insurance company has to be
able to detect my fitness level.”. It is obvious that users define these requirements,
similar to ACCESSORS, based on a certain kind of data instead of sensors which
provide this kind of data.

These requirements are transferred by domain experts into public and private
patterns—the set of all these patterns is the configuration of PATRON. The
assistance of domain experts is essential in this step, because their knowledge
about applied analysis techniques and derivable knowledge is required. For
instance, only medical experts know, which data sequence indicates a certain



Elicitation of Privacy Requirements for the Internet of Things 57

health problem. However, a physical attendance of the domain experts in the
configuration process is not mandatory. Rather, it is sufficient if their knowledge
is available in machine-processable form. Moreover, this accumulated knowledge
base has to be expandable, as additional knowledge can be derived from existing
data due to the introduction of novel sensors or new analysis techniques.

Besides the configuration of PATRON, the created patterns are also verified
in this layer. To this end, all data which is forwarded from the Back-End Layer
to the Presentation Layer (e. g., to an insurance company) is analyzed in the
Configuration and Verification Layer. This enables to determine whether private
patterns have been disclosed due to a misconfiguration or public patterns have
been unnecessarily concealed. If this is the case, both, the patterns as well as the
domain knowledge base can be adjusted correspondingly. Thus, the user has a
confirmation that all of the privacy requirements are considered by PATRON.

Access Control Layer. The actual concealing is done in PATRON’s Access Control
Layer. The Access Control Layer encapsulate the Back-End-Layer completely,
i. e., all incoming data can be analyzed by PATRON before it is shared with the
IoT app’s back-end and any results of the data operators within this layer can
be restrained by PATRON. Various techniques are available for this purpose.

For instance, if the private pattern “eat sweets” (A) followed by “check blood
sugar level” (B) followed by “inject insulin” (C) has to be concealed, PATRON
could suppress, obfuscate, or reorder parts of the data. For example, this would
have the following effect on the input stream A → B → C → D: Suppression
could simply drop any of the initial three events (A, B, or C), e. g., B resulting in
the input stream A → C → D. Obfuscation modifies an event so that it seems to
be a different event, e. g., event A could be disguised as event A′ (“eat vegetables”).
This leads to the input stream A′ → B → C → D. Finally, reordering could
arrange event D at an earlier stage, e. g., between event A and B. This would
also prevent the private pattern A → B → C, as the resulting input stream looks
A → D → B → C. For more information on the Access Control Layer, please
refer to the respective literature [54, 55].

Privacy Requirements Elicitation via ACCESSORS. Even though there is system
theoretical tool support for the semi-automatical translation of privacy require-
ments into public and private patterns, the elicitation of these requirements is
highly complex [38]. As users should be able to formulate their requirements
in natural language, these requirements have to be brought into a formalized,
structured form before they can be processed.

The ACCESSORS basic model (see Fig. 5) can be used for this purpose.
Guided by the three abstraction classes User Abstraction, Data Abstraction,
and Context Abstraction, the user can define who (User Abstraction) should be
able to access which patterns (Data Abstraction) in which situation (Context
Abstraction). The Constraint Abstraction can be used to define whether it is a
public or a private pattern. Moreover, the user can express the weight of each
pattern, i. e., how important the respective pattern is for him or her. These weights
are then considered by PATRON when selecting the concealing techniques.



58 Christoph Stach and Bernhard Mitschang

Table 1. Comparison of Current Permission Models [based on 58].

Approach
Data- Derivation

Extendable
Fine- Context-

Centric Transparency Grained Sensitive

DEFCON ✓ ✗ ✗ ✗ ✗

ACStream ✓ ✗ ✗ ✗ ✓

Android ✗ ✗ (✓) ✗ ✗

Selective
✗ ✗ ✗ ✗ ✗

Permissions

CRêPE ✗ ✗ ✗ ✗ ✓

Apex ✗ ✗ ✗ (✓) (✓)

YAASE ✗ ✗ (✓) ✓ ✗

Sorbet ✗ ✗ ✓ (✓) (✓)

Retro-
✗ (✓) ✓ (✓) (✓)

Skeleton

Constroid ✓ ✗ ✗ (✓) ✓

AppGuard ✗ (✓) ✓ ✓ (✓)

AFP ✗ ✗ ✓ ✓ ✓

DroidForce ✓ ✗ ✗ ✓ ✓

PMP ✗ ✓ ✓ ✓ ✓

ACCESSORS ✓ ✓ ✓ ✓ ✓

Yet, ACCESSORS fulfills in PATRON another substantial purpose. The Data
Source Abstraction and Data Sink Abstraction can be used to model PATRON’s
domain knowledge base. Using these two modules, domain experts are able to
specify which data (sources) can be used to derive certain information and how
data sinks process data in a specific domain. The domain experts can create
ACCESSORS rule fragments in which this expertise is made available. These
fragments are then provided to users via the Data Abstraction. From the resulting
ACCESSORS rules, the public and private patterns can be derived.

7 Discussion

ACCESSORS is fully data-centered, as all its protected entities (data producers
as well as data consumers) are connected to a specific type of data (e. g., health
data). Apps request access to this data without having to specify which sensor or
system function provides this data. ACCESSORS thus also enables derivation

transparency. Each protected data object can be provided by different sources.
In addition, multiple sources can be combined to derive a specific type of data (e. g.,



Elicitation of Privacy Requirements for the Internet of Things 59

the activity of a user can be derived from an accelerometer in combination with
a position sensor). ACCESSORS makes it possible to model a single data source
as producer of a variety of types of data. For instance, an Apple Watch provides
both, location data and health data. The ACCESSORS model is extendable.
On the one hand, additional data sources and sinks can be added at runtime
to react to upcoming hardware. For example, the Apple Watch can measure
blood sugar levels after a glucometer upgrade. On the other hand, ACCESSORS
supports different types of entities. An app, a Smart Thing, or a user can all be
specified as an inquiring entity. In this way, ACCESSORS is not limited to a fixed
entity type. In the IoT context, where novel Things are released frequently, such
an extensibility is indispensable. Furthermore, ACCESSORS is fine-grained

and context-sensitive. This means that both, multi-valued constraints and
spatial-temporal or situational conditions can be added to a policy rule.

Table 1 compares ACCESSORS with the permission models applied in the
analyzed related work (see Sect. 4). In particular, the five key requirements
towards a permission model for the IoT (see Sect. 3) are taken into account, which
are [R1] data-centric policy rules, [R2] derivation transparency, [R3] extendable
permission model, [R4] fine-grained policy rules, and [R5] context-sensitive
policy rules. Due to the comprehensive abstraction approach covering users, data,
data sinks, data sources, contexts, and constraints ACCESSORS is able to meet
all requirements towards a permission model for the IoT.

8 Conclusion and Future Work

With the rise of the IoT, there constantly arise novel application fields for this
technology. The IoT can improve the quality of life and living (Smart Homes),
facilitate the treatment of chronic diseases (Smart Health), and make road traffic
safer and more comfortable (Smart Cars), just to name a few of such application
fields. For this purpose, however, a great amount of private data about the user
has to be collected. Therefore, such applications not only improve the quality of
life, but also pose a threat towards privacy. Thus, users need powerful, yet easy
to manage mechanisms to control the access to their data.

In this paper we examine whether the currently existing privacy systems for
Things are also suitable for the IoT. Since the analysis of these systems shows
that the permission models applied by them do not meet all the requirements
towards a privacy system for the IoT—namely, data-centric policy rules, deriva-
tion transparency, extendable permission model, fine-grained policy rules, and
context-sensitive policy rules—we come up with a novel permission model called
ACCESSORS. We show that this model not only meets all requirements towards
a permission model for the IoT, but that it can also be easily integrated into
existing privacy systems for the IoT. We illustrate this exemplarily for the PMP,
a privacy system for the Smartphone Layer, and for PATRON, aprivacy systems
for the Back-End Layer.

As shown in Sect. 6, ACCESSORS can be used in both, privacy systems
for the Smartphone Layer and privacy systems for the Back-End Layer. The



60 Christoph Stach and Bernhard Mitschang

aim of future work therefore is to combine these two types of privacy system
via ACCESSORS. Since both types can be configured by using ACCESSORS,
users would be able to make their privacy requirements elicitation once and then
transfer it to all of their Things as well as the back-end. Synergy effects can be
achieved by this combination. On the one hand, particularly confidential data
can be blocked at an early stage in the Smartphone Layer which increases data
security, as this data thereby never leaves the user’s Thing. On the other hand,
a pattern-based privacy solution in the back-end enables the highest possible
quality of service, since certain attributes are not systematically filtered out.
Instead, only complex sequences of attributes declared as private patterns are
concealed, while public attribute sequences remain unaffected.

Alpers et al. [3] describe an approach how privacy rules can be defined and
managed at a central site once and then transferred and applied to any end
device of a user. Future work will have to consider how this approach can be
applied to ACCESSORS. In addition, it has to be assessed to what extent the
approach can be extended so that it can also be embedded in the Configuration
and Verification Layer of PATRON.

Acknowledgments This paper is part of the PATRON research project which is
commissioned by the Baden-Württemberg Stiftung gGmbH. The authors would
like to thank the BW-Stiftung for the funding of this research.

References

1. Aggarwal, C.C., Ashish, N., Sheth, A.: The Internet of Things: A Survey from the

Data-Centric Perspective. In: Aggarwal, C.C. (ed.) Managing and Mining Sensor

Data, chap. 12, pp. 383–428. Springer (2013). https://doi.org/10.1007/978-1-4614-

6309-2_12

2. Agrawal, D., El Abbadi, A., Wang, S.: Secure and Privacy-preserving Data Services

in the Cloud: A Data Centric View. Proceedings of the VLDB Endowment 5(12),

2028–2029 (2012). https://doi.org/10.14778/2367502.2367569

3. Alpers, S., Oberweis, A., Pieper, M., Betz, S., Fritsch, A., Schiefer, G., Wagner, M.:

PRIVACY-AVARE: An Approach to Manage and Distribute Privacy Settings. In:

Proceedings of the 2017 3rd IEEE International Conference on Computer and Commu-

nications. pp. 1460–1468. ICCC ’17 (2017). https://doi.org/10.1145/3098279.3098535

4. Aman, M.N., Chua, K.C., Sikdar, B.: Secure Data Provenance for the Internet of

Things. In: Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust,

and Security. pp. 11–14. IoTPTS ’17 (2017). https://doi.org/10.1145/3055245.3055255

5. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: AppGuard: En-

forcing User Requirements on Android Apps. In: Proceedings of the 19th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems.

pp. 543–548. TACAS ’13 (2013). https://doi.org/10.1007/978-3-642-36742-7_39

6. Backes, M., Gerling, S., Hammer, C., Maffei, M., Styp-Rekowsky, P.: AppGuard –

Fine-Grained Policy Enforcement for Untrusted Android Applications. In: Garcia-

Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.)

Data Privacy Management and Autonomous Spontaneous Security: 8th International

Workshop, DPM 2013, and 6th International Workshop, SETOP 2013, Egham,

https://doi.org/10.1007/978-1-4614-6309-2_12
https://doi.org/10.1007/978-1-4614-6309-2_12
https://doi.org/10.14778/2367502.2367569
https://doi.org/10.1145/3098279.3098535
https://doi.org/10.1145/3055245.3055255
https://doi.org/10.1007/978-3-642-36742-7_39


Elicitation of Privacy Requirements for the Internet of Things 61

UK, September 12-13, 2013, Revised Selected Papers, pp. 213–231. Springer (2014).

https://doi.org/10.1007/978-3-642-54568-9_14

7. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A Methodology for

Empirical Analysis of Permission-based Security Models and Its Application to Android.

In: Proceedings of the 17th ACM Conference on Computer and Communications

Security. pp. 73–84. CCS ’10 (2010). https://doi.org/10.1145/1866307.1866317

8. Bitsaki, M., Koutras, C., Koutras, G., Leymann, F., Mitschang, B., Nikolaou, C.,

Siafakas, N., Strauch, S., Tzanakis, N., Wieland, M.: An Integrated mHealth Solution

for Enhancing Patients’ Health Online. In: Proceedings of the 6th European Conference

of the International Federation for Medical and Biological Engineering. pp. 695–698.

MBEC ’14 (2014)

9. Brush, A.B., Lee, B., Mahajan, R., Agarwal, S., Saroiu, S., Dixon, C.: Home

Automation in the Wild: Challenges and Opportunities. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. pp. 2115–2124. CHI ’11

(2011). https://doi.org/10.1145/1978942.1979249

10. Cao, J., Carminati, B., Ferrari, E., Tan, K.L.: ACStream: Enforcing Access Control

over Data Streams. In: Proceedings of the 2009 IEEE 25th International Conference

on Data Engineering. pp. 1495–1498. ICDE ’09 (2009)

11. Chin, E., Felt, A.P., Sekar, V., Wagner, D.: Measuring User Confidence in Smartphone

Security and Privacy. In: Proceedings of the Eighth Symposium on Usable Privacy and

Security. pp. 1:1–1:16. SOUPS ’12 (2012). https://doi.org/10.1145/2335356.2335358

12. Conti, M., Nguyen, V.T.N., Crispo, B.: CRêPE: Context-related Policy Enforce-

ment for Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.)

Information Security: 13th International Conference, ISC 2010, Boca Raton, FL,

USA, October 25-28, 2010, Revised Selected Papers, pp. 331–345. Springer (2011).

https://doi.org/10.1007/978-3-642-18178-8_29

13. Cugola, G., Margara, A.: Processing Flows of Information: From Data Stream to

Complex Event Processing. ACM Computing Surveys 44(3), 15:1–15:62 (2012).

https://doi.org/10.1145/2187671.2187677

14. Davies, N., Taft, N., Satyanarayanan, M., Clinch, S., Amos, B.: Privacy Mediators:

Helping IoT Cross the Chasm. In: Proceedings of the 17th International Workshop on

Mobile Computing Systems and Applications. pp. 39–44. HotMobile ’16 (2016).

https://doi.org/10.1145/2873587.2873600

15. Davis, B., Chen, H.: RetroSkeleton: Retrofitting Android Apps. In: Proceeding of the

11th Annual International Conference on Mobile Systems, Applications, and Services.

pp. 181–192. MobiSys ’13 (2013). https://doi.org/10.1145/2462456.2464462

16. Davis, B., Sanders, B., Khodaverdian, A., Chen, H.: I-ARM-Droid: A Rewriting

Framework for In-App Reference Monitors for Android Applications. In: Proceedings of

the 2012 IEEE Conference on Mobile Security Technologies. pp. 28:1–28:9. MoST ’12

(2012)

17. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing

5(1), 4–7 (2001). https://doi.org/10.1007/s007790170019

18. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE Security

and Privacy 7(1), 50–57 (2009)

19. Felt, A.P., Egelman, S., Wagner, D.: I’ve Got 99 Problems, but Vibration Ain’t

One: A Survey of Smartphone Users’ Concerns. In: Proceedings of the Second ACM

Workshop on Security and Privacy in Smartphones and Mobile Devices. pp. 33–44.

SPSM ’12 (2012). https://doi.org/10.1145/2381934.2381943

20. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android Permissions:

User Attention, Comprehension, and Behavior. In: Proceedings of the Eighth

https://doi.org/10.1007/978-3-642-54568-9_14
https://doi.org/10.1145/1866307.1866317
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1145/2335356.2335358
https://doi.org/10.1007/978-3-642-18178-8_29
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2873587.2873600
https://doi.org/10.1145/2462456.2464462
https://doi.org/10.1007/s007790170019
https://doi.org/10.1145/2381934.2381943


62 Christoph Stach and Bernhard Mitschang

Symposium on Usable Privacy and Security. pp. 3:1–3:14. SOUPS ’12 (2012).

https://doi.org/10.1145/2335356.2335360

21. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and Enhancing Android’s

Permission System. In: Foresti, S., Yung, M., Martinelli, F. (eds.) Computer

Security – ESORICS 2012: 17th European Symposium on Research in Computer

Security, Pisa, Italy, September 10-12, 2012. Proceedings, pp. 1–18. Springer (2012).

https://doi.org/10.1007/978-3-642-33167-1_1

22. Google Inc.: Android Things. https://developer.android.com/things (May 2018)

23. Hamlen, K.W., Jones, M.: Aspect-oriented In-lined Reference Monitors. In: Proceedings

of the Third ACM SIGPLAN Workshop on Programming Languages and Analysis for

Security. pp. 11–20. PLAS ’08 (2008). https://doi.org/10.1145/1375696.1375699

24. Harle, R.K., Tailor, S., Zidek, A.: Bellrock – Anonymous Proximity Beacons From

Personal Devices. In: Proceedings of the 2018 IEEE International Conference on

Pervasive Computing and Communications. pp. 284–293. PerCom ’18 (2018)

25. He, Y., Barman, S., Wang, D., Naughton, J.F.: On the Complexity of Privacy-

preserving Complex Event Processing. In: Proceedings of the Thirtieth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp.

165–174. PODS ’11 (2011). https://doi.org/10.1145/1989284.1989304

26. Henrik, Z.J., Garcia, M.O., Klaus, W.: Privacy in the Internet of Things: threats

and challenges. Security and Communication Networks 7(12), 2728–2742 (2014).

https://doi.org/10.1002/sec.795

27. Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A Policy Language for

Distributed Usage Control. In: Biskup, J., López, J. (eds.) Computer Security –

ESORICS 2007: 12th European Symposium On Research In Computer Security,

Dresden, Germany, September 24 — 26, 2007. Proceedings, pp. 531–546. Springer

(2007). https://doi.org/10.1007/978-3-540-74835-9_35

28. Istepanian, R.S.H., Hu, S., Philip, N., Sungoor, A.: The Potential of Internet of m-health

Things “m-IoT” for Non-Invasive Glucose Level Sensing. In: Proceedings of the 2011 An-

nual International Conference of the IEEE Engineering in Medicine and Biology Society.

pp. 5264–5266. EMBS ’11 (2011). https://doi.org/10.1109/IEMBS.2011.6091302

29. Jordan, M., Mitchell, T.: Machine learning: Trends, perspectives, and prospects.

Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415

30. Kalkov, I., Franke, D., Schommer, J.F., Kowalewski, S.: A Real-time Extension to

the Android Platform. In: Proceedings of the 10th International Workshop on Java

Technologies for Real-time and Embedded Systems. pp. 105–114. JTRES ’12 (2012).

https://doi.org/10.1145/2388936.2388955

31. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future Internet: The Internet of Things

Architecture, Possible Applications and Key Challenges. In: Proceedings of the 2012

10th International Conference on Frontiers of Information Technology. pp. 257–260.

FIT ’12 (2012). https://doi.org/10.1109/FIT.2012.53

32. Knöll, M.: Diabetes City: How Urban Game Design Strategies Can Help Diabetics. In:

Weerasinghe, D. (ed.) Electronic Healthcare: First International Conference, eHealth

2008, London, UK, September 8-9, 2008. Revised Selected Papers, pp. 200–204.

Springer (2009). https://doi.org/10.1007/978-3-642-00413-1_28

33. Knöll, M.: “On the Top of High Towers . . . ” Discussing Locations in a Mobile Health

Game for Diabetics. In: Proceedings of the 2010 IADIS International Conference

Game and Entertainment Technologies. pp. 61–68. MCCSIS ’10 (2010)

34. Kovatchev, B.P., Gonder-Frederick, L.A., Cox, D.J., Clarke, W.L.: Evaluating the

Accuracy of Continuous Glucose-Monitoring Sensors. Diabetes Care 27(8), 1922–1928

(2004). https://doi.org/10.2337/diacare.27.8.1922

https://doi.org/10.1145/2335356.2335360
https://doi.org/10.1007/978-3-642-33167-1_1
https://doi.org/10.1145/1375696.1375699
https://doi.org/10.1145/1989284.1989304
https://doi.org/10.1002/sec.795
https://doi.org/10.1007/978-3-540-74835-9_35
https://doi.org/10.1109/IEMBS.2011.6091302
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1145/2388936.2388955
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1007/978-3-642-00413-1_28
https://doi.org/10.2337/diacare.27.8.1922


Elicitation of Privacy Requirements for the Internet of Things 63

35. Kozlov, D., Veijalainen, J., Ali, Y.: Security and Privacy Threats in IoT Architectures.

In: Proceedings of the 7th International Conference on Body Area Networks. pp.

256–262. BodyNets ’12 (2012). https://doi.org/10.1145/3098279.3098535
36. Metzger, A., Cassales Marquezan, C.: Future Internet Apps: The Next Wave of

Adaptive Service-Oriented Systems? In: Abramowicz, W., Llorente, I.M., Surridge, M.,

Zisman, A., Vayssière, J. (eds.) Towards a Service-Based Internet, pp. 230–241.

Springer (2011). https://doi.org/10.1007/978-3-642-24755-2_22
37. Migliavacca, M., Papagiannis, I., Eyers, D.M., Shand, B., Bacon, J., Pietzuch,

P.: DEFCON: High-performance Event Processing with Information Security. In:

Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference.

pp. 1–15. USENIXATC ’10 (2010)
38. Mindermann, K., Riedel, F., Abdulkhaleq, A., Stach, C., Wagner, S.: Exploratory

Study of the Privacy Extension for System Theoretic Process Analysis (STPA-Priv) to

Elicit Privacy Risks in eHealth. In: Proceedings of the 2017 IEEE 25th International

Requirements Engineering Conference Workshops. pp. 90–96. REW ’17 (2017).

https://doi.org/10.1109/REW.2017.30
39. Nauman, M., Khan, S., Zhang, X.: Apex: Extending Android Permission Model and

Enforcement with User-defined Runtime Constraints. In: Proceedings of the 5th ACM

Symposium on Information, Computer and Communications Security. pp. 328–332.

ASIACCS ’10 (2010). https://doi.org/10.1145/1755688.1755732
40. Park, J., Sandhu, R.: The UCONABC Usage Control Model. ACM

Transactions on Information and System Security 7(1), 128–174 (2004).

https://doi.org/10.1145/984334.984339
41. Perera, C., Zaslavsky, A., Christen, P.: Context Aware Computing for The Internet of

Things: A Survey. IEEE Communications Surveys & Tutorials 16(1), 414–454 (2014).

https://doi.org/10.1109/SURV.2013.042313.00197
42. Rasthofer, S., Arzt, S., Lovat, E., Bodden, E.: DroidForce: Enforcing Complex,

Data-centric, System-wide Policies in Android. In: Proceedings of the 2014 Ninth

International Conference on Availability, Reliability and Security. pp. 40–49. ARES ’14

(2014). https://doi.org/10.1109/ARES.2014.13
43. Russello, G., Crispo, B., Fernandes, E., Zhauniarovich, Y.: YAASE: Yet Another

Android Security Extension. In: Proceeding of the 2011 IEEE Third International

Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Inter-

national Conference on Social Computing. pp. 1033–1040. PASSAT ’11 (2011).

https://doi.org/10.1109/PASSAT/SocialCom.2011.151
44. Sarkar, S., Misra, S.: Theoretical modelling of fog computing: a green comput-

ing paradigm to support IoT applications. IET Networks 5(2), 23–29 (2016).

https://doi.org/10.1049/iet-net.2015.0034
45. Schreckling, D., Posegga, J., Hausknecht, D.: Constroid: Data-centric Access Control

for Android. In: Proceedings of the 27th Annual ACM Symposium on Applied

Computing. pp. 1478–1485. SAC ’12 (2012). https://doi.org/10.1145/2245276.2232012
46. Scoccia, G.L., Malavolta, I., Autili, M., Di Salle, A., Inverardi, P.: User-centric Android

Flexible Permissions. In: Proceedings of the 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion. pp. 365–367. ICSE-C ’17 (2017).

https://doi.org/10.1109/ICSE-C.2017.84
47. Sekar, L.P., Gankidi, V.R., Subramanian, S.: Avoidance of Security Breach Through

Selective Permissions in Android Operating System. ACM SIGSOFT Software

Engineering Notes 5(37), 1–9 (2012). https://doi.org/10.1145/2347696.2347711
48. Sellwood, J., Crampton, J.: Sleeping Android: The Danger of Dormant Permissions. In:

Proceedings of the Third ACM Workshop on Security and Privacy in Smartphones &

Mobile Devices. pp. 55–66. SPSM ’13 (2013). https://doi.org/10.1145/2516760.2516774

https://doi.org/10.1145/3098279.3098535
https://doi.org/10.1007/978-3-642-24755-2_22
https://doi.org/10.1109/REW.2017.30
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1145/984334.984339
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1109/PASSAT/SocialCom.2011.151
https://doi.org/10.1049/iet-net.2015.0034
https://doi.org/10.1145/2245276.2232012
https://doi.org/10.1109/ICSE-C.2017.84
https://doi.org/10.1145/2347696.2347711
https://doi.org/10.1145/2516760.2516774


64 Christoph Stach and Bernhard Mitschang

49. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust

in Internet of Things: The road ahead. Computer Networks 76, 146–164 (2015).

https://doi.org/10.1016/j.comnet.2014.11.008

50. Siewiorek, D.: Generation Smartphone. IEEE Spectrum 49(9), 54–58 (2012).

https://doi.org/10.1109/MSPEC.2012.6281134

51. Stach, C.: How to Assure Privacy on Android Phones and Devices? In: Proceedings of

the 2013 IEEE 14th International Conference on Mobile Data Management. pp.

350–352. MDM ’13 (2013). https://doi.org/10.1109/MDM.2013.54

52. Stach, C.: Secure Candy Castle — A Prototype for Privacy-Aware mHealth Apps.

In: Proceedings of the 2016 IEEE 17th International Conference on Mobile Data

Management. pp. 361–364. MDM ’16 (2016). https://doi.org/10.1109/MDM.2016.64

53. Stach, C., Alpers, S., Betz, S., Dürr, F., Fritsch, A., Mindermann, K., Palanisamy,

S.M., Schiefer, G., Wagner, M., Mitschang, B., Oberweis, A., Wagner, S.: The

AVARE PATRON: A Holistic Privacy Approach for the Internet of Things. In:

Proceedings of the 15th International Conference on Security and Cryptography.

pp. 1–6. SECRYPT ’18 (2018)

54. Stach, C., Dürr, F., Mindermann, K., Palanisamy, S.M., Tariq, M.A., Mitschang,

B., Wagner, S.: PATRON — Datenschutz in Datenstromverarbeitungssystemen.

In: Informatik 2017: Digitale Kulturen, Tagungsband der 47. Jahrestagung der

Gesellschaft für Informatik e.V. (GI), 25.9-29.9.2017, Chemnitz. LNI, vol. 275, pp.

1085–1096 (2017), (in German)
55. Stach, C., Dürr, F., Mindermann, K., Palanisamy, S.M., Wagner, S.: How a Pattern-

based Privacy System Contributes to Improve Context Recognition. In: Proceedings of

the 2018 IEEE International Conference on Pervasive Computing and Communications

Workshops. pp. 238–243. CoMoRea ’18 (2018)

56. Stach, C., Mitschang, B.: Privacy Management for Mobile Platforms – A Review

of Concepts and Approaches. In: Proceedings of the 2013 IEEE 14th Interna-

tional Conference on Mobile Data Management. pp. 305–313. MDM ’13 (2013).

https://doi.org/10.1109/MDM.2013.45

57. Stach, C., Mitschang, B.: Design and Implementation of the Privacy Management

Platform. In: Proceedings of the 2014 IEEE 15th International Conference on Mobile

Data Management. pp. 69–72. MDM ’14 (2014). https://doi.org/10.1109/MDM.2014.14

58. Stach, C., Mitschang, B.: ACCESSORS: A Data-Centric Permission Model for

the Internet of Things. In: Proceedings of the 4th International Conference

on Information Systems Security and Privacy. pp. 30–40. ICISSP ’18 (2018).

https://doi.org/10.5220/0006572100300040

59. Stach, C., Schlindwein, L.F.M.: Candy Castle — A Prototype for Pervasive Health

Games. In: Proceedings of the 2012 IEEE International Conference on Pervasive

Computing and Communications Workshops. pp. 501–503. PerCom ’12 (2012).

https://doi.org/10.1109/PerComW.2012.6197547

60. Stach, C., Steimle, F., Mitschang, B.: The Privacy Management Platform: An Enabler

for Device Interoperability and Information Security in mHealth Applications. In:

Proceedings of the 11th International Conference on Health Informatics. pp. 27–38.

HEALTHINF ’18 (2018). https://doi.org/10.5220/0006537300270038

61. Stach, C., Steimle, F., Franco da Silva, A.C.: TIROL: The Extensible Interconnec-

tivity Layer for mHealth Applications. In: Damaševičius, R., Mikašytė, V. (eds.)

Information and Software Technologies: 23nd International Conference, ICIST 2017,

Druskininkai, Lithuania, October 12-14, 2017, Proceedings, pp. 190–202. Springer

(2017). https://doi.org/10.1007/978-3-319-67642-5_16

https://doi.org/10.1016/j.comnet.2014.11.008
https://doi.org/10.1109/MSPEC.2012.6281134
https://doi.org/10.1109/MDM.2013.54
https://doi.org/10.1109/MDM.2016.64
https://doi.org/10.1109/MDM.2013.45
https://doi.org/10.1109/MDM.2014.14
https://doi.org/10.5220/0006572100300040
https://doi.org/10.1109/PerComW.2012.6197547
https://doi.org/10.5220/0006537300270038
https://doi.org/10.1007/978-3-319-67642-5_16


Elicitation of Privacy Requirements for the Internet of Things 65

62. Svangren, M.K., Skov, M.B., Kjeldskov, J.: The Connected Car: An Empirical Study

of Electric Cars As Mobile Digital Devices. In: Proceedings of the 19th International

Conference on Human-Computer Interaction with Mobile Devices and Services. pp.

6:1–6:12. MobileHCI ’17 (2017). https://doi.org/10.1145/3098279.3098535

63. Takabi, H., Joshi, J.B.D., Ahn, G.J.: Security and Privacy Challenges in Cloud

Computing Environments. IEEE Security and Privacy 8(6), 24–31 (2010).

https://doi.org/10.1109/MSP.2010.186

64. The European Parliament and the Council of the European Union: Regulation (EU)

2016/679 of the European Parliament and of the Council of 27 April 2016 on the

protection of natural persons with regard to the processing of personal data and on

the free movement of such data, and repealing Directive 95/46/EC (General Data

Protection Regulation). Official journal of the european union, European Union (2016)

65. Vashist, S.K., Schneider, E.M., Luong, J.H.: Commercial Smartphone-Based Devices

and Smart Applications for Personalized Healthcare Monitoring and Management.

Diagnostics 4(3), 104–128 (2014). https://doi.org/10.3390/diagnostics4030104

66. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission Evolution in the Android

Ecosystem. In: Proceedings of the 28th Annual Computer Security Applications

Conference. pp. 31–40. ACSAC ’12 (2012). https://doi.org/10.1145/2420950.2420956

67. Weiser, M.: The Computer for the 21st Century. Scientific American 265(3), 94–105

(1991). https://doi.org/10.1109/MSPEC.2012.6281134

68. Xie, X., Ray, I., Adaikkalavan, R., Gamble, R.: Information Flow Control for

Stream Processing in Clouds. In: Proceedings of the 18th ACM Symposium

on Access Control Models and Technologies. pp. 89–100. SACMAT ’13 (2013).

https://doi.org/10.1145/2462410.2463205

69. Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A.,

Ben-Yacov, O., Lador, D., Avnit-Sagi, T., Lotan-Pompan, M., Suez, J., Mahdi, J.A.,

Matot, E., Malka, G., Kosower, N., Rein, M., Zilberman-Schapira, G., Dohnalová, L.,

Pevsner-Fischer, M., Bikovsky, R., Halpern, Z., Elinav, E., Segal, E.: Personalized

Nutrition by Prediction of Glycemic Responses. Cell 163(5), 1079–1094 (2015).

https://doi.org/10.1016/j.cell.2015.11.001

All links were last followed on June 1, 2018.

https://doi.org/10.1145/3098279.3098535
https://doi.org/10.1109/MSP.2010.186
https://doi.org/10.3390/diagnostics4030104
https://doi.org/10.1145/2420950.2420956
https://doi.org/10.1109/MSPEC.2012.6281134
https://doi.org/10.1145/2462410.2463205
https://doi.org/10.1016/j.cell.2015.11.001

	Elicitation of Privacy Requirements for the Internet of Things Using ACCESSORS
	1 Introduction
	2 Use Case Scenario
	3 Requirements Specification
	4 Related Work
	4.1 Privacy Solutions for the Back-End Layer
	4.2 Privacy Solutions for the Smartphone Layer

	5 The ACCESSORS Model
	6 Application of ACCESSORS in IoT Privacy Systems
	6.1 Application of ACCESSORS in the PMP
	6.2 Application of ACCESSORS in PATRON

	7 Discussion
	8 Conclusion and Future Work


