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Abstract. Cloud computing passed the hype cycle long ago and firmly
established itself as a future technology since then. However, to utilize the
cloud optimally, and therefore, as cost-efficiently as possible, a continuous
monitoring is key to prevent an over- or under-commissioning of resources.
However, selecting a suitable monitoring solution is a challenging task.
Monitoring agents that collect monitoring data are spread across the
monitored I'T environment. Therefore, the possibility of vendor lock-ins
leads to a lack of flexibility when the cloud environment or the business
needs change. To handle these challenges, we introduce generic agent
templates that are applicable to many monitoring systems and support a
replacement of monitoring systems. Solution-specific technical details of
monitoring agents are abstracted from and system administrators only
need to model generic agents, which can be transformed into solution-
specific monitoring agents. The transformation logic required for this
process is provided by domain experts to not further burden system
administrators. Furthermore, we introduce an agent lifecycle to support
the system administrator with the management and deployment of generic
agents.

Keywords: Vendor Lock-in - Cloud Monitoring - Monitoring Agents
- Genericity.

1 Introduction

Cloud computing passed the hype cycle long ago and firmly established itself
as a future technology since then. Studies still predict a further increase of
revenue of the worldwide public cloud services market by more than 15% in 2019,
whereby Infrastructure-as-a-Service (IaaS) is the fastest growing segment [6]. The
main advantages of cloud computing are the self-service based commissioning
and decommissioning of resources (e. g., virtual machines) as needed, a flexible
pay-per-use model, and seemingly infinite scalability to enable a perfectly fitted
IT infrastructure for each company [19]. However, to utilize the cloud optimally,
i.e., as cost-efficiently as possible, resource utilization must be known or analyzed
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to prevent an over- or under-commissioning of resources. As resource utilization
may vary over time, a continuous monitoring of cloud resources is essential [13].

However, the flexibility provided by cloud computing introduces new chal-
lenges to the management and monitoring of the IT environment. Most current
monitoring systems were originally not designed to monitor cloud environments
with highly volatile virtual machines that may come and go in a matter of min-
utes, but rather for traditional hardware and slowly changing environments [27,1].
When business needs change, which leads to changes in the cloud environment, the
use of a different monitoring system that better suits these business needs might
be favorable. This challenge is amplified by the current state of IT departments,
which are oftentimes Popovic2017 and lack resources for new technologies [3,21].
Hence, they have problems keeping up with state-of-the-art technologies and de-
ploying them in the company. Replacing a monitoring system is a time-consuming,
error-prone, and therefore, expensive task that cannot be handled by every IT
department. In general, each monitoring system comes with its own monitoring
agent (in the following, only called agent), a software process collecting monitoring
data inputs and reporting them to a monitoring system [18]. Therefore, replacing
a monitoring system leads to the replacement of all of its agents. Usually, the
agents are written in different programming languages, which requires learning
new syntax and semantics. Furthermore, features of the agents, e. g., aggregation
or filtering, may differ from agent to agent. Lastly, the newly created agents
need to be deployed onto the virtual machines, which oftentimes needs to be
conducted manually.

We address these challenges by introducing generic agent templates to create
an abstraction level for the modeling of agents. Agents are modeled only once in
an abstract and generic way and domain experts provide the transformation logic
required to transform these agents into executable agents for specific monitoring
systems. Therefore, the complexity and time needed to replace a monitoring
system are heavily reduced, which also reduces monetary losses. Furthermore,
we introduce an extended lifecycle for agents to support the management and
automatic deployment of agents to enable scalability, which is essential in large-
scaled cloud environments.

The remainder of this paper is structured as follows: Section 2 introduces a
motivating scenario and its requirements for cloud monitoring. In Sect. 3, we
present the generic agent templates and the extended agent life cycle. Section 4
discusses related work and lastly, Sect. 5 contains the conclusion of this paper as
well as future work.

2 Motivating Scenario

Modern cloud computing leads to a plethora of data points that need to be
monitored. For illustration purposes, in this motivating scenario, we only consider
the monitoring of the CPU of a virtual machine running a Linux server. In
general, each IT infrastructure monitoring (ITIM) system provides preconfigured
agents for the most common tasks. Ligus [18] defines an agent as “a software
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process that continuously records data inputs and reports them to a monitoring
system”. The agent collects the CPU information from the host system and sends
it to a monitoring server where the data are stored and can be accessed by the
system administrator. In addition to the CPU measurement, metadata such
as the host name and timestamp are sent as well. Oftentimes it is sensible to
perform certain actions on the monitoring data before sending it to the server
which requires changes to the configuration of the agent. Those actions fall into
one of two categories: processing—actions performed on each data sample, i.e.,
each collected CPU load measurement—and aggregation—actions performed on
a set of data samples. In our example, processing could be used to transform
the timestamp (usually in UNIX time format) into a human-readable format.
Aggregation could be used to aggregate multiple measurements for a specified
time interval, e. g., 60 seconds, and compute the mean, max, or min value and
only send this result to reduce network traffic.

This way, the system administrator can create arbitrary agent configurations
that suit the business needs of the company. Based on these configurations,
agents are deployed on each virtual machine. Now, business needs or the cloud
environment may change that require an adaptation of the monitoring system.
For example, Linux servers may be replaced by Windows servers. However, not
every ITIM system supports Windows as well as Linux. Therefore, either an
additional ITIM system must be added that supports Windows, which increases
management complexity since two systems need to be managed, or the original
system must be replaced by a system that supports both operating systems.

In both cases, the system administrator has to recreate the agent configurations
for the new ITIM system. Furthermore, as mentioned in the previous section,
agents differ in their programming language and functionalities, which the system
administrator has to learn first. Lastly, the agents must be deployed again. This
often occurs manually, which leads to scalability issues when considering large-
scale cloud environments. Furthermore, changes at runtime to adapt to a dynamic
environment and automatic deployment are not supported by most monitoring
systems. All this results in a time-consuming process whereby the actual task,
i.e., CPU monitoring, stays exactly the same.

Out of the above, we deduce following requirements:

R1: Genericity: Instead of modeling solution-specific agents, a generic way for
modeling agents to abstract from implementation details is required. This
way, system administrators only need to model an agent once. Domain experts
provide the transformation logic required to transform generic agents into
solution-specific agents. This way, system administrator can save time and
money and focus on translating business needs into generic agents instead of
learning technical details of monitoring systems.

R2: Expressiveness: The expressiveness of generic agents needs to support all
common tasks of an agent, such as processing and aggregation of monitoring
data. This guarantees that many monitoring systems can be supported by
generic agents.
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R3: Automation: With rising complexity in cloud environments, manual tasks
must be minimized. Automation requires management in regard to the
modeling and deployment of agents to unburden system administrators and
enable them to focus on actual problems in the I'T environment.

3 Generic Agent Templates

We introduce generic agent templates to fulfill the above-mentioned requirements
R1— R3. System administrators model agents in accordance to the business needs
and decide which resources need to be monitored, and how often and what kind
of actions are performed on the monitoring data (cf. our motivating scenario). As
shown in Fig. 1 (left), currently, a system administrator has to model n different
agents to support n monitoring systems, even if the underlying tasks, e. g., collect
CPU load, transform timestamp into human-readable format, calculate mean over
one minute, send to database, stay the same. This process is done manually and
in each company separately.

By introducing generic agent templates (Fig. 1 (right), the system adminis-
trator only has to model this underlying task once in a generic way. However,
those generic agents are non-executable and need to be transformed into a
solution-specific agent that is used within the specific company. Because generic
agents conform to a predefined schema, domain experts with detailed technical
knowledge about the several solution-specific agents can provide the transfor-
mation logic to transform generic agents into executable agents for the desired
monitoring system. The transformation logic can be shared across all companies
and, therefore, only needs to be provided once per supported agent.

To further support system administrators, we introduce an extended lifecycle
for agents, as shown in Fig. 2. On the left, the current, inadequate lifecycle is
shown consisting of two manual tasks Modeling and Manual Deployment, both
performed by system administrators. Each time an agent is modeled or changed,
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the deployment onto each virtual machine must be repeated. To cope with the
issues of this approach, we introduce an extended life cycle as shown in Fig. 2
(right), which comprises of the following four phases:

— Phase 1 - Modeling: The demand for genericity and usability requires changes
in the modeling phase. We introduce generic agent templates to create an
abstraction layer that is generic and supports an easy modeling of agents
that can be used for multiple monitoring systems.

— Phase 2 - Transformation: Since the modeled agents are generic and non-
executable, the generic agents are transformed into executable, solution-
specific agents. To not further burden the system administrator, this task is
automated since domain experts provide the transformation logic.

— Phase 3 - Automatic Deployment: Instead of deploying agents manually, we
automate the deployment to tackle scalability issues in large-scale cloud
environments using standards-compliant technologies.

— Phase 4 - Adaptation: We present an agent management to support adaptation
of agents to the dynamically changing environment at runtime.

Phase 1 - Modeling: In general, agents are integrated into specific monitoring
systems and cannot be used for different monitoring systems. There are a few
exceptions, e.g., Nagios’ NRPE agent, which, due to its wide distribution, is
supported by many different monitoring systems. However, there are no agents
that can be used in all monitoring systems. Also, each agent differs in its syntax,
used programming language, and functionality. To enable genericity, we introduce
the novel concept of generic agent templates to achieve an abstraction layer for
the modeling of agents.

The basis of a generic agent template is the agent pipeline containing the four
components Input, Processor, Aggregator, and Output nodes as shown in Fig. 3.
This pipeline is based on the plugin-based architecture of agents, e.g., Telegraf [16]
(TICK-Stack) or Beats [10] (ELK-Stack) and enables modeling a flexible and
extendable agent due to its modular structure. With those components, a system
administrator can model generic agents (exemplary configuration in Fig. 4) that
can be transformed by the Agent Mapper to solution-specific agents. In the
following, we describe the nodes and pipeline concept in detail.

— Input Node defines what metric the agent is collecting (e.g., CPU load).
Besides meta data, such as ID and name of the node, for each input node,
the sampling frequency can be set individually, e.g., CPU load is collected
every second whereas RAM load is collected every ten seconds. Data from
the Input Node can be sent to Processor and Aggregator nodes for further
processing, or directly to an Output Node. A single agent can contain multiple
Input Nodes.

— Processor Node is an optional node which contains functions that can be
executed on single data samples. Examples are transformations of data (e.g.,
UNIX date to human readable date) or filtering (e.g., if value < 200M B).
At the end, a data sample that passes a Processor Node may receive a tag
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that may be used for further routing inside the agent pipeline. Based on
those tags, data are sent to Aggregator Nodes or Output Nodes.

— Aggregator Node is an optional node and acts similar to a Processor Node.
The difference is that functions are not performed on single data samples,
but on a set of data samples. Therefore, a window is defined, in which the
Aggregator Node calculates statistics, e. g., calculate the mean CPU and
RAM load over one minute. Again, tags can be added for further routing
and data can be sent to Processor Nodes or Output Nodes.

— Output Node represents the endpoint of a pipeline and defines where data
are sent to from an agent’s perspective (e. g., to a database). Multiple Output
Nodes can exist and can be chosen based on tags added to the data.

The result of the modeling process is a generic agent in form of a JSON
document. We define a schema! for the node definitions using JSON schema.
A small excerpt of this schema for the input node is shown in 7?7 1.1. The id
is used as an identifier within an agent template. The type denotes the type of
input node referring to premodeled input types like CPU input or RAM input.
The config contains configurable parameters of the input node, such as sampling
frequency. Finally, next describes the next node within the pipeline. Based on
this schema, we implemented a graphical, web-based modeling tool? to ease the
modeling and alteration of agents without the need to understand all the specifics
of a monitoring system.

! https://github.com/mormulms/agent-centric-monitoring/blob/master /generic-
agent /mona-template-editor/src/assets/schema.json

2 https://github.com/mormulms/agent-centric-monitoring/blob/master /generic-
agent/mona-template-editor
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"GenericInput": {
"type": "object",
"properties": {
"id": {
"$ref": "#/definitions/InputId"
},
"type": {
"$ref": "#/definitions/NodeType"
},
"config": {
"$ref": "#/definitions/InputConfig"
},
"next": {
"$ref": "#/definitions/NextArray"
¥
},

Listing 1.1: Excerpt of the input node definition

Phase 2 - Transformation: The result of a modeled agent pipeline is a generic
agent template. The Agent Mapper is the component that receives this generic
agent template and transforms it into an executable agent for a specific monitoring
system. Of course, for each supported monitoring system, the transformation
logic must be implemented. Therefore, the complexity and variance of different
monitoring systems is not diminished but rather shifted from the end user to a few
domain experts who implement the transformation logic for specific monitoring
agents. Those implementations must be shared publicly to gain an advantage.
So far, in our current prototype, we only support transformations to Telegraf.
To support further monitoring systems and agents in the future, we created an
extendable, modular architecture for the Agent Mapper. Agents, such as Telegraf,
already have the functionalities for processing and aggregating monitoring data
and, therefore, are simple to transform to. However, agents that do not support
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one or more of those functionalities require a more complicated transformation.
The most basic agent always has a means to collect data and send it to the
destination, i.e., the monitoring server. However, if a modeled generic agent
contains functionality such as aggregation and the system administrator wants to
transform this generic agent into a solution-specific agent that does not support
this functionality, there are two options: (i) the system administrator receives a
warning that the transformation is not possible and needs to select a different
solution-specific agent, which the generic agent should be transformed into. The
second option is the use of a Complex Event Processing (CEP) engine or similar
engines. The agent sends its collected monitoring data to this engine. Then,
the processing and/or aggregation nodes can be translated into CEP queries to
perform the needed functionalities and forward the monitoring data back to the
agent which further forwards it to the monitoring server. This greatly increases
the impact of generic agents since a transformation to many existing monitoring
agents is possible.

Phase 3 - Automatic Deployment: Especially in large-scaled scenarios with a
large number of VMs, any manual task becomes cumbersome, error-prone, and
simply does not scale. Therefore, an automatic deployment is essential [29,26].
There are many existing tools and platforms for automated deployment, such as
Docker [7] or Vagrant [12]. A few monitoring systems like Splunk [24] support
this feature as well. However, a standardized deployment framework is desirable,
since technologies tend to disappear over time.

An established deployment standard is the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [20] of the Organization for the
Advancement of Structured Information Standards (OASIS). TOSCA enables a
two-step software deployment approach. First, a topology template is created,
modeling the application, platform, and infrastructure components. Second, this
topology is used to deploy the components in the corresponding infrastructure.

One implementation of the TOSCA standard is OpenTOSCA [28]. Open-
TOSCA provides an eco system consisting of the TOSCA topology modeler
Winery [8], the OpenTOSCA container that handles the actual software deploy-
ment based on the topology, and a self-service portal called Vinothek [4]. TOSCA
and its implementation OpenTOSCA can be used in our approach for automated
deployment of monitoring agents. Since TOSCA is a standard, it provides a high
degree of applicability and is future-secure.

We modeled a topology template using OpenTOSCA to deploy a monitoring
system and a template to deploy agents. If a new virtual machine is started, an
agent is deployed on it to guarantee a monitoring from the beginning.

Phase 4 - Adaption:

According to Gartner [2], flexibility against a changing IT architecture is a
key objective when investing in new monitoring systems. The modeling of agents
is influenced by the current business needs and the status of the current cloud
environment. However, both of these variables may change over time. In this
case, starting a new agent life cycle is excessive when only minor changes to
the agent are required. Instead, the user should be able to access the previously
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modeled generic agents and change them to fit the current needs. The changes
are then propagated to all agents originating from this generic agent. To support
this process, we implemented a prototype as shown in Fig. 5. The user models a
new generic agent or changes an existing one via the web-based modeling tool,
which is connected to the Deployment Server on the Monitoring Server. The
deployment server is responsible for the management of the generic agents, which
are stored in the Generic Agent Database. On the virtual machines, a Deployment
Agent periodically requests the configuration (the transformed generic agent) for
the agent and resolves differences between the retrieved configuration and the
currently used one. In case of changed configurations or failures, the deployment
agent automatically restarts the agent.

4 Related Work

The transformation of abstract models to a concrete executable implementation is
a commonly used means in order to abstract from technical details. Consequently,
domain users are able to create models on a high level of abstraction without
requiring technical knowledge about their realization. The use of a single abstract
model leads to genericity and reduces the threat of vendor lock-in, since it is not
dependent on specific technologies. In the following, approaches are described
that aim at a similar approach for transforming abstract models into concrete
ones.

Falkenthal et al. [11] aim towards a generic approach to transform abstract
pattern languages to concrete solution implementations. Since their approach
is generic, they do not focus on a specific domain but rather discuss how such
a transformation can be conducted in general. In this paper, we apply this
approach to the concrete domain of monitoring by introducing a mapping of
generic monitoring templates to concrete, executable implementations.

Eilam et al. [9] introduce an approach for model-based provisioning and
management of applications. Through transformations, application topologies
are mapped onto different levels of abstraction in order to finally create exe-
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cutable implementations that can be deployed. However, Eilam et al. require a
premodeling of concrete implementation artifacts, which is not necessary in our
approach.

Furthermore, Eilam et al. introduce a combination of a model-based and
workflow-based approach for the automated provisioning of the transformed
applications. This approach creates a provisioning model based on workflow
technology that can be used for automated deployment. In this paper, we also
introduce an approach how the templates can be automatically deployed after
transformation, which uses existing software deployment technologies instead of
this heavy-weight workflow-based approach.

Similar approaches regarding the agent templates are introduced by Kiin-
zle et al. [17] and Cohn et al. [5] that use artifact-centric approaches. In these
approaches, so-called business artifacts are created, i.e., abstract representations
of software components with the goal of hiding technical details. These artifacts
can be mapped onto concrete executable implementations, as shown by Sun
et al. [25]. However, the business artifacts of Kiinzle et al. and Cohn et al. are
vaguely described, i.e., only on a conceptual level, an example application is
missing. In this paper, we introduce a concrete scenario our concepts can be
applied to.

Reimann [22] introduces generic patterns for simulation workflows that are also
mapped onto concrete executable implementations, in his approach onto workflow
fragments provided in the Business Process Execution Language (BPEL) [30].
However, Reimann focuses exclusively on workflows. In contrast, we focus on
agents and model their capabilities through tailored templates.

In our previous work [15], we introduced so-called Situation Templates, which
represent abstract descriptions of situations to be recognized without the necessity
to provide technical implementation details. These situation templates can be
mapped onto various formats, for example, complex event processing queries. In
this paper, we adapt this concept to the domain of cloud monitoring to make it
suitable for modeling of agents.

5 Conclusion

The monitoring of complex cloud environments can lead to several challenges.
Selecting an unsuitable monitoring system or evolving business needs may lead
to a required replacement of the monitoring system. However, monitoring agents
are spread across the IT environment and, oftentimes, can be tightly integrated
into the monitoring system. Therefore, the replacement of the agents is a time-
consuming task and the modeling of new agents requires technical expertise. For
this, we introduce generic agent templates to unburden system administrators by
creating an abstraction to the modeling of agents. System administrators model
generic agents once and domain experts provide the transformation logic required
to transform the generic agents to solution-specific agents. This way, generic
agents can be transformed into several solution-specific agents without further
additional work. Expressiveness is provided by the agent pipeline consisting
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of Input, Processor, Aggregator, and Output Nodes. Of each node, multiple
instances can be created so that system administrators can model arbitrary agent
configurations. Furthermore, if solution-specific agents do not support some of
those functionalities, e. g., processing, a transformation to CEP queries is also
possible to even support agents with missing functionalities. Lastly, an extended
life cycle supports management, automatic deployment, and adaptation of agents
at runtime using state-of-the-art and standardized technologies. Transformations
to solution-specific agents are automated via the Agent Mapper. The automatic
deployment is enabled using the deployment standard TOSCA. Adaptations to
generic agents at runtime are automatically propagated to all according agents.
In future work, we plan to validate our approach on multiple monitoring
systems and extend the usage to the IoT domain by using the open-source IoT
platform MBP [23,14]. Furthermore, we plan to apply the concept of generic
templates to other parts of the monitoring system as well to further support
a possible replacement and reduce the risk of vendor lock-ins. Similar to agent
configurations, alerting rules are defined by system administrators to inform
them about problems in the monitored IT environment. Therefore, analogous to
generic agent templates, generic alerting rules may present similar benefits.
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