
In: Welzer, T. et al. (Eds.) Advances in Databases and Information Systems. ADBIS
2019. Lecture Notes in Computer Science, vol 11695. Springer, Cham, pp. 373–389,
2019. © 2019 Springer-Verlag. This is the author’s version of the work. It is posted
at https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/
adbis_19_echoes.pdf by permission of Springer-Verlag for your personal use. The final
publication is available at Springer via 10.1007/978-3-030-28730-6_23.

ECHOES: A Fail-safe, Conflict Handling, and

Scalable Data Management Mechanism for the

Internet of Things

Christoph Stach and Bernhard Mitschang

Institute for Parallel and Distributed Systems, University of Stuttgart,
Universitätsstraße 38, D-70569 Stuttgart, Germany

{stachch,mitsch}@ipvs.uni-stuttgart.de

Abstract. The Internet of Things (IoT) and Smart Services are becom-
ing increasingly popular. Such services adapt to a user’s needs by using
sensors to detect the current situation. Yet, an IoT service has to capture
its required data by itself, even if another service has already captured it
before. There is no data exchange mechanism adapted to the IoT which
enables sharing of sensor data among services and across devices.
Therefore, we introduce a data management mechanism for the IoT. Due
to its applied state-based synchronization protocol called ECHOES. It is
fail-safe in case of connection failures, it detects and handles data conflicts,
it is geared towards devices with limited resources, and it is highly scalable.
We embed ECHOES into a data provisioning infrastructure, namely the
Privacy Management Platform and the Secure Data Container. Evaluation
results verify the practicability of our approach.

Keywords: IoT · Data Exchange · Synchronization Protocol.

1 Introduction

The Internet of Things (IoT) has long left its early stages of development behind
in which only technology evangelists and early adopters used Smart Things1. Due
to omnipresent Internet connectivity options and increasing bandwidth speeds,
devices with a permanent Internet access grew proliferated in the early 2000s.
Yet, it was not until the IoT became more and more invisible, by integrating
sensors into everyday objects, that this technology found its way into limelight [7].

The Internet of Things is extremely intriguing for both consumers and service
providers as the data collected by Smart Things is extremely valuable. Since these
devices are usually permanently close to their users and their sensors are able to
record a wide range of data, data scientists can gain profound knowledge about
the users. Services can thus be tailored to individual customers. Application cases
can be found in any domain, such as Smart Homes, Smart Cars, or Smart Health.

1 We use the term ‘Smart Thing’ for any kind of device which is able to connect to
other devices in order to exchange data with each other and has the ability either to
monitor its environment or to control other devices.

https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/adbis_19_echoes.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/adbis_19_echoes.pdf
https://opencms.uni-stuttgart.de/fak5/ipvs/departments/as/publications/stachch/adbis_19_echoes.pdf
https://doi.org/10.1007/978-3-030-28730-6_23


374 Christoph Stach and Bernhard Mitschang

So, it is not surprising that analysts predict that by 2020 over 50 billion
Smart Things will be in use and the market will be shared among many service
providers [13]. Each device vendor and each service provider has its own way
of storing and processing the captured data. Therefore, the effort to collect all
data required for a certain service is cumbersome—different services have to
collect the same data over and over again, as there is no simple data exchange
mechanism among services, let alone a direct data exchange across Smart Things.
Yet, the IoT can only unfold its true potential if all user data is available to
all of his or her Smart Things at any time. Due to the vast amount of data,
a smart synchronization mechanism is required, i. e., the volume of data being
transmitted has to be as low as possible and the computational costs for Smart
Things have to be minimal as these devices often have very limited resources [35].

Since none of the existing data exchange approaches for the IoT provide
these characteristics, we introduce a state-based synchronization protocol for the
Internet of Things, called ECHOES, and apply it to a data exchange mechanism.
To this end, we make the following three contributions:

I) We introduce an approach that enables Smart Things to exchange their
data using a central synchronization server. For this purpose, our state-based
synchronization protocol is used. Whenever changes to the client’s data stock
(i. e., adding new data sets, modifying existing data sets, or removing data sets)
are done, it calls synchronization server and applies the changes to the remote
data stock. Analogously, the changes are then applied to all other Smart Things
of this user by the synchronization server. Due to the state-based procedure, our
approach is resource-friendly in terms of run time performance and the volume of
data being transmitted. II) As for Smart Things it cannot be ensured that they
have a permanent connection to the server, our protocol also supports an offline
mode. That is, Smart Things are able to gather data locally and synchronize with
the server as soon as connectivity is back on. In this mode also, a resource-friendly
proceeding is ensured. It has to be mentioned that in this stage conflicts can
occur (e. g., if two offline Smart Things modify the same data set) and ECHOES
is able to detect and resolve them. III) We embed ECHOES into an existing
data provisioning infrastructure for Smart Things, namely the PMP (Privacy
Management Platform) [27] and the SDC (Secure Data Container) [29]. The
SDC is a shared data storage for IoT services and the PMP provides access to
this data stock. By integrating ECHOES, we enable the synchronization of all
SDCs and therefore, the PMP is able to provide all collected data of a user to any
service on every Smart Thing. As the PMP provides fine-grained access control
mechanisms, this data exchange is done in a privacy-aware manner.

The remainder of this paper is as follows: Section 2 introduces a real-world
application case from the Smart Health domain, in which it is mandatory for Smart
Things to exchange their data. From this, we derive a requirement specification
in Sect. 3. We discuss related work in Sect. 4. Subsequently, we introduce the
protocol of ECHOES in Sect. 5 and detail on its implementation based on the
PMP and the SDC in Sect. 6. An evaluation of ECHOES is given in Sect. 7.
Finally, Sect. 8 concludes this paper.



ECHOES 375

2 Application Case

In the following, we depict an IoT use case from the Smart Health domain. Smart
Health applications are especially beneficial for patients suffering from chronic
diseases such as diabetes. These patients have to visit their physicians regularly
in order to do medical screenings and to keep track of their disease progression.
Supported by Smart Things however, the patients are able to perform the required
medical check-up at home by themselves. This does not only save a lot of money,
but it also enables physicians to focus on emergencies [25]. Smart Phones are
considered as particularly useful in the context of Smart Health application [11].
On the one hand, people always carry their Smart Phones with them and on the
other hand, these devices are equipped with a variety of sensors which are relevant
for Smart Health applications. For instance, Knöll emphasized the importance
of the location where a medical reading was taken for its interpretation [14]. In
addition, it is possible to connect medical devices such as glucometers or peak
flow meters to Smart Phones via Bluetooth.

An example for such an application is Candy Castle [26]. The game is designed
for children suffering from diabetes and is intended to help them coping with the
continuous blood glucose monitoring. To this end, the children have to defend
a virtual castle against attacks by dark forces (as a reflection of their disease).
To protect the castle, the children have to build walls which hold the attackers
back. They do this by doing a blood glucose reading. As the walls gradually wear
down, Candy Castle motivates players to regularly check their blood sugar levels.
Additionally, the virtual castle is linked to the location of the children’s home
and each reading is supplemented with the GPS coordinates where it was taken.
Thereby, the walls can be inserted geographically correct in the game and the
players are motivated to check their blood sugar levels in many different places.
From a medical point of view, the children get used to the continuous blood
glucose monitoring and physicians are able to identify healthy and unhealthy
places in the children’s environment [14]. Further sensors can be integrated to
identify unhealthy factors more precisely. For instance, Smart Bracelets can be
used to detect certain activities (e. g., administering insulin) [16], microphones can
be used to determine the child’s mood [18], and cameras can be used to calculate
the bread units of the children’s food [3]. The blood glucose measurement can
also be integrated into the game automatically, e. g., via the Apple Watch [34].

However, such an application requires a fast and simple data exchange between
the patient and his or her physician [6]. And Candy Castle is only one of many
Smart Health applications. For example, a COPD application requires similar
data, such as the location of a metering [31]. To avoid that every application
has to acquire the same data all over again, there is a growing trend towards a
quantified self [33]. That is, all of a user’s data on a specific domain is stored in
a central repository [5]. Yet, this is limited to the pre-defined types of data of
the repository vendor and it is not possible to use it for a generic use case.

So, it is necessary to have a generic mechanism to easily share data between
different Smart Things and applications to face the interconnection and data
exchange problems and thereby exploit the full potential of IoT applications [19].



376 Christoph Stach and Bernhard Mitschang

3 Requirement Specification

Although the IoT is designed as a decentralized network of independent devices,
the client-server model as shown in Fig. 1 is still predominant [22]. So, a data
exchange mechanism for the IoT can capitalize on the advantages of a server,
namely its high availability, computing power, and scalability. None of this
is provided by the Smart Things. Thus, clients should mainly focus on data
gathering and processing and not the management of the data exchange. These
management tasks have to meet the following requirements:

R1 – Availability of Data: As the given application case shows, a permanent
network connection must not be required to collect and process data. Users have
to be able to edit data locally offline (e. g., do a blood glucose reading) and
synchronize it with other devices (e. g., their physicians’ devices) later when there
is a network connection. This guarantees a fail safe usage of IoT applications.

R2 – Conflict Handling: When a user edits the same data set offline on
multiple devices, conflicts might occur during synchronization (e. g., a user enters
contradictory readings). So, conflicts must be handled without data loss.

R3 – Efficiency: Synchronization has to deal with limited resources of Smart
Things, e. g., limited data transfer volume, limited computational power, limited
memory, and limited battery. So, the amount of metadata must be minimal and
the calculation of the data that has to be transferred must be simple and fast.

R4 – Transparency: The synchronization must be transparent for the user and—
as good as possible—also for application developers. That is, user interaction has
to be largely avoided and the developers’ effort must be minimal.

R5 – Genericity: The mechanism must not be restricted to a certain domain
or a specific data schema. The data has to be available to any application.

R6 – Scalability: As users interact with an increasing number of Smart Things
and IoT applications, many read and write data accesses must be expected. So,
synchronization has to be able to cope with a large number of mobile clients.

R7 – Security: The IoT handles a lot of private data, i. e., security is a key
aspect. This applies in particular to data storage, data access, and data sharing.

Clients Synchronization Server

...

High Availability

High Computing Power

High Scalability

Multiple Data Sources

Many Applications

Fig. 1: Client-Server Model for the IoT.



ECHOES 377

4 Related Work

With these requirements in mind, we look at related work. We consider work
from three different categories: a) data sharing approaches for Smart Things,
b) Cloud-based solutions for data sharing, and c) synchronization approaches for
the IoT. We focus on Android-based solutions, as this OS is becoming increasingly
predominant in the IoT context, e. g., Android Things2 or emteria.OS3.
Smart Thing Approaches. Android’s safety concept requires applications
to run in sandboxes, strictly isolated from each other. A direct data exchange
among applications is therefore not intended. In order to support data sharing,
Android introduces so called Content Providers, i. e., restricted interfaces to the
data sets of an application [12]. Although the interfaces are standardized, it is
still cumbersome to use Content Providers. An application has to specify in the
program code which Content Providers—i. e., which other applications—it needs
to access. As a result, this approach largely lacks genericity. To overcome this flaw,
MetaService [8] introduces a temporary shared object storage. In this storage,
applications can deposit a single data object and another application is able
to obtain it. When another object is deposited, any previously stored object is
overwritten. In this respect, MetaService works similar to the Clipboard which is
common on desktop PCs. However, MetaService is not suitable for the distribution
of comprehensive data volumes. This is provided by the SDC [28,29]. The SDC
is a shared database for Android that can be used by any application. Due to
its fine-grained access control, users can specify precisely, which application may
access which data set. With the CURATOR [30] extension, NoSQL databases
are also supported so that, for instance, objects can be exchanged directly among
applications. More information on the SDC is given in Sect. 6. However, none of
these approaches supports data exchange across devices. Mobius [10] can be used
for this purpose. It introduces a system-wide database which is synchronized
with a Cloud database to share data across devices. However, Mobius uses locally
virtual partitions to realize access control. An application has access to its own
partition, only. That is, in order to share data with several applications the
respective data has to be added to each respective partition. Although data
sharing across devices is very simple, data sharing among applications is still
cumbersome.
Cloud-based Approaches. There is a variety of Cloud services that enable
data sharing across Smart Things. The most straightforward approach is a Cloud
database in which applications can store and retrieve their data. These databases
are usually associated with a specific application or class of applications and have
a fixed data schema. For instance, there is the Glucose Web Portal [15], which
can be used by applications related to diabetes. In addition to the storage of data,
the Glucose Web Portal also provides some health services, e. g., the analysis of
diabetes data. That is, an application has to collect health data and send it to
the service and then the not only the data itself but also the analysis results are
2 see https://developer.android.com/things/
3 see https://emteria.com/



378 Christoph Stach and Bernhard Mitschang

available to any other application. Similar services are available for other diseases
such as COPD as well [32]. A more generic approach is the HealthVault [5].
A user has to create a HealthVault profile. Then s/he can store and link any
kind of health data captured by any Smart Thing in his or her profile. This
data is available for any application for its analysis and presentation. However,
these approaches do not support user-defined types of data, an application
automatically has access to all data, and since the data is only stored in the
Cloud, it is not available if the Internet connection is interrupted. Many database
vendors also provide a mobile version of their databases. These versions often
support synchronization with a Cloud-based back-end. Couchbase Mobile4 is such
a mobile version. However, its synchronization is designed to ensuring that the
data sets of a particular application are kept up to date on all of a user’s Smart
Things. Data sharing among different applications is not supported. Also, the
synchronization only operates with the mobile client from Couchbase—other
databases are not supported. Resilio Sync5 improves the availability of such a
synchronization by adopting a P2P approach instead of a central database [23].
Yet, this enables only the exchange of files and not of single data sets and it has
fairness issues, which cause significant slowdowns [20].
Synchronization Approaches. Syxaw [17] brings the two aforementioned cate-
gories together by introducing a middleware for the synchronization of structured
data. It enables multiple users to edit documents and folders collaboratively, and
Syxaw takes care of merging the changes. However, since it operates on files, the
computation of changes is expensive and locks on at file level are very restrictive.
For a use case as presented in Sect. 2, a fine-grained synchronization of data
sets is much better suited. This is achieved by SAMD [9]. In order to reduce the
computational effort for the mobile clients, all expensive operations are carried
out server-sided. This includes a multi-layered calculation of hash values for
the managed data sets. Thereby it is sufficient to exchange comparatively small
hash values for most of the synchronization process instead of the actual data.
SWAMD [2] follows a quite similar approach, but its focus is on wireless networks,
which is common in an IoT environment. Yet, both approaches are designed for
a deployment scenario in which synchronization takes place infrequently. A con-
tinuous synchronization of data requires a permanent recalculation and exchange
of the hash values, which causes high costs. Contrary to this, MRDMS [24]
represents a timestamp-based synchronization approach. The timestamps enable
MRDMS to reflect the temporal correlation of changes. In this way, the required
data transfer volume can be further reduced compared to SAMD. However,
since less data is used for synchronization, conflicts often cannot be resolved.
Furthermore, lost updates cannot be prevented. By incorporating snapshots into
such approaches, automatic conflict resolution can be improved [21]. Yet, this
increases computational effort and data volumes.

As none of these approaches supports a use case as given in Sect. 2 as well as
the requirements from Sect. 3, we introduce a solution in the following.
4 see https://www.couchbase.com/products/mobile
5 see https://www.resilio.com



ECHOES 379

5 The ECHOES Protocol

In ECHOES, we do not pursue a P2P approach as it is not guaranteed that all
Smart Things are permanently available and interconnected. A central, perma-
nently available server component therefore ensures the fastest and most reliable
data distribution. Moreover, computation-intensive tasks can be shifted to the
server in order to reduce computational effort for the Smart Things. A one-way
push or pull approach is inefficient as data changes can occur on both the server
and the clients. Therefore, we apply a two-way state-based approach in our
synchronization protocol. The synchronization steps can be simplified, since it
is possible to decide based on the respective state which actions are necessary.
Furthermore, we introduce version numbers for conflict resolution.
Offline Mode. For the initial synchronization or after a connection failure, the
client has to process seven states sequentially (see Fig. 2). This is due to the
fact that during the offline period various changes may have been made to the
databases of both the client and the server.

First, it is necessary to check whether new data sets have been added. In the
primary pull (PPL) the client sends all IDs of its data sets to the server and the
server calculates the delta to its central database. As a response to the PPL, the
server sends all data sets that are not available on the client. The client sets the
status of these data sets to RELEASED. The client then performs a primary push

(PPH) by sending all data sets that were added in the offline stage—i. e., data sets
with the status NEW—to the server. When the server acknowledges receipt, their
statuses are set to RELEASED.

ECHOES then handles edited data sets. In the primary client update (PCU)
the client sends all version numbers of data sets with status RELEASED that were
not handled by the previous steps to the server. The version number of a data
set is incremented when a RELEASED data set is edited. The server sends back
updates for all data sets for which a newer version exists. In the primary server

update (PSU), the client sends then all data sets with the status MODIFIED—i. e.,
data sets that were edited during offline stage—to the server. The server checks
based on the version number whether it can apply the update or whether there

PPLDisconnected PPH PCU PSU

PCDPSDPCPACTIVE

INSERTPL INSERTPH UPDATEPL

UPDATEPH

DELETEPLDELETEPHConflicts?

PPL: Primary Pull PPH: Primary Push PCU: Primary Client Update PSU: Primary Server Update
PCD: Primary Client Delete PSD: Primary Server Delete PCP: Primary Conflict Pull

Fig. 2: ECHOES Offline Synchronization Process (applies to server and client).



380 Christoph Stach and Bernhard Mitschang

is a conflict with a change made by another client. Accordingly, the status on
the client is set to RELEASED or the conflict is logged.

From the previous steps, the server already knows all the unmodified data
sets on the client (status RELEASED). If these sets do not exist on the server any
more, they must be deleted on the client as part of the primary client delete

(PCD). Accordingly, the primary server delete (PSD) synchronizes local deletions.
To this end, deletions performed during offline mode are not applied to the data
stock immediately, but the status of the affected data sets is set to DELETED and
the version numbers are incremented. During PSD, the server checks whether the
data can be deleted or whether there is a conflict and gives feedback to the client.

Finally, ECHOES deals with conflict resolution. For all data sets flagged
as conflicting, the client receives the versions available on the server. As these
conflicts cannot be resolved automatically, the primary conflict pull (PCP) requires
user interaction. The user has to decide which version is the valid one. The version
number of this data record is then adjusted. The new version number is the
maximum of the two former version numbers plus 1.

After these seven steps, the online mode is activated. Nota bene, authentication
and authorization of the Smart Things towards the synchronization server are
not part of the ECHOES protocol. This has to be done in a preliminary step.
ECHOES handles synchronization, only. Yet, we tackle both of these issues in
our implementation (see Sect. 6).
Online Mode. In online mode (see Fig. 3), client and server mutually send
acknowledgement messages periodically as a heartbeat message. In this process,
both change their state from ACTIVE to STANDBY and vice versa. That way, no
permanent (energy-consuming) connection is necessary.

Each party (i. e., client and server) can continue to work and process data
locally, regardless of its current state. To this end, each party adds corresponding
tasks to a local queue. This queue is processed as soon as the respective party
is active. Each of these tasks refers to a single data set, only. As a result, the
processing is significantly less computationally expensive than the synchronization
in offline mode and only a single state has to be traversed per task.

A reasonable tradeoff must be achieved in this respect. Long ACTIVE-STANDBY
cycles cause less communication overhead (for passing the activity token, i. e., the
heartbeat message), but more local changes—and therefore potential conflicts—
might occur per cycle and it takes more time until the changes are applied to all
devices. Short cycles cause increased communication overhead, even if there have
not been any changes during the STANDBY phase.

Immediate pull (IPL) and immediate push (IPH) are the counterparts in the
online mode to the PPL and PPH state in the offline mode. Conflicts do not have
to be considered in these states. The IDs used by ECHOES contain a reference
to the Smart Thing that generates the data. This prevents conflicts if new data
is simply added.

When data sets are edited, an immediate update pull (IUPL) or respectively
an immediate update push (IUPH) is triggered. First, the server checks based
on the version number whether the changes can be applied immediately to all



ECHOES 381

IPHIUPHIDPH ACTIVE STANDBY

IPL

IUPL

IDPL

Heartbeat

Heartbeat

IPL: Immediate Pull IPH: Immediate Push
IUPL: Immediate Update Pull IUPH: Immediate Update Push
IDPL: Immediate Delete Pull IDPH: Immediate Delete Push

Fig. 3: ECHOES Online Synchronization Process (applies to server and client).

clients. If this is the case, the status is set to RELEASED. If there is a conflict, the
server attempts to resolve it by merging the changes. If that is successful, the
new version of the data set is distributed to all clients. If the conflict cannot be
resolved automatically, the client that submitted the change is notified and the
user must resolve the conflict manually. To prevent the synchronization from
being blocked by this user interaction, the data set is marked as a conflict and
the update task is added to the client’s queue again. Once the conflict is resolved,
the conflict flag as well as the update task are removed, and the changes are
synchronized by the server on all clients.

Finally, immediate delete pull (IDPL) and immediate delete push (IDPH) deal
with the synchronization of delete operations. The client (or analogously the
server) receives the ID and the version number of the data set in question. If
the version number is equal to or higher than the one of the local instance, the
data set is immediately deleted. Otherwise the local version was edited, and the
corresponding synchronization has not been carried out yet—i. e., the IUPH task
is still in the client’s queue. In such a case, the deletion operation is refused, and
the user is informed about the conflict. If the conflict occurs on the server, the
resolution takes place on the client that caused the conflict. A dedicated conflict
state is not required in online mode, since conflicts are resolved immediately
when they occur.

Although ECHOES enables synchronization across devices, there is still a lack
of a data exchange mechanism among applications. Therefore, an implementation
is presented in the following, in which ECHOES operates as a background service
that is available to any application.



382 Christoph Stach and Bernhard Mitschang

6 Implementation of ECHOES

The PMP [27] is a privacy system for Smart Things. To this end, it isolates
applications form data sources and controls any access to the data via its fine-
grained permissions. In other words, the PMP can be seen as a middleware that
operates as an information broker. The PMP’s key feature is that it is extendable.
New data sources can be added at any time as so-called Resources. Subsequently,
applications can access these data sources via the PMP.

The SDC [29], a database system based on SQLite, is such a Resource. It offers
security features, e. g., the stored data is encrypted and it provides a tuple-based
access control. In addition, it has a customizable schema to be compatible to any
application and stored data can be partitioned to increase performance.

As the SDC is a PMP Resource, it is available to any applications. Thus,
data can be exchanged among applications via the fine-grained access control. By
integrating ECHOES into the SDC, an exchange across devices can be realized.

Figure 4 shows the data access and synchronization process of an SDC-based
ECHOES implementation. Initially, an application requests access to the local
SDC instance from the PMP (1). Then, the PMP checks whether the application
has the required permissions. If the application is authorized to use the SDC,
the PMP enables access. The application can use the SDC like an internal
database, i. e., it can query, insert, update, or delete data (2). If data from
another application is affected, the SDC checks the required access rights.

Due to the integration of ECHOES, the SDC detects changes to the data
stock and synchronizes it (3). Depending on whether the SDC is currently in
offline or online mode, this involves different steps. If it is in offline mode, it must
establish a connection to the synchronization server and perform a complete
synchronization (see Fig. 2). Otherwise, the respective type of alteration can be

(3)

(7)

SDCPMPAppx

Smart Thing1

(1) (2)

SDCPMPAppy

Smart Thingn

(8)(9)

...

Synchronization Server

Server 
Thread1

Server 
Threadn

E

v

e

n

t

B

u

s

(4)

(5)

(6)

Fig. 4: Data Access and Synchronization Process.



ECHOES 383

ECHOES_DATA_SETS

ID MODE VERSION TIMESTAMP SHARE PAYLOAD

INT FK DATA

Fig. 5: Relational Schema for the Mobile Database.

submitted to the server (see Fig. 3). In this process, the changes are applied to the
central database (4). The synchronization server then creates an event to notify
all other SDC instances via its event bus (5). These notifications are transformed
into tasks and added to the threads of the respective Smart Things (6). Finally,
the necessary changes are applied to their local SDC instances (7). The data
from Smart Thing1 is then available to applications on Smart Thingn (8). Again,
the PMP handles access control (9).

For the integration of ECHOES into the SDC, its data schema has to be
adapted, as additional metadata is required for synchronization. The extended
relational schema is shown in Fig. 5. First, a new ID is added for each data
set. This ID contains references to the Smart Thing that created or edited the
data set most recently. In addition, the mode of each data set has to be logged.
In addition to the four modes (NEW, RELEASED, MODIFIED, and DELETED) which
are required for synchronization (see Sect. 5), there is a fifth mode OFFLINE.
Data sets flagged with this mode are excluded from synchronization. If a conflict
cannot be resolved automatically, this is also indicated in the mode entry of the
corresponding data sets. The SDC then informs the user about the conflict and
s/he can decide which version should be valid. The VERSION of the data sets is
required by ECHOES to decide which version is valid. The TIMESTAMP entry is
not necessarily required for the synchronization as the version already represents
the chronological order in which the data was edited. Yet, the timestamps help
users to resolve conflicts as they are able to track exactly when which data set was
edited. SHARE is provided by the SDC. It is a foreign key to the maintenance
tables of the SDC. These tables have to be synchronized as well in order to enable
access control on all devices. Finally, the actual PAYLOAD is stored as well. An
individual data schema can be specified, just like in the native SDC.

The actual data transfer is realized as a flattened stream of characters. A
composer in the SDC converts the database entries into a sequence of key-value
pairs and a parser processes such a sequence and inserts the contained values into
the SDC. That way, the amount of data that needs to be transferred is minimized
as almost solely payload data is transferred. On the synchronization server, there
are corresponding counterparts according to the specifications in Sect. 5.

7 Evaluation

To evaluate the performance of our ECHOES prototype, we describe the evalua-
tion setup, present the evaluation results, and discuss whether ECHOES fulfills
all requirements towards a data exchange mechanism for the IoT.



384 Christoph Stach and Bernhard Mitschang

HealthRecord

id : INT
activity : INT
breadUnits : REAL
bsl : INT
condition : INT
latitude : REAL
longitude : REAL
mood : INT
patient : FK
timestamp : INT
freeText : CHAR(140)

Fig. 6: Candy Castle Data Model Used for Evaluation.

Evaluation Setup. For the evaluation, we draw on Candy Castle [26]. This ap-
plication is executed on two Smart Phones and the captured data is synchronized
on both devices. For this purpose, we extended the SDC-based data management
of Candy Castle by ECHOES—the applied data model of the payload is shown in
Fig. 6. In addition, we set up an ECHOES synchronization server. To get a better
understanding of how different hardware configurations and different Android
versions affect the performance of ECHOES, we perform our measurements on
two different types of Smart Phones: on the one hand the LG Nexus 5X (𝑆1)
with a current Android version and on the other hand the Huawei Honor 6 Plus

(𝑆2) with more memory and more CPU cores but a lower clock speed. Both are
intentionally lower middle-class models, since their hardware setup is similar to
those of other popular Smart Things, such as the Raspberry Pi. MariaDB is used
on the server. MariaDB is a highly powerful and scalable database with strong
similarities to MySQL [1,4]. A detailed evaluation setup is given in Table 1.

For the evaluation, we examine four different scenarios for both, the offline
mode as well the online mode: a) Initially, both Smart Phones are disconnected
and an ascending number of data sets (from 100 up to 6, 400) is randomly
generated on one Smart Phone. Then, both devices are connected. b) Subsequently,

Table 1: Evaluation Setup.
Smart Thing 𝑆1 Smart Thing 𝑆2 Server

OS Android 8.1.0 Android 5.1.1 Debian 9.4

CPU Snapdragon 808 Kirin 925 8 * 3.6 GHz

RAM 2 GB 3 GB 8 GB

Connection 50 Mbit/s 50 Mbit/s 100 Mbit/s

Database SQLite SQLite MariaDB



ECHOES 385

both Smart Phones are disconnected again. Then, on one device 50 % of the data
sets are edited and synchronization is started. c) Next, 50 % of the data is edited
on both devices in offline mode, i. e., ECHOES must resolve conflicts. d) Finally,
50 % of the data sets are deleted on one device and synchronization is started.

In each scenario, we take the time until synchronization is completed. These
scenarios are repeated with permanently enabled connectivity to evaluate online
mode. In this case, the duration of the synchronization of each individual operation
is measured. Each test is performed with a pair of Smart Thing 𝑆1 and 𝑆2. After
each run, all databases are reset to avoid side effects caused by warm caches. Each
test is carried out for 10 times and the average processing time is considered.

Evaluation Results. All evaluation results for ECHOES’s offline mode are
shown in Fig. 7. Figure 7a shows the time until newly added data sets are
available on all devices (PPL & PPH). The processing time increases nearly linear
to the number of data sets. On average, the synchronization of a single newly
added data set takes about 84 ms on a pair of 𝑆1 and about 99 ms on a pair of
𝑆2. It is striking that ECHOES is performing very well on the weaker hardware.
A considerably more decisive factor is the OS version. These findings are also
reflected by the three other scenarios.

The processing time when changes are made to 50 % of the data sets (PCU
& PSU) is shown in Fig. 7b. This processing time also increases linearly, but it
is significantly higher than in the previous scenario. Although only half of the
data sets have been changed, the other half must also be cross-checked with the
server. Nevertheless, a processing time of 180 ms or 215 ms per edited data set is
still reasonable.

The effect of conflict resolving (PCP) on the processing time is shown in Fig. 7c.
This conflict resolving increases the costs caused by ECHOES (213 ms or 254 ms
per edited data set). Yet, conflicts are unlikely in our application case.

The deletion of data sets (PCU & PSU) is very fast (24 ms or 28 ms per data
set, see Fig. 7d).

In the online mode, changes (regardless whether it is add, modify, or delete)
are available on all devices after about 350 ms. The detailed costs are stated in
Table 2. As shown in Sect. 5, conflicts need not to be considered explicitly in
online mode since they are handled by the three listed operations already. The
online synchronization takes longer than the synchronization of a single data
set in offline mode, as the communication overhead required to initiate the data
exchange is generated only once for the total bulk of transferred data. These costs

Table 2: Processing Time of ECHOES’s Online Mode.
Add Modify Delete

Smart Thing 𝑆1 365 ms 368 ms 309 ms

Smart Thing 𝑆2 398 ms 402 ms 337 ms



386 Christoph Stach and Bernhard Mitschang

100 400 1,600 6,400

200

400

600

Number of Data Sets

P
ro

ce
ss

in
g

T
im

e
(i

n
se

c)

𝑆1

𝑆2

(a) Adding New Data Sets.

100 400 1,600 6,400

200

400

600

Number of Data Sets

P
ro

ce
ss

in
g

T
im

e
(i

n
se

c)

𝑆1

𝑆2

(b) Modifying Data Sets (no conflicts).

100 400 1,600 6,400

200

400

600

800

Number of Data Sets

P
ro

ce
ss

in
g

T
im

e
(i

n
se

c)

𝑆1

𝑆2

(c) Modifying Data Sets (conflicts).

100 400 1,600 6,400

50

100

150

200

Number of Data Sets

P
ro

ce
ss

in
g

T
im

e
(i

n
se

c)
𝑆1

𝑆2

(d) Deleting Data Sets.

Fig. 7: Overall Processing Time of ECHOES’s Offline Mode.

are thus allocated proportionally in offline mode among all data sets contained
in the bulk.

Discussion. As ECHOES has an online and an offline mode, it ensures avail-
ability even in case of connection failures. This enables users to continue working
and ECHOES takes care of the synchronization as soon as the connection is
reestablished (R1). Conflict handling is ensured, as ECHOES resolves conflicts
automatically due to its PCP state (R2). Evaluation results prove ECHOES
efficiency. Not only does it cope with limited resources, but also the required
metadata is minimal. Based on the memory consumption of an SQL database,
the payload in our application case requires 192 bytes per data set, while the
metadata occupies only 20 bytes. That is almost a ratio of 10 to 1. Obviously,
this is case-specific (R3). From an application’s point of view, transparency
is achieved. An application interacts with the SDC as if it is a local database
(R4). Also, genericity is ensured at the data schema of an SDC instance can be
customized (R5). The server-side scalability is ensured by the use of MariaDB
and as the SDC can be partitioned, the scalability can be further improved (R6).
Finally, the PMP and the SDC ensures privacy and security on the mobile



ECHOES 387

clients (R7). Therefore, ECHOES meets all requirements towards a data exchange
mechanism for the IoT.

8 Conclusion

The IoT is becoming increasingly popular. A growing number of applications are
emerging in various domains such as Smart Homes, Smart Cars, or Smart Health.
These IoT applications require a mechanism to share data. However, current data
sharing approaches do not fulfills all requirements towards such a mechanism.

Therefore, we introduce ECHOES, a state-based synchronization protocol for
the IoT. It provides four key features: 1) It supports an online and offline mode
to deal with connection failures. 2) It deals with conflicts when several parties
edit the same data set. 3) It can be executed on limited resources. 4) It operates
with any given data schema. We implement this protocol in a data provisioning
infrastructure for Smart Things (PMP & SDC). Thus, our prototype has three
further key features: 5) The SDC behaves like a local database. 6) The back-end
is highly scalable due to MariaDB. 7) The PMP and the SDC provide a wide
range of data security features. Evaluation results are very promising as changes
are available on all clients in less than 0.4 seconds.

Acknowledgment

We thank the BW-Stiftung for financing the PATRON research project and the
DFG for funding the SitOPT research project.

References

1. Aditya, B., Juhana, T.: A high availability (HA) MariaDB Galera Cluster across
data center with optimized WRR scheduling algorithm of LVS – TUN. In: TSSA ’15
(2015). https://doi.org/10.1109/TSSA.2015.7440452

2. Alhaj, T.A., Taha, M.M., Alim, F.M.: Synchronization wireless algorithm based
on message digest (SWAMD) for mobile device database. In: ICCEEE ’13 (2013).
https://doi.org/10.1109/ICCEEE.2013.6633944

3. Almaghrabi, R., Villalobos, G., Pouladzadeh, P., Shirmohammadi, S.: A novel
method for measuring nutrition intake based on food image. In: I2MTC ’12 (2012).
https://doi.org/10.1109/I2MTC.2012.6229581

4. Bartholomew, D.: MariaDB vs. MySQL. White paper, Monty Program Ab (2012)
5. Bhandari, V.: Enabling Programmable Self with HealthVault: An Accessible Per-

sonal Health Record. O’Reilly Media Inc. (2012)
6. Chan, M., Estève, D., Fourniols, J.Y., Escriba, C., Campo, E.: Smart Wearable

Systems: Current Status and Future Challenges. Artificial Intelligence in Medicine
56(3), 137–156 (2012). https://doi.org/10.1016/j.artmed.2012.09.003

7. Chase, J.: The Evolution of the Internet of Things. White paper, Texas Instruments
(2013)

https://doi.org/10.1109/TSSA.2015.7440452
https://doi.org/10.1109/ICCEEE.2013.6633944
https://doi.org/10.1109/I2MTC.2012.6229581
https://doi.org/10.1016/j.artmed.2012.09.003


388 Christoph Stach and Bernhard Mitschang

8. Choe, H., Baek, J., Jeong, H., Park, S.: MetaService: An Object
Transfer Platform Between Android Applications. In: RACS ’11 (2011).
https://doi.org/10.1145/2103380.2103391

9. Choi, M.Y., Cho, E.A.C., Park, D.H., Moon, C.J., Baik, D.K.: A Database Synchro-
nization Algorithm for Mobile Devices. IEEE Transactions on Consumer Electronics
56(2), 392–398 (2010). https://doi.org/10.1109/TCE.2010.5505945

10. Chun, B.G., Curino, C., Sears, R., Shraer, A., Madden, S., Ramakrishnan, R.:
Mobius: Unified Messaging and Data Serving for Mobile Apps. In: MobiSys ’12
(2012). https://doi.org/10.1145/2307636.2307650

11. Dayer, L., Heldenbrand, S., Anderson, P., Gubbins, P.O., Martin, B.C.: Smart-
phone medication adherence apps: Potential benefits to patients and providers.
Journal of the American Pharmacists Association 53(2), 172–181 (2013).
https://doi.org/10.1331/JAPhA.2013.12202

12. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE
Security Privacy 7(1), 50–57 (2009). https://doi.org/10.1109/MSP.2009.26

13. Hung, M. (ed.): Leading the IoT: Gartner Insights on How to Lead in a Connected
World. Gartner (2017)

14. Knöll, M.: Diabetes City: How Urban Game Design Strategies Can Help Diabetics.
In: eHealth ’08 (2009). https://doi.org/10.1007/978-3-642-00413-1_28

15. Koutny, T., Krcma, M., Kohout, J., Jezek, P., Varnuskova, J., Vcelak, P., Strnadek,
J.: On-line Blood Glucose Level Calculation. Procedia Computer Science 98(C),
228–235 (2016). https://doi.org/10.1016/j.procs.2016.09.037

16. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity Recognition Using Cell Phone
Accelerometers. ACM SIGKDD Explorations Newsletter 12(2), 74–82 (2010).
https://doi.org/10.1145/1964897.1964918

17. Lindholm, T., Kangasharju, J., Tarkoma, S.: Syxaw: Data Synchronization Mid-
dleware for the Mobile Web. Mobile Networks and Applications 14(5), 661–676
(2009). https://doi.org/10.1007/s11036-008-0146-1

18. Mehta, D.D., Zañartu, M., Feng, S.W., Cheyne II, H.A., Hillman, R.E.: Mobile
Voice Health Monitoring Using a Wearable Accelerometer Sensor and a Smartphone
Platform. IEEE Transactions on Biomedical Engineering 59(11), 3090–3096 (2012).
https://doi.org/10.1109/TBME.2012.2207896

19. Murnane, E.L., Huffaker, D., Kossinets, G.: Mobile Health Apps: Adop-
tion, Adherence, and Abandonment. In: UbiComp/ISWC ’15 Adjunct (2015).
https://doi.org/10.1145/2800835.2800943

20. Peng, Z., Pallelra, R.R., Wang, H.: On the measurement of P2P file
synchronization: Resilio Sync as a case study. In: IWQoS ’17 (2017).
https://doi.org/10.1109/IWQoS.2017.7969177

21. Phatak, S.H., Nath, B.: Transaction-centric Reconciliation in Disconnected Client-
server Databases. Mobile Networks and Applications 9(5), 459–471 (2004).
https://doi.org/10.1023/B:MONE.0000034700.03069.48

22. Ren, J., Guo, H., Xu, C., Zhang, Y.: Serving at the Edge: A Scalable IoT Archi-
tecture Based on Transparent Computing. IEEE Network 31(5), 96–105 (2017).
https://doi.org/10.1109/MNET.2017.1700030

23. Scanlon, M., Farina, J., Kechadi, M.T.: Network Investigation Methodol-
ogy for BitTorrent Sync. Computers and Security 54(C), 27–43 (2015).
https://doi.org/10.1016/j.cose.2015.05.003

24. Sethia, D., Mehta, S., Chowdhary, A., Bhatt, K., Bhatnagar, S.: MRDMS-
mobile replicated database management synchronization. In: SPIN ’14 (2014).
https://doi.org/10.1109/SPIN.2014.6777029

https://doi.org/10.1145/2103380.2103391
https://doi.org/10.1109/TCE.2010.5505945
https://doi.org/10.1145/2307636.2307650
https://doi.org/10.1331/JAPhA.2013.12202
https://doi.org/10.1109/MSP.2009.26
https://doi.org/10.1007/978-3-642-00413-1_28
https://doi.org/10.1016/j.procs.2016.09.037
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1007/s11036-008-0146-1
https://doi.org/10.1109/TBME.2012.2207896
https://doi.org/10.1145/2800835.2800943
https://doi.org/10.1109/IWQoS.2017.7969177
https://doi.org/10.1023/B:MONE.0000034700.03069.48
https://doi.org/10.1109/MNET.2017.1700030
https://doi.org/10.1016/j.cose.2015.05.003
https://doi.org/10.1109/SPIN.2014.6777029


ECHOES 389

25. Silva, B.M.C., Rodrigues, J.J., de la Torre Díez, I., López-Coronado, M., Saleem, K.:
Mobile-health: A Review of Current State in 2015. Journal of Biomedical Informatics
56(August), 265–272 (2015). https://doi.org/10.1016/j.jbi.2015.06.003

26. Stach, C.: Secure Candy Castle — A Prototype for Privacy-Aware mHealth Apps.
In: MDM ’16 (2016). https://doi.org/10.1109/MDM.2016.64

27. Stach, C., Mitschang, B.: Privacy Management for Mobile Plat-
forms – A Review of Concepts and Approaches. In: MDM ’13 (2013).
https://doi.org/10.1109/MDM.2013.45

28. Stach, C., Mitschang, B.: Der Secure Data Container (SDC) – Sicheres Datenman-
agement für mobile Anwendungen. Datenbank-Spektrum 15(2), 109–118 (2015).
https://doi.org/10.1007/s13222-015-0189-y

29. Stach, C., Mitschang, B.: The Secure Data Container: An Approach to
Harmonize Data Sharing with Information Security. In: MDM ’16 (2016).
https://doi.org/10.1109/MDM.2016.50

30. Stach, C., Mitschang, B.: CURATOR—A Secure Shared Object Store: De-
sign, Implementation, and Evaluation of a Manageable, Secure, and Per-
formant Data Exchange Mechanism for Smart Devices. In: SAC ’18 (2018).
https://doi.org/10.1145/3167132.3167190

31. Stach, C., et al.: The Privacy Management Platform: An Enabler for Device Inter-
operability and Information Security in mHealth Applications. In: HEALTHINF ’18
(2018). https://doi.org/10.5220/0006537300270038

32. Steimle, F., Wieland, M., Mitschang, B., Wagner, S., Leymann, F.: Extended pro-
visioning, security and analysis techniques for the ECHO health data management
system. Computing 99(2), 183–201 (2017). https://doi.org/10.1007/s00607-016-
0523-8

33. Swan, M.: Sensor Mania! The Internet of Things, Wearable Computing, Objective
Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks
1(3), 217–253 (2012). https://doi.org/10.3390/jsan1030217

34. Wakabayashi, D.: Freed From the iPhone, the Apple Watch Finds a Medical
Purpose. Report, The New York Times (2017)

35. Walker, M.: Hype Cycle for Emerging Technologies, 2018. Market analysis, Gartner
(2018)

All links were last followed on August 13, 2019.

https://doi.org/10.1016/j.jbi.2015.06.003
https://doi.org/10.1109/MDM.2016.64
https://doi.org/10.1109/MDM.2013.45
https://doi.org/10.1007/s13222-015-0189-y
https://doi.org/10.1109/MDM.2016.50
https://doi.org/10.1145/3167132.3167190
https://doi.org/10.5220/0006537300270038
https://doi.org/10.1007/s00607-016-0523-8
https://doi.org/10.1007/s00607-016-0523-8
https://doi.org/10.3390/jsan1030217

	ECHOES: A Fail-safe, Conflict Handling, and Scalable Data Management Mechanism for the Internet of Things
	1 Introduction
	2 Application Case
	3 Requirement Specification
	4 Related Work
	5 The ECHOES Protocol
	6 Implementation of ECHOES
	7 Evaluation
	8 Conclusion


