: Universitat Stuttgart

IPVS

Pascal

Hagemann

Evaluating dynamic load balancing of
ECM workload pattern employed in
cloud environments managed by a
Kubernetes/Docker eco-system

Master Thesis
Supervisor: Dipl.-Phys. Cataldo Mega
Examiner: Prof. Dr.-Ing. Bernhard Mitschang

07.10.2021
Universitat Stuttgart, IPVS, AS



Introduction OO0 Prototype OOC

Results OO

Overview

© Introduction
Approach

@ Prototype
Kubernetes

Monitoring
MAPE-Loop Implementation
ECM-Application Improvements

© Results
Testing
Conclusion

Pascal Hagemann 1/20



Introduction @00 Prototype OCOOOOO000CO Results OOO0C0O

Introduction

Goals:
¢ Dynamic load balancing of a containerized ECM application in Kubernetes (K8s)
e Analysis of dynamic containerized deployment in the cloud
® Feasibility for porting applications to the new approach = Prototype
¢ |dentify challenges and pitfalls

Pascal Hagemann 2/20



Introduction C@O Prototype OCOOOOO000CO Results OOO0C0O

Dynamic Load Balancing Approach

® Managing an elastic deployment in a dynamic cloud environment
e Elasticity based on current system state and workload type/amount

e Automatic system state surveillance and error handling based on heuristics (later
aided by ML/AI)

* Maximize efficiency by avoiding under- and over-utilization of CPU, memory,
network and 1/0

e Elasticity on a component level dependent on the workload type

Pascal Hagemann 3/20



Introduction CO® Prototype OOC

Results OO

Properties

® Relies on a platform which supports elasticity and automation
e Can react to topology changes
e Reactive or proactive scheduling approach possible

Tolerant towards workload pattern changes

But: Additional ressource usage
= High efficiency with small overhead

Pascal Hagemann 4/20



Introduction OO0 OOOO0O Results OO000O

Prototype Component Challenges

© Using Kubernetes for entity management and load balancing

@ Using Horizontal Pod Autoscaler (HPA) for replication rules/management
© Adding a monitoring system for Metrics management

O Fetching metrics from the ECM application components

O Use a MAPE-Loop implementation to achieve elasticity

Pascal Hagemann 5/20



Introduction OCOCO OO0 Results OO

Kubernetes (K8s)

Full container orchestration solution
® Incorporates many services (DNS, scaling (HPA), storage, overlay network, ...)
Smallest manageable unit: Pod containing 1 or more container

Configuration through various objects

Pascal Hagemann 6/20



Introduction OCOCO OO0 Results OOC

Networking

F Workloads \
1 Namespace

Deployment

Storage

Daemon Set Pod

Container| |Container

Config Map

Container

Pascal Hagemann



Introduction C Prototype OCOO@OOOOO00 Results OC

Monitoring Components

prometheus adapter node_exporter

et e/

Pascal Hagemann 8/20




Introduction OOO Prototype OOO! OCO000 Results OO

Prometheus

Exporter

* Saves metrics in time-series database ® Fetches metrics from various sources

® Optimized query language PromQL (process, file, ...)

* Integrates with Grafana for * For a specific process/application
observation and analysis of data (group)

* Fetches metrics from pods via e Makes the metrics available via a
exporters REST-Interface

Pascal Hagemann 9/20



Introduction OO0 Prototype COO0O@00000 Results OO

Metrics Translation

Prometheus Adapter Horizontal Pod Autoscaler (HPA)

® |nterface between Prometheus and o Kubernetes subsystem

Kubernetes . .
e Uses metrics provided by / to

® Translates metrics from PromQL to Kubernetes

"Custom Metrics" _
e Scales the amount of pods in a

e Can transform and combine several Deployment to match a given target

metrics

Pascal Hagemann 10/20



Prototype

MAPE-Loop Implementation

K8s
Control-Plane

Metrics Database

Pascal Hagemann



Prototype

Metrics Dataflow

Replication / Scaling Custom metrics for K8s

~ r
fetch metrics

Time series DB

Dashboards

query
metrics




Prototype @O0

ECM Components

* Extended by NGINX container WebSphore/ WebSphere!
.

NGINX as agent to intercept
requests

® Request metrics written into _ _
logfile (response time, traffic, m m

path, ...)
® Parse logfile and publish metrics

e DB2 exporter to publish SQL - -
. DB2 Engine DB2 Engine
query results as metrics

Pascal Hagemann 13/20




Prototype OO

ECM Dataflow

® Requests intercepted by NGINX

Authorization, Metadata, Ressource Manager information

Data Catalog

Object Storage

Intercepted

Object information

Object info
&
location

Pascal Hagemann 14/20

Intercepted

Object Catalog



Network map

Prototype OO
Pod Control-Plane | vNode | VM / Internet
Console mﬁw 9043 Console for WAS
Websphere —

Navigator,

/W) 9444 Navigator

9444
> 9713 J > 30773 »! 9063 ICN Metrics
y

Requests to RMAPP

scal Hagemann




Introduction OOO Prototype OOOOOOOO0O0 Results €000

Test Setup

Threshold: maximum response time of a request averaged over 1 minute (100ms)

Workload: Login, Startpage, Search, Open ltem, Open Thumbnail, Logout
e 30 concurrent users

Workload repeated as fast as possible

currentMetricValue )

targetinstances = ceil(currentinstances - hreshold

Pascal Hagemann 16/20



Introduction OO

Test Results

Response times

Prototype OCOOOOO00000

Instances

13:55

= icm86cn == icm86-rmapp

Pascal Hagemann

Results O®O00

@ Threshold reached
® Scale up
® Under threshold

O Scale down after
timeout

17/20



Challenges

e Generation of useful metrics

Removing dependencies between components to enable (efficient) scaling
e Complex configuration options of Kubernetes and Prometheus

Scaling of stateful applications like databases

Pascal Hagemann 18/20



Next Steps

Optimize ECM application components for the cloud

Include more application specific metrics

Tests with more realistic workloads
® Proactive scheduling possibly with ML/Al support

Pascal Hagemann 19/20



Thank you for your attention




	
	
	Introduction
	
	Approach

	Prototype
	
	Kubernetes
	Monitoring
	MAPE-Loop Implementation
	ECM-Application Improvements

	Results
	Testing
	Conclusion

	

