
Evaluating dynamic load balancing of
ECM workload pattern employed in
cloud environments managed by a
Kubernetes/Docker eco-system

Master Thesis
Supervisor: Dipl.-Phys. Cataldo Mega
Examiner: Prof. Dr.-Ing. Bernhard Mitschang

07.10.2021
Universität Stuttgart, IPVS, AS

Pascal
Hagemann

Introduction Prototype Results

Overview

1 Introduction
Approach

2 Prototype
Kubernetes
Monitoring
MAPE-Loop Implementation
ECM-Application Improvements

3 Results
Testing
Conclusion

Pascal Hagemann 1 / 20

Introduction Prototype Results

Introduction

Goals:
• Dynamic load balancing of a containerized ECM application in Kubernetes (K8s)
• Analysis of dynamic containerized deployment in the cloud
• Feasibility for porting applications to the new approach⇒ Prototype
• Identify challenges and pitfalls

Pascal Hagemann 2 / 20

Introduction Prototype Results

Dynamic Load Balancing Approach

• Managing an elastic deployment in a dynamic cloud environment
• Elasticity based on current system state and workload type/amount
• Automatic system state surveillance and error handling based on heuristics (later

aided by ML/AI)
• Maximize efficiency by avoiding under- and over-utilization of CPU, memory,

network and I/O
• Elasticity on a component level dependent on the workload type

Pascal Hagemann 3 / 20

Introduction Prototype Results

Properties

• Relies on a platform which supports elasticity and automation
• Can react to topology changes
• Reactive or proactive scheduling approach possible
• Tolerant towards workload pattern changes
• But: Additional ressource usage

⇒ High efficiency with small overhead

Pascal Hagemann 4 / 20

Introduction Prototype Results

Prototype Component Challenges

1 Using Kubernetes for entity management and load balancing
2 Using Horizontal Pod Autoscaler (HPA) for replication rules/management
3 Adding a monitoring system for Metrics management
4 Fetching metrics from the ECM application components
5 Use a MAPE-Loop implementation to achieve elasticity

Pascal Hagemann 5 / 20

Introduction Prototype Results

Kubernetes (K8s)

• Full container orchestration solution
• Incorporates many services (DNS, scaling (HPA), storage, overlay network, ...)
• Smallest manageable unit: Pod containing 1 or more container
• Configuration through various objects

Pascal Hagemann 6 / 20

Introduction Prototype Results

Kubernetes Objects

Service

Config MapJob

Daemon Set

Deployment

Pod

Volume

Container

Container

Container

Storage

Workloads Networking
Namespace

Pascal Hagemann 7 / 20

Introduction Prototype Results

Monitoring Components

Prometheus Prometheus Adapter

adapter

Node Exporter

node_exporterprometheus

Pascal Hagemann 8 / 20

Introduction Prototype Results

Prometheus

• Saves metrics in time-series database
• Optimized query language PromQL
• Integrates with Grafana for

observation and analysis of data
• Fetches metrics from pods via

exporters

Exporter
• Fetches metrics from various sources

(process, file, ...)
• For a specific process/application

(group)
• Makes the metrics available via a

REST-Interface

Pascal Hagemann 9 / 20

Introduction Prototype Results

Metrics Translation

Prometheus Adapter
• Interface between Prometheus and

Kubernetes
• Translates metrics from PromQL to

"Custom Metrics"
• Can transform and combine several

metrics

Horizontal Pod Autoscaler (HPA)
• Kubernetes subsystem
• Uses metrics provided by / to

Kubernetes
• Scales the amount of pods in a

Deployment to match a given target

Pascal Hagemann 10 / 20

Introduction Prototype Results

MAPE-Loop Implementation

Monitor Analyze Plan Execute

HPAPrometheus

Grafana

Custom Metrics

Metrics Database

PromQL

Heuristic TargetsPromQL

Current
Value

K8s
Control-Plane

Replica
Count

Manual

Automatic

Pascal Hagemann 11 / 20

Introduction Prototype Results

Metrics Dataflow

Prometheus
AdapterGrafana

Node Exporter

Prometheus

Time series DB

ECM

query
metrics

Kubernetes

fetch metrics

Dashboards

Custom metrics for K8sReplication / Scaling

Pascal Hagemann 12 / 20

Introduction Prototype Results

ECM Components

• Extended by NGINX container
• NGINX as agent to intercept

requests
• Request metrics written into

logfile (response time, traffic,
path, ...)
• Parse logfile and publish metrics
• DB2 exporter to publish SQL

query results as metrics

RMAPP

DB2 Exporter

WebSphere /
Ressource Manager

nginx

promtail

ICN

DB2 Exporter

WebSphere /
Navigator

nginx

promtail

LSDB

DB2 Exporter

DB2 Engine

RMDB

DB2 Exporter

DB2 Engine

Pascal Hagemann 13 / 20

Introduction Prototype Results

ECM Dataflow

• Requests intercepted by NGINX

RMDB

LSDB

RMAPP

ICN

Authorization, Metadata, Ressource Manager information

Object information
Object info

&
location

Data Catalog

Object Catalog

Object Storage

Requests

Intercepted

Intercepted

Pascal Hagemann 14 / 20

Introduction Prototype Results

Network map

Pod Control-Plane vNode VM / Internet

Requests to RMAPP

ICN

Websphere

NGINX
agent

9443

9444

9113

9444

9113

30444

30113 9063 ICN Metrics

9444 Navigator

Navigator

Metrics

Console 9043
9043 30043 9043 Console for WAS

Pascal Hagemann 15 / 20

Introduction Prototype Results

Test Setup

• Threshold: maximum response time of a request averaged over 1 minute (100ms)
• Workload: Login, Startpage, Search, Open Item, Open Thumbnail, Logout
• 30 concurrent users
• Workload repeated as fast as possible

targetInstances = ceil(currentInstances · currentMetricValue
threshold)

Pascal Hagemann 16 / 20

Introduction Prototype Results

Test Results

1 Threshold reached
2 Scale up
3 Under threshold
4 Scale down after

timeout

Pascal Hagemann 17 / 20

Introduction Prototype Results

Challenges

• Generation of useful metrics
• Removing dependencies between components to enable (efficient) scaling
• Complex configuration options of Kubernetes and Prometheus
• Scaling of stateful applications like databases

Pascal Hagemann 18 / 20

Introduction Prototype Results

Next Steps

• Optimize ECM application components for the cloud
• Include more application specific metrics
• Tests with more realistic workloads
• Proactive scheduling possibly with ML/AI support

Pascal Hagemann 19 / 20

Introduction Prototype Results

Thank you for your attention

Pascal Hagemann 20 / 20

	
	
	Introduction
	
	Approach

	Prototype
	
	Kubernetes
	Monitoring
	MAPE-Loop Implementation
	ECM-Application Improvements

	Results
	Testing
	Conclusion

	

