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Introduction

Goals:
¢ Dynamic load balancing of a containerized ECM application in Kubernetes (K8s)
e Analysis of dynamic containerized deployment in the cloud
® Feasibility for porting applications to the new approach = Prototype
¢ |dentify challenges and pitfalls
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Dynamic Load Balancing Approach

® Managing an elastic deployment in a dynamic cloud environment
e Elasticity based on current system state and workload type/amount

e Automatic system state surveillance and error handling based on heuristics (later
aided by ML/AI)

* Maximize efficiency by avoiding under- and over-utilization of CPU, memory,
network and 1/0

e Elasticity on a component level dependent on the workload type
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Properties

® Relies on a platform which supports elasticity and automation
e Can react to topology changes
e Reactive or proactive scheduling approach possible

Tolerant towards workload pattern changes

But: Additional ressource usage
= High efficiency with small overhead
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Prototype Component Challenges

© Using Kubernetes for entity management and load balancing

@ Using Horizontal Pod Autoscaler (HPA) for replication rules/management
© Adding a monitoring system for Metrics management

O Fetching metrics from the ECM application components

O Use a MAPE-Loop implementation to achieve elasticity
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Kubernetes (K8s)

Full container orchestration solution
® Incorporates many services (DNS, scaling (HPA), storage, overlay network, ...)
Smallest manageable unit: Pod containing 1 or more container

Configuration through various objects
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Networking

F Workloads \
1 Namespace

Deployment

Storage

Daemon Set Pod

Container| |Container

Config Map

Container
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Monitoring Components

prometheus adapter node_exporter

et e/
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Prometheus

Exporter

* Saves metrics in time-series database ® Fetches metrics from various sources

® Optimized query language PromQL (process, file, ...)

* Integrates with Grafana for * For a specific process/application
observation and analysis of data (group)

* Fetches metrics from pods via e Makes the metrics available via a
exporters REST-Interface
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Metrics Translation

Prometheus Adapter Horizontal Pod Autoscaler (HPA)

® |nterface between Prometheus and o Kubernetes subsystem

Kubernetes . .
e Uses metrics provided by / to

® Translates metrics from PromQL to Kubernetes

"Custom Metrics" _
e Scales the amount of pods in a

e Can transform and combine several Deployment to match a given target

metrics
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MAPE-Loop Implementation

K8s
Control-Plane

Metrics Database
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Metrics Dataflow

Replication / Scaling Custom metrics for K8s

~ r
fetch metrics

Time series DB

Dashboards

query
metrics
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ECM Components

* Extended by NGINX container WebSphore/ WebSphere!
.

NGINX as agent to intercept
requests

® Request metrics written into _ _
logfile (response time, traffic, m m

path, ...)
® Parse logfile and publish metrics

e DB2 exporter to publish SQL - -
. DB2 Engine DB2 Engine
query results as metrics
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ECM Dataflow

® Requests intercepted by NGINX

Authorization, Metadata, Ressource Manager information

Data Catalog

Object Storage

Intercepted

Object information

Object info
&
location

Pascal Hagemann 14/20
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Network map

Prototype OO
Pod Control-Plane | vNode | VM / Internet
Console mﬁw 9043 Console for WAS
Websphere —

Navigator,

/W) 9444 Navigator

9444
> 9713 J > 30773 »! 9063 ICN Metrics
y

Requests to RMAPP
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Test Setup

Threshold: maximum response time of a request averaged over 1 minute (100ms)

Workload: Login, Startpage, Search, Open ltem, Open Thumbnail, Logout
e 30 concurrent users

Workload repeated as fast as possible

currentMetricValue )

targetinstances = ceil(currentinstances - hreshold
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Test Results

Response times

Prototype OCOOOOO00000

Instances

13:55

= icm86cn == icm86-rmapp

Pascal Hagemann

Results O®O00

@ Threshold reached
® Scale up
® Under threshold

O Scale down after
timeout
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Challenges

e Generation of useful metrics

Removing dependencies between components to enable (efficient) scaling
e Complex configuration options of Kubernetes and Prometheus

Scaling of stateful applications like databases
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Next Steps

Optimize ECM application components for the cloud

Include more application specific metrics

Tests with more realistic workloads
® Proactive scheduling possibly with ML/Al support
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Thank you for your attention
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