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Introduction

Goals:
• Dynamic load balancing of a containerized ECM application in Kubernetes (K8s)
• Analysis of dynamic containerized deployment in the cloud
• Feasibility for porting applications to the new approach⇒ Prototype
• Identify challenges and pitfalls
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Dynamic Load Balancing Approach

• Managing an elastic deployment in a dynamic cloud environment
• Elasticity based on current system state and workload type/amount
• Automatic system state surveillance and error handling based on heuristics (later

aided by ML/AI)
• Maximize efficiency by avoiding under- and over-utilization of CPU, memory,

network and I/O
• Elasticity on a component level dependent on the workload type
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Properties

• Relies on a platform which supports elasticity and automation
• Can react to topology changes
• Reactive or proactive scheduling approach possible
• Tolerant towards workload pattern changes
• But: Additional ressource usage

⇒ High efficiency with small overhead
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Prototype Component Challenges

1 Using Kubernetes for entity management and load balancing
2 Using Horizontal Pod Autoscaler (HPA) for replication rules/management
3 Adding a monitoring system for Metrics management
4 Fetching metrics from the ECM application components
5 Use a MAPE-Loop implementation to achieve elasticity
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Kubernetes (K8s)

• Full container orchestration solution
• Incorporates many services (DNS, scaling (HPA), storage, overlay network, ...)
• Smallest manageable unit: Pod containing 1 or more container
• Configuration through various objects
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Kubernetes Objects
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Monitoring Components

Prometheus Prometheus Adapter

adapter

Node Exporter

node_exporterprometheus
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Prometheus

• Saves metrics in time-series database
• Optimized query language PromQL
• Integrates with Grafana for

observation and analysis of data
• Fetches metrics from pods via

exporters

Exporter
• Fetches metrics from various sources

(process, file, ...)
• For a specific process/application

(group)
• Makes the metrics available via a

REST-Interface
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Metrics Translation

Prometheus Adapter
• Interface between Prometheus and

Kubernetes
• Translates metrics from PromQL to

"Custom Metrics"
• Can transform and combine several

metrics

Horizontal Pod Autoscaler (HPA)
• Kubernetes subsystem
• Uses metrics provided by / to

Kubernetes
• Scales the amount of pods in a

Deployment to match a given target
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MAPE-Loop Implementation
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ECM Components

• Extended by NGINX container
• NGINX as agent to intercept

requests
• Request metrics written into

logfile (response time, traffic,
path, ...)
• Parse logfile and publish metrics
• DB2 exporter to publish SQL

query results as metrics
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ECM Dataflow

• Requests intercepted by NGINX
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Test Setup

• Threshold: maximum response time of a request averaged over 1 minute (100ms)
• Workload: Login, Startpage, Search, Open Item, Open Thumbnail, Logout
• 30 concurrent users
• Workload repeated as fast as possible

targetInstances = ceil(currentInstances · currentMetricValue
threshold )
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Test Results

1 Threshold reached
2 Scale up
3 Under threshold
4 Scale down after

timeout
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Challenges

• Generation of useful metrics
• Removing dependencies between components to enable (efficient) scaling
• Complex configuration options of Kubernetes and Prometheus
• Scaling of stateful applications like databases
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Next Steps

• Optimize ECM application components for the cloud
• Include more application specific metrics
• Tests with more realistic workloads
• Proactive scheduling possibly with ML/AI support
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Thank you for your attention
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