
Institute of Parallel and Distributed Systems

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Investigating the Orchestration of

Containerized Enterprise Content

Management Workloads in Cloud

Environments Using Open Source

Cloud Technology Based on

Kubernetes and Docker

Christoph Trybek

Course of Study: Master of Science Informatik

Examiner: Prof. Dr.-Ing. Bernhard Mitschang

Supervisor: Dipl.-Phys. Cataldo Mega

Commenced: February 1, 2021

Completed: September 1, 2021

Abstract

Due to the mass adaption of the paperless o�ce and mobile devices organizations have to deal
with a growing amount of information. Additionally the continuous advancements of virtualization
technologies and network bandwidth allowed numerous vendors to o�er Enterprise Content
Management applications on Cloud infrastructures. Those o�erings enabled enterprises to exploit
the potential of structured, semi-structured and unstructured information without maintaining the
required infrastructure and sta�. The following thesis aims to further improve the utilization of
shared computing resources by integrating containerized ECM components into a Kubernetes
cluster. The proposed system topology is then implemented prototypically to verify the introduced
concept. The major challenge encountered during this thesis is the management of stateful database
applications within a Kubernetes cluster.

3

Contents

1 Introduction 11

2 Foundations 13

2.1 Enterprise Content Management . 13
2.2 Cloud Computing . 14
2.3 Virtualization . 14
2.4 Containerization . 15
2.5 Microservices . 15
2.6 Orchestrating Containers within a Microservice Architecture 17
2.7 OpenStack . 18
2.8 Docker . 20
2.9 Kubernetes . 21

3 Related Work 25

3.1 About the Design Changes Required for Enabling ECM Systems to Exploit Cloud
Technology . 25

4 Concept 27

4.1 Implications of a Kubernetes Cluster . 27
4.2 Aspired ECM System Topology . 27

5 Prototype 31

5.1 Infrastructure . 31
5.2 Kubernetes Components . 33
5.3 Initially Aspired System Topology . 36
5.4 Refactored ECM System Topology . 37
5.5 Implementation Details of the Kubernetes Components 39
5.6 Source Code . 42

6 Conclusion and Outlook 45

Bibliography 47

5

List of Figures

2.1 Virtual Machines compared to Operation System Level and Application Level
Containers [Kum17] . 16

2.2 The Di�erent Layers of Container Orchestration [JBB+19] 18

3.1 Proof of Concept by Shao [Sha20] . 26

4.1 Data Allocation in Local Filesystems of Host Servers in a Cluster 28
4.2 Initial Cluster Topology . 29

5.1 Workaround to Enable Incoming Tra�c to the KiND Cluster 32
5.2 The Interactions of the Components Inside a Kubernetes Cluster [TKA20] 36
5.3 Initial Topology of the ECM System Inside a Kubernetes Cluster 37
5.4 Improved Topology of the ECM System Inside a Kubernetes Cluster 38

7

List of Listings

5.1 KiND Cluster Configuration File . 32
5.2 Data Catalog Database Service Configuration File 39
5.3 Data Catalog Database Endpoint Configuration File 40
5.4 Resource Manager Application Nodeport Configuration File 40
5.5 Resource Manager Application Deployment Configuration File 43
5.6 Resource Manager Application Deployment entrypoint.sh script 44

9

1 Introduction

Large scale organisations have to deal with continuously increasing amounts of structured,
semi-structured or unstructured information due to the progress in digitalization. Especially
semi-structured data like business correspondences and multi media content have seen a rapid
growth driven by trends like the paperless o�ce and the large adaption of mobile devices. Ad-
ditionally documents that support or result from essential business processes need to be stored
in an audit-compliant manner for various regulatory reasons. To utilize the relevant information
contained in documents, emails or media files throughout their whole life cycle, organizations
rely on Enterprise Content Management Systems. Those systems are typically deployed as a
monolithic applications on an on-premise infrastructure with a long-running update cycle which
oftentimes requires a dedicated team within the IT department. To deliver the value creation
that ECM systems generate to smaller enterprises which can not a�ord a large IT-Team or are
unable to acquire the necessary talent various vendors launched Enterprise Content Management on
Cloud infrastructures. This o�er could only be facilitated through the continuous advancement
of virtualization, containerization and orchestration technologies as well as the rapid growth of
network bandwidth.

To further optimize the utilization of the infrastructure of ECM on Cloud components based
on truly occurring workloads the following thesis aims to integrate a decomposed and containerized
ECM application into a cluster running on a cloud environment orchestrated by Kubernetes. The
conducted investigation focused on finding a feasible system topology that provides a stable and
reliable environment for organizations to store their business critical data.

11

2 Foundations

The following chapter describes the necessary foundations of this work. It examines the concepts
of enterprise content management, cloud computing, microservices, container virtualisation
technologies and container orchestration systems.

2.1 Enterprise Content Management

Enterprise Content Management or short ECM is defined as a composition of strategies, processes,
methods, tools and technologies that are required to manage structured, semi structured or
unstructured information within or between organizations. The AIIM [AIIM13] and Grahlmann et
al. [GHH+12] define the following essential functions of an ECM system:

Capture
Content can be accumulated by humans or applications like optical character recognition.
This function handles the insertion of the gathered data into an ECM system. To make
this information usable it requires pre-processing, categorization and indexation to create a
structured format.

Manage
The management of content is concerned with its administration within the ECM system. It
governs the related meta data as well as editing control and version control. Editing control
describes the process of checking out a document, modify it and check it back into the system.
The history modification is recorded in version control.

Store
Keeps content and documents available in a short-term timescale using storage technologies
with a low latency like local data systems. This data is usually used on a daily basis therefore
a fast and comfortable access is required.

Preserve
This function handles the long-term archiving of content which is not accessed frequently
and is kept for regulatory and compliance reasons. It is important for the ECM system to
store this data in a revision-safe manner.

Deliver
This feature takes care of the distribution of the stored or preserved content to a human
operator. The information can be delivered actively through search and download or email as
well as passively via internet or intranet.

The following Enterprise Content Management system components are required to enable the
previously discussed functions that are considered within this thesis:

13

2 Foundations

Data Catalog
Every piece of information within the ECM system is represented in this central component.
It does not contain the content itself but the corresponding meta data and index in a relational
database schema. The given structure of the schema can be extended depending on the
business requirements of an enterprise. The Data Catalog is used to deliver fast search results
to the end-user while enforcing defined content access policies.

Object Catalog
The Object Catalog contains all information about stored objects inside an ECM system that
are needed for their retrieval like file size, logical path etc.

Resource Manager
This component manages the storage and distribution of content and interacts with the Data
Catalog in regards of the associated meta data as well as the Object Catalog in relation to
storage information. It handles the storage of content and all its revisions in a filesystem by
utilizing its APIs.

Client Application
It serves the user web interface of the ECM system and provides all functionalities required
by a human operator to utilize the previously discussed services.

2.2 Cloud Computing

The rapid advance in development of processing power and connection bandwidth facilitated the
emergence of a new computing paradigm which is known as cloud computing or short cloud.
This new possibility enabled companies to smoothly develop and manage own Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) platform
o�erings [Aa10]. SaaS is seen as the application layer on which a consumer can access a service
hosted on the infrastructure of a vendor, with PaaS the customer has a direct access to the low
level platform layer like operating systems and middleware abstraction. IaaS allows customers to
utilize the infrastructure of the provider in an abstracted way and manner. The flexibility of cloud
computing o�erings enables other companies to launch software products without an extensive
capacity planing step and resource allocation. It further reduces the burden of maintaining physical
hardware components and hiring skilled professionals on-premise during the life cycle of a service.
Additionally the pay per use billing and the minimal management principle allows service providers
to adjust computing resources automatically to the demand of its applications [MG11].

2.3 Virtualization

To allow the introduced concepts the technology of Virtualization plays a key role. It is described as
the abstraction of physical components into logical objects to obtain a greater utility of the resources.
Virtualizing a computer by creating a Virtual Machine allows the access hardware resources like
processors, memory, storage and network interfaces as logical objects. Those objects are managed
and monitored through a software called Hypervisor which is a layer between the physical hardware
and the logically abstracted virtual objects. The Hypervisor exposes only a subset of the available

14

2.4 Containerization

physical resources to each Virtual Machine on a host server and acts as an I/O interface between those
two layers. The various layers of a Virtual Machine are illustrated in Figure 2.1. Since hardware got
more powerful and e�cient the paradigm of “One Server One Application” led to underutilizing
computing resources. The consolidation of computing resources through virtualization allowed to
lower operation and maintenance costs, power consumption as well as the overall footprint of large
data centers without mitigating the quality of the provided services. Another advantage compared
to physical hardware is that a VM is basically a set of files and can be moved e�ortlessly between
servers. Therefore a solely virtual environment enables organizations to rely on higher degrees of
availability, flexibility and maintainability of their software systems [Por16].

2.4 Containerization

Operating Virtual Machines can still lead to underutilized computing resources especially for small
applications. This is because each VM contains its own copy of a operation system as well as a
virtual copy of the hardware resources. To minimize the described overhead of Virtual Machines
the concept of Containers was introduced. A Container consists of a set of separated processes and
all required dependencies of an application that can be operated independently of the host system.
The containerization of applications is possible by leveraging various techniques like cgroups,
namespaces and rootfs from the Linux kernel to create an isolated sandbox on a host machine.
This allows for an abstraction on the operation system level in contrast to VMs which abstract the
hardware level. Therefore it is necessary for all containerised applications to run the same operation
system whereas virtual machines are able to support multiple operation systems side by side. There
are two kinds of containers based on the level of shared host resources. Figure 2.1 illustrates the
di�erent types of Containers in contrast to a Virtual Machine.

Operation System Level Container
Encapsulates its own operation system while sharing the kernel with other Containers on the
host.

Application Level Container
Incorporates all processes an application needs to run while sharing the operation system
with other Containers on the host.

Containerization enables many advantages over traditional virtualization. Since Containers are
much more lightweight than Virtual Machines it is possible to operate more containers on a
computing resource. Additionally the initialisation is almost instant compared to the protracted
booting process of a Virtual Machine. Further Containers are much more portable because all
libraries and dependencies are encapsulated and can be operated regardless of the underlying
operating system of the host machine [Kum17; Por16; Pou20a].

2.5 Microservices

The growing popularity of small applications that are packaged in a single container led to a new
paradigm in software architecture. Within a typical Microservice based architecture there exist
many standalone services which collaborate through one or more network endpoints to reach a

15

2 Foundations

Hypervisor

Host Operating System

Machine Infrastructure

Virtual Machine

Guest OS

Virtual Machine

Application

bins / libs

Virtual Machine

Guest OS

Application

bins / libs

Host Operating System

Machine Infrastructure

Container

bins / libs

Operation System Level Container

Application

Host Operating System

Machine Infrastructure

Container

bins / libs

Operation System Level Container

Application

Container Engine

Host Operating System

Machine Infrastructure

Application Level Container

Container Engine

Host Operating System

Machine Infrastructure

Application Level Container

Hypervisor

Host Operating System

Machine Infrastructure

Virtual Machine

Guest OS

Virtual Machine

Application

bins / libs

Virtual Machine

Guest OS

Application

bins / libs

Application

Container

Application

Container

Application

Container

Application

ContainerContainer

bins / libs

Application

Container

bins / libs

Application

Figure 2.1: Virtual Machines compared to Operation System Level and Application Level Contain-
ers [Kum17]

defined business goal together. The key characteristic of those services is that each is independently
deployable, modeled around a business domain and technology agnostic. That means that every
Microservice can be implemented with its own technology, data structure and even programming
language. Further while deploying changes of a Microservice into production it should not be
necessary to interact with other services. To ensure this property all services need to be loosely
coupled which means that each component of a system can be changed or swapped independently.
This can be achieved through stable, explicit and well defined interfaces. Additionally the borders
of each service are not defined by expert groups of certain fields like backend, frontend or databases
but by business domain. That means that there is a team with multiple skills in a company which
develops a service that handles all details to reach one business goal. For example a Team which
has responsibility of a Microservice which handles the payments of a SaaS application. The team
implements and maintains all service components that the customer interacts with while conducting
the payment process. In this way the service contains a small part of user interface, a small part of
application logic and a small part of data storage. This principle reduces changes in di�erent layers
of an application across multiple teams and therefore enables organizations to ship changes and
updates faster. Another principle of Microservices is the ownership of the data it operates with and
therefore no indirect access of information through sharing databases. That means that whenever
a service needs data owned by another service it needs to explicitly ask the other service over a
communication channel to pass on the desired information. That concept facilitates a service to

16

2.6 Orchestrating Containers within a Microservice Architecture

decide which data is shared with which external services. It further allows to hide implementation
details which can change for arbitrary reasons behind exposed stable service interfaces. This brings
the benefit of independently deployable Microservices which do not induce adjustments to multiple
services whenever a service changes its internals.

One of the key advantages of a Microservice architecture is the independence of the various
teams of a organization. It allows teams to choose the technology which is best for achieving one
specific business goal and find the optimal composition of programming languages, frameworks,
databases and many more. Further the independent deployability enables applications with a higher
flexibility, availability, resiliency and scalability.

There are also potential pitfalls of using Microservices. One is that they depend on reliable
network communication which is inherently slower than on a monolithic system. Additionally
varying latencies, packet loss and random connectivity issues can make the behavior of a whole
Microservice architecture unpredictable. Another organisational pitfall is switching to Microservices
without having thought about the necessary groundwork. The most important considerations are
containerisation of applications, continuous integration and continuous delivery. This fundamental
automation prevents the organisation from ending up with many "mini monoliths"that need manual
maintenance Nevertheless managing a large amount of Microservices across di�erent cloud
environments is still a complex task even when automated [New19; RDG20].

2.6 Orchestrating Containers within a Microservice Architecture

Enterprise-level applications utilizing the Microservice architecture are oftentimes made up of
hundreds of containerized services that need to be orchestrated. To provide a real customer value
while optimizing provider costs this cluster of Containers needs to be reliable and potentially
globally available while making ideal use of computational resources. To achieve this goal an
orchestration engine aggregates a set of server hosts with its network connections into a single
resource pool called cluster. The engine autonomously deploys Containers, schedules them across
the cluster while scaling its number proportionally to the currently accruing workload to ensure
defined policies and service level agreements are met [Kha17; RDG20]. Figure 2.2 illustrates that
the orchestrator serves as foundation for the application layer and typically consists of three layers
which sit on top of the hardware, operating system and container runtime layers [JBB+19]:

Resource Management
This layer takes care of the low level resources like computation, data storage and network. Its
goal is to maximize the utilization of those resources while preventing conflicts by competing
Containers.

Scheduling
This layer is concerned with the e�cient usage of cluster internal resources. It gets its service
requirements through configuration files supplied by an administrator. It is then decided
where the application Containers are placed in the cluster with respect to the number of
needed replicas and co-location constraints to leverage the full potential of inter-process
communication. It is further responsible to ensure that a Container is running and therefore

17

2 Foundations

Services

Service Management

Scheduling

Resource Management

Container Runtime Container Runtime

Machine OS Machine OS

Machine Infrastructure

O
rc

he
st

ra
tio

n

Figure 2.2: The Di�erent Layers of Container Orchestration [JBB+19]

constantly checking their availability and if necessary restarting crashed Containers, move
Containers from failed nodes as well as scaling up the number of Containers to deal with
increasing workloads.

Service Management
The final layer allows administrators to define and manage the high level aspects of the
underlying cluster like attaching meta data to Containers and divide incoming tra�c to
balance workloads. Additionally it allows Container isolation through the specification of
namespaces. This allows the cluster to be used by multiple tenants without interference.

2.7 OpenStack

The following section describes OpenStack as Infrastructure as a Service solution which is needed
as the groundwork for a scalable cloud environment. It is an open source IaaS platform written
in python and developed by the National Aeronautics and Space Administration and RackSpace
and published in 2010. The OpenStack architecture consists of three main components: compute,
image and storage. There are many additional components in the OpenStack ecosystem which are
out of scope for this thesis but some important will be mentioned briefly [ABG+15; RB14]:

Compute
The Nova component contains all tools to manage virtual machines on physical computing
nodes and is used to administrate IaaS Clouds. It provides an external communication channel
to applications or administrators through an API server. It handles the orchestration and life
cycle of instances by creating and managing virtual servers without a strict dependency on a
Hypervisor. Additionally it includes tools to manage networks as well as access control and
serves as an essential building block for a basic Cloud Computing implementation.

Image
This component also known as Glance serves as a central catalog for VM images. It allows
discovery, preservation and retrieval of images based on metadata.

18

2.7 OpenStack

Object
Swift is a redundant and scalable component to manage an object store. It provides users with
storage capacity in a highly distributed architecture to prevent data loss through single points
of failure.

Additional Components

Horizon: Is a dashboard to monitor, manage and provision services in OpenStack.

Keystone: Supplies an authentication service to apply tokens and policies to users and
service interactions. It is an essential service to provide Cloud services to end users.

Cinder: Enables persistent volumes to virtual machines and was encompassed in Nova
in previous releases. It uses the Swift component as backup for the supplied persistent
volumes.

Neutron: Is a service which provides network connectivity and allows the configuration
of advanced network topologies and policies.

2.7.1 Alternative Infrastructure-as-a-Service Technologies

The following alternative solutions for Infrastructure-as-a-Service were also examined and compared
to OpenStack:

Apache Cloud Stack
This open source platform is implemented in Java, was originally released by Cloud.com in
2010 and was donated to the Apache Incubator in 2012 and has since then become a top-level
project of the Apache Software Foundation. Apache Cloud Stack consists of three nodes
a Supervisor Node, a VM Creator Node and a StorageServer Node which is for the most
part identical with OpenStack. The main di�erentiator from OpenStack is that it is easier to
configure since it is not made up of a collection of separately configurable components. This
implies a lower flexibility when it comes to highly complex deployment scenarios. A further
disadvantage which is crucial for this thesis is the lack of native Docker support [ACSA21;
MS15].

OpenNebula
OpenNebula is a platform for managing distributed infrastructures mainly in large scale
data centers and was released in 2008. It is primarily implemented in C++ as well as Ruby,
utilizes the Linux native drivers concept and consists of three layers. The Drivers Layer
communicates with the underlying operating system and abstracts the infrastructure of the
host as a set of services. The middle layer is concerned with managing the Virtual Machines
and their networks and is called Core Layer. The final Tool Layer contains interfaces that
allow for user interaction as well as the scheduling of VMs [TONA21; VGM+16].

The primary reason to chose OpenStack is that the university department at which this thesis was
conducted already operates an instance and has the experience to provide the required infrastructure
in a stable and reliable manner.

19

2 Foundations

2.8 Docker

The following section describes Docker as lightweight container virtualization technology of choice
because its wide popularity and the many available images from large organizations. It is capable of
creating, deploying and managing containerized applications and was created by Docker Inc. in
2013. To use Docker a Image is necessary. It is a file which contains all specifications needed to
create a Container. Usually an Image contains another base Image with additional customization
which is required to successfully operate an application. A Container describes instance based on
an Image which can be started, stopped, moved or deleted. Docker consist of two main parts the
Runtime and the Daemon sometimes called engine [Pou20a]:

Runtime
The overall runtime is responsible for setting up the environment like cgroups and namespaces
as well as starting and stopping containers. It consists of high-level and low-level runtime
which communicate with each other. The low-level one is called runc, is part of every
container and forms the interface to the underlying operating system to start and stop the
Container. The high-level Runtime containerd interferes with runc and manages the whole
lifecycle of a Container as well as pulling Images and assembling network interfaces.

Daemon
The Docker engine also known as dockerd was created to abstract both levels of the Runtime
and provide a swift interface. It communicates with containerd and enables Image, networking
and volume management. dockerd also exposes the Docker API to establish a channel of
interaction.

2.8.1 Alternative Container Virtualisation Technologies

The following alternative solutions for Container virtualisation technologies were also examined
and compared to Docker:

Podman
Podman was designed to leverage Linux native components to a deamonless Container
technology. That means that Podman is independent on a single Deamon process which may
pose as a single point of failure. Instead it is directly interacting with the runc container
runtime. It is able to run, build and deploy containerized applications or images that are
compliant with the Open Containers Initiative (OCI) standards. Hence Podman is able to
manage containers build in Docker. Additionally the processes controlled by Podman can be
run as root or as unprivileged user. Whereas the Docker deamon requires to be executed as
root which can lead to security implications [TPT19]. Since there is not a large developer
community nor much literature available for Podman it was not further considered for this
thesis.

LXC
LinuX Containers enhances the cgroups as well as the namespaces functionality of the
Linux kernel to provide a contained environment to execute applications. It is maintained by
Canonical Inc. which is also responsible for the Ubuntu Linux distribution and was released
in 2008. In contrast to Docker which handles application level containers LXC manages

20

2.9 Kubernetes

operation level containers [Kum17; LXC20]. The di�erence between both technologies
is illustrated in Figure 2.1. Since LXC have no native support in Kubernetes they are not
examined further.

FreeBSD Jails
Jails are one of the earliest attempts to realize things like process isolation dating back to the
year 2000. To achieve this the BSD kernel feature croot was further customized to virtualize
file access, system users and the networking subsystem. This allows multiple processes
to utilize those virtualized resources while having only restricted access to a subset of the
whole file system. Each Jail contains a set of users and a root which are limited to their
own environment [BSD20]. Like LXC the concept of FreeBDS Jails can be classified as a
operating system level container. Since it is only available on the FreeBSD distribution this
technology is out of scope for this thesis.

Docker was chosen for this thesis since it has an extensive documentation, a large developers
community and has been the de facto standard container runtime used by Kubernetes. Additionally
the related work which is fundamental for this thesis was conducted using Docker.

2.9 Kubernetes

The following section describes Kubernetes which is a container orchestration system that allows
the operation of scalable applications with changing topologies based on workload or tra�c. It was
primarily developed as an internal project at Google to manage large containerized applications
like Gmail and was open sourced in 2015. Kubernetes is organized in a Master-Slave architecture
with the master node controlling all Minion computing nodes and consists of the following
componenents [Pou20b; TKA20]:

Master Node
The Master Node also known as Control Plane controls the operations inside the cluster. It is
concerned to manage the distribution of Pods between the available Minion Nodes. To extend
the robustness of the system it is possible to create multiple redundant Master Nodes. The
Control Plane utilizes the following processes and components:

API Server: Serves as the main interaction point of the cluster. It receives JSON
formatted configurations over a REST API and stores them in etcd.

etcd: Is a lightweight distributed Key-Value-Database which preserves the configured
target state of the cluster.

Controller Manager: Is an independent component which runs all controller processes
and communicates with the API Server regarding the status of the cluster. It observes
whether all nodes are available and all pods were launched correctly. Further it populates
the Endpoints object and thus connects Services and Pods.

Scheduler: Decides on which Minion Nodes a Pod is deployed and is constrained by
specifications of quality of service, node locations and available resources. Additionally
it is concerned with the management and overseeing of the workload directed to the
Minion Nodes.

21

2 Foundations

Minion Node
A Minion Node describes a single host machine that is used by Kubernetes to form a large
scale cluster. Each node contains a container runtime as well as the following components:

Kubelet: Is responsible for the state of all Pods on a particular host machine and
communicates its state to the Control Manager on the Master Node. Kubelet undertakes
the restart of a failed Pod on the same machine. If the communication between Kubelet
and Control Plane is interrupted the Master Node assumes a failed node and moves all
its Pods onto an available host machine.

cAdvisor: Records the utilization of the resources of a Minion Node and can be accessed
by external applications to provide dynamic scaling of the whole cluster.

Kube-Proxy: Manages the connections and open ports on a node

2.9.1 Alternative Container Orchestration Systems

The following alternative solutions for container orchestration systems were also examined and
compared to Kubernetes:

Docker Swarm
Docker Swarm is an open source project by Docker Inc. to provide native cluster management
support in Docker. It bundles several Docker nodes into one cluster to enable dynamic
scaling as well as a failover mechanism through redundancy. Like Kubernetes it is organized
in a master-slave architecture where the master is called Manager and accounts for the
orchestration of Containers. The slave is known as Agent which operates the scheduled
Containers. Compared to Kubernetes it is far less feature rich in both Scheduling and Service
Management Layers. Docker Swarm lacks the support of readiness checking and rolling
deployments which can lead to data loss and impacts on the availability of a service. Further
it does not support namespaces and load balancing that means that no multi tenancy and no
dynamic tra�c distribution is available in a Docker Swarm cluster. Since Kubernetes supports
all those features that are particularly important for an Enterprise Content Management
System Docker Swarm is not further considered [JBB+19; Pou20a].

Apache Mesos
Hello Test Apache Mesos is an open source project developed by the University of California,
Berkeley in 2011 which follows the master-slave architecture pattern. Master Nodes control
Slave Nodes that contain Frameworks which execute Tasks. The Master Node decides based
on specified Policies how many free resources are assigned to each Framework. A Framework
contains a Scheduler which communicates with the Master Node to allocate computing
resources and an Executor that completes Tasks on a Slave Node. Compared to Kubernetes
it contains slightly more features in the Resource Management and Service Management
Layers however the one major disadvantage is the rather complex setup and integration
of applications. Apache Mesos requires Marathon to be installed on top of it to support
containerized workloads. [HKZ+11; JBB+19]

OpenShift
OpenShift is Red Hat’s own Kubernetes distribution which is fully compliant and extends
it with features focused on improving the productivity of developers and operators. It

22

2.9 Kubernetes

was originally released with an own runtime environment in 2011 and later rewritten to
implement Kubernetes in 2015. The proprietary features contributed by Red Hat improve the
native networking and provide support in the life cycle of deployed images [EKT21]. Since
OpenShift is not entirely open source and the additonal functionality is not relevant for this
thesis it was not further considered.

Kubernetes posed as an excellent choice since it is entirely open source, implements the right balance
of required features and operational complexity. Further it has the largest market adaption among
orchestration systems and therefore a large developer community and many learning resources.

23

3 Related Work

This chapter describes the previous work conducted at the University Stuttgart which delivers the
essential components on which this thesis is build on.

3.1 About the Design Changes Required for Enabling ECM Systems to

Exploit Cloud Technology

The main foundation for this thesis is the work from Shao [Sha20] which focused on the separation
of monolithic Enterprise Content Management applications into isolated components. This split
allows the separate ECM parts to be packaged and run within containers. Until now ECM systems
were usually deployed as large monolithic applications on private bare metal servers or virtual
machines. Since both of those approaches involve assumptions about the infrastructure which are
not always true in cloud environments a new way of deployment is necessary.

First the applications are analyzed and decomposed based on their degree of coupling. Tightly
coupled components stay in the same container and loosely coupled components are split into
separate containers. Every container is composed with all essential dependencies and libraries
to allow the operation as stand-alone service. Further the shared data storage of monolithic
ECM components is separated from the application logic so each component can use its own
databases and file systems. The cooperation between separated components happens over unified
communication channels. This split allows to exploit the potential of a cost e�ective scalability,
continuous integration as well as continuous delivery.

The proof of concept which was developed during the thesis of Shao consists of an Enter-
prise Content Management system and a container platform. As the ECM system the IBM Content
Manager Enterprise Edition and as container virtualization technology Docker are selected. The
IBM system is chosen because of the historical relationship between the Institute of Parallel and
Distributed Systems at the University Stuttgart and the IBM laboratories in Böblingen. Docker is
selected since it is the most popular container virtualization technology with a large community
and therefore many predefined images. The ECM platform consists of four separate applications
within Docker containers. lsdbsrv that contains the Data Catalog and rmdbsrv which incorporates
the Object Catalog. Both containers are based on the public ibmcom/db2:latest Docker image
provided by IBM. The other two components needed to be constructed manually based on the
centos:7 image since there were no public Docker images available. wasrm contains the Resource
Manager Application as well as a HTTP server. wasicn includes the web client, the configuration
database of the web client and a HTTP server. The user interacts with the system through the web
client which then sends or retrieves data from the Data Catalog, Resource Manager and Object

25

3 Related Work

Catalog. For the applications to be able to communicate with each other a virtual Docker network
was created in the development environment. Figure 3.1 illustrates the resulting proof of concept
with the separate components each inside its own container.

Figure 3.1: Proof of Concept by Shao [Sha20]

26

4 Concept

The following chapter describes the applied changes to a containerized Enterprise Content Manage-
ment application introduced by [Sha20] to be operated within a Kubernetes cluster.

4.1 Implications of a Kubernetes Cluster

After its donation to the open source community by Google Kubernetes has become the most popular
orchestration platform to operate and deploy containerized applications with minimum manual
e�ort. The core concept of Kubernetes is the autonomous management of stateless applications
which consist of identical, swappable and replaceable containers. Enterprise Content Management
systems and other real world applications typically need some kind of stateful service which is
concerned with persistent data storage [IH19].

After analyzing the dependencies of the containerized ECM applications created by Shao [Sha20]
we found out that the components can be divided in two web applications and two database
applications. Hence the web applications could be operated as stateless applications without further
customization. The considered containers are wasicn with its web client component as well as
wasrm with the encompassed resource manager component. The other components that are needed
to construct a working ECM system are the data and the object catalog which both rely on databases
to work properly.

4.2 Aspired ECM System Topology

The management of stateful applications like databases in a Kubernetes cluster is not trivial since it
was designed to handle stateless workloads while keeping stateful components outside the managed
cluster [IH19]. To pave the way to an operational ECM system we need to carefully examine how
the state of the data as well as the object catalog can be preserved while being available to the
cluster. Additionally the initial Docker images provided by [Sha20] relied on the application data
and executables to be locally present on the host machine. There are two possibilities to achieve
that each with its advantages and drawbacks:

Maintaining the State on the Host Node
To keep the state in filesystem of a host node it is crucial to upload the necessary data to
that node on which the corresponding application will be operated. This approach implies
that each potential node on which the corresponding application could be relocated by the
Scheduling Layer of the cluster has to contain the needed data. The data allocation on the
computing nodes is illustrated in Figure 4.1. It shows that only nodes that have matching

27

4 Concept

data can operate a certain application. In contrast to Node 2, Node 1 and Node 3 contain the
necessary Data in their local filesystem and are able to host the application. Replicating the
required data across all nodes of a large cluster leads to an overhead in storage allocation. By
maintaining the data exclusively on dedicated nodes that operate only one specific application
the flexibility and the availability of the whole system can be a�ected. In case of a failing
node the Scheduling Layer can not relocate the application autonomously on another node
without applying procedures that ensure that the required data is present on the particular
node. The biggest advantage of this procedure is the minimization of the latency of read and
write operations all required data is already present on the local node.

Cluster Master Node

Node1

Data

Application

Node 2 Node 3

Data

Application

Figure 4.1: Data Allocation in Local Filesystems of Host Servers in a Cluster

Removing the State completely from the cluster
Relocating the state into an external storage service allows the Scheduling Layer to scale or
move the web applications without assumptions about the configuration of the computing
nodes that form the cluster. The external service can be located on a separate Virtual Machine
or on a physically separated host. Since the storage service is now moved to an external
infrastructure it needs its own maintenance e�ort which can not be supervised through the
Service Management Layer of the cluster. Furthermore it can lead higher latencies of read
and write operations due to the potential distance of the external infrastructure to the cluster.

Given the complexity of setting up and managing stateful services in Kubernetes this thesis is
restricted to stateless services. Therefore the state is removed entirely from the cluster and an
external Network File System server is utilized. Further a stateful data service requires a much more
complex cluster design and is easier to maintain and scale on its own. Therefore the containerized
applications can be scaled across the cluster independent of whether the volumes are mounted on a
particular node or not. The following Figure 4.2 illustrates the initially aspired topology with all
storage capacities transferred to the NFS server.

28

4.2 Aspired ECM System Topology

Cluster Web Client
Object
Catalog

Resource
Manager

Data
Catalog

NFS Server

External Communication
Internal Communication
Containerized Component

Peristent Storage

Physical Storage Volume

User Administrator

Figure 4.2: Initial Cluster Topology

29

5 Prototype

In this chapter describes the prototypical implementation of the changes to the approach by
Shao [Sha20] from the previous chapter to allow the operation within a Kubernetes cluster.

5.1 Infrastructure

The following prototype was developed, deployed and tested on the infrastructure of the Institute of
Parallel and Distributed Systems at the University Stuttgart. It consists of a Open Stack instance
which manages the virtual machines running CentOS 81 that are used throughout this thesis. To
further simplify the development process and minimize the e�ort of setting up and managing a set
of virtual machines as Kubernetes nodes this thesis relies on the KiND project.

5.1.1 Kubernetes in Docker (KiND)

The KiND Project uses multiple Docker containers to create a virtual Kubernetes cluster with
multiple nodes. It was created by the Kubernetes authors to enable a fast and straightforward way to
test and verify cluster configurations on the local machine of a developer. A KiND cluster consists
of the following Docker images:

Base Image
This Image is based on Ubuntu and contains only the necessary dependencies for running
nested containers, systemd and Kubernetes. Additionally it contains a custom entrypoint that
allows to execute configurations before the container becomes available.

Node Image
This image is an extension of the Base Image and contains the tools required to operate and
manage Kubernetes resources within a cluster. KiND aims to leverage existing tooling for
Kubernetes to create a familiar environment for developers.

Each node of a cluster runs its own Docker container which is identified through a Docker object
label containing the cluster name and node id. A KiND cluster consists of at least one control plane
and one or many worker nodes. The control plane handles incoming network tra�c, storage mounts
on the host machine and additional initial configurations of the cluster. A worker node is equivalent
to a compute node in a regular Kubernetes cluster [BBH19; TKA21].

1https://www.centos.org

31

5 Prototype

Listing 5.1 KiND Cluster Configuration File

kind: C�uster
apiVersion: kind.x-k8s.io/v1a�pha4
name: ecm
nodes:

- ro�e: contro�-p�ane
extraPortMappings:

- containerPort: 30043
hostPort: 9043

- containerPort: 30044
hostPort: 9044

- containerPort: 30080
hostPort: 9080

- containerPort: 30081
hostPort: 9081

- containerPort: 30443
hostPort: 9443

- containerPort: 30444
hostPort: 9444

- ro�e: worker
- ro�e: worker

5.1.2 Configuration of the Used Cluster

To allow the external world to communicate with the applications inside a KiND cluster it is
necessary to include a set extraPortMappings in the cluster configuration file shown in Listing 5.1.
Since Kubernetes only allows external ports to be in between 30000 and 32767 as well as the fact
that KiND runs in Docker a workaround was needed to expose the expected ports on the host
machine. The workaround consists of nodePort components inside the Kubernetes cluster that
expose the ports of the application inside a pod which are then connected to the hostPort of the
controlPlane container on the host server. The applied workaround of the port mappings is shown
in Figure 5.1.

Host Server
KiND Cluster

Control Plane

NodePort Pod

Worker Node

Tra�c

Figure 5.1: Workaround to Enable Incoming Tra�c to the KiND Cluster

32

5.2 Kubernetes Components

5.2 Kubernetes Components

To successfully run the aspired ECM system topology presented in Chapter 4 within a Kubernetes
cluster the following components need to be utilized [BBH19; IH19; Pou20b; TKA20]:

Namespaces
To enable the maintenance of multiple virtual clusters on a single physical cluster the concept of
Namepaces was introduced. It is especially helpful for managing the distribution of computing
resource in large environments with multiple teams and projects. Thereby they allow the
implementation of access control and resource quotas. Resource names must be unique within
a Namespace but not across di�erent Namespaces. Every cluster generates its own DNS space
which is called cluster.local and by placing an Service-Object in a Namespace the resulting
fully qualified domain name (FQDN) will be <object-name>.<namespace>.svc.c�uster.�oca�.
A Pod inside the same Namespace can connect to the Service via its <object-name> but a Pod
from a di�erent Namespace needs the FQDN to establish a connection.

Pod
In Kubernetes a Pod is the smallest unit that can be deployed and is a runtime isolation
for a set of containers. The grouped containers are always deployed as a collective on the
same host machine and the Scheduling Layer strives to find a placement in the cluster which
satisfies all constraints imposed by the incorporated containers. This pooling allows a fast
exchange of information between each other by leveraging the file system, networking or
inter process communication of the host. Additionally every Pod has its own IP-address
and thus a port range which is shared among all enclosed containers. Therefore it should
be payed attention to port allocation at configuration time to prevent port conflicts. Pods
are designed to contain only a single instance of an application hence the Pod should be
replicated for scaling. Another key concept of Kubernetes is the the ephemerality of Pods in
their life cycle. That means that whenever a Pod encounters an error the Pod is not diagnosed
and repaired but rather terminated and a new Pod with identical properties is started. The
same happens when a computation node fails: the Pods on the node in question are not saved
and moved to an available node but forgotten and a new set of Pods is created. Even in the
case of lightweight configuration changes the modification will not be passed to a running
container instead the active Pod will be terminated and a new one containing the changes will
be spun up. To know if a container inside a Pod is working properly Kubernetes runs a set of
diagnostic functions on a container:

ExecAction: Performs a specified command inside the container and succeeds if the
command terminates without an error.

TCPSocketAction: Tries to open a TCP socket on a specified port of the Pods IP-address
and succeeds if a socket is opened.

HTTPGetAction: Sends a HTTP GET request to a specified port and route on the Pods
IP-address and succeeds if the status code of the response is between 200 and 400.

Kubernetes provides the previously introduced functions to monitor the following conditions
a Pod could encounter during its life cycle:

33

5 Prototype

Startup: Monitors if the application inside a container successfully launched during
the start up phase of the Pod. The following conditions are only evaluated if the Startup
was successful. It is especially helpful for large and complex applications that need a
certain time span to become available for service.

Readiness: Evaluates whether the container is able to respond to requests. If the probe
fails Kubernetes prevents incoming tra�c to be passed to the Pod by removing its
IP-address from the Endpoint objects of all Services that reference the Pod.

Liveness: Continuously checks whether a container is in a functional state to process
incoming requests. This probe should be used if an application has a strong dependency
on a external back-end service to prevent information loss.

If the Startup and Liveness probes fail Kubernetes autonomously terminates the Pod and
launches a new one. The termination happens gracefully since Pods are distributed processes
running distributed within a cluster. Abruptly killing processes without a cleanup phase can
leave corrupted data and open database connections behind. To prevent those undesirable
residuals, clean up commands can be passed through a specified postStop hook. It is executed
after the termination signal reached the Pod and before the TERM signal is passed to the process
with the id 1 inside each container.

ReplicaSets
A ReplicaSet takes care of maintaining a specified number of identical active Pods at any
given point in time. It contains a selector that identifies which Pods should be monitored, a
count of how many Pods should be running simultaneously and a template which describes
the properties newly generated Pods should comply with. It is considered a best practice to
only interact directly with ReplicaSets when dealing with complex deployment scenarios. In
regular circumstances it should be su�cient to utilize Deployments to manage the deployed
Pods.

Deployments
The update and start of applications inside a cluster in a declarative way is performed through
Deployment configuration files. They serve as a blueprint of the service an application should
provide. A Deployment contains the desired state of an application in regard to the number
of pods, which image should be used for the containers inside the Pods, the assignment
of network ports and information about how to perform rolling updates. To accomplish
a successful rolling update by deploying a new version of the image of an application the
updated Deployments file is resubmitted to the Kubernetes API server. It detects a new
desired state in the cluster and creates a new ReplicaSet for the Pods containing the updated
image. So now the cluster contains a new and an old ReplicaSet and each time a new Pod with
the updated image is launched a running Pod containing the deprecated image is terminated.
This procedure allows a smooth update process with minimized downtime. After performing
a rolling update by default the previous 10 outdated ReplicaSets containing their whole
configuration are retained in the cluster without managing active Pods. Hence a rollback
is essentially a rolling update the other way around to a desired previous version of the
application. Additionally the prior described Startup-, Readiness and Liveness-Probes need
to be specified within the Deployments files. Figure 5.2 illustrates that Deployments are
controlling ReplicaSets, and ReplicaSets are managing Pods.

34

5.2 Kubernetes Components

PersistentVolumes
Pods in a cluster are intended to be stateless but sometimes external storage needs to be
mapped onto the cluster to provide data and storage capacity for the running applications.
This component was introduced to abstract the usage of storage from its provision since
managing storage di�ers from managing computing resources. PersistentVolumes di�er in
life cycle from Pods and contain the information to use NFS or storage options provided by
cloud vendors. They come in two di�erent forms:

Static: A fixed set of PersistentVolumes is manually created at configuration time and
can be consumed by applications within the cluster.

Dynamic: Kubernetes autonomously allocates PeristentVolumes at run time based on a
StorageClass defined during configuration time. This happens if and only if a matching
PersistentVolumeClaim exists. By defining the StorageClass as an empty string in a
PersistentVolumeClaim the dynamic provision is disabled.

Persistent Volume Claim
The Persistent Volume Claim authorizes the applications inside a Pod to access the specified
PersistentVolume. The configuration file contains information about the needed storage
capacity, access mode, StorageClass etc. It gets bound to a PeristentVolume by Kubernetes
on a one-on-one basis as soon as the specified conditions are satisfied. Otherwise the claim
will remain unbound until new resources are added to the cluster or already utilized are freed.
Depending on the storage provider a PersistentVolumeClaim is able to consume storage with
di�erent access modes:

ReadWriteOnce: One node can exclusively write on this volume.

ReadOnlyMany: Many nodes can read jointly from this volume.

ReadWriteMany: Many nodes can read from as well as write to this volume.

Network File Storage supports all previously discussed access modes.

Storage Classes
This component allows to specify classes of provided storage which may di�er in the enforced
policies by the storage service administration like quality-of-service, backup etc.

Service
Because of the dynamic nature of scaling and locating Pods throughout a Kubernetes cluster
it is not feasible to use the IP-address of a Pod to communicate with the applications it
contains. Services were introduced to provide a stable and reliable networking interface for
a set of ephemeral Pods. It exposes a defined host name and ports that are immutable at
run time. Pods and Services have a one-to-one correspondence and are mapped through the
app selector label. By omitting the selector label the corresponding Service won’t create an
Endpoint object. This is useful to incorporate applications that operate on an external host
like database applications.

Nodeport
In Kubernetes the Pods within the cluster are not reachable from the outside. This component
is a special type of Service which allows to reach the internal IP-space of the cluster from
external applications. Kubernetes either autonomously assigns an access port or applies a
specified port in the range of 30000 and 32767. Nodeports are not able to manage incoming

35

5 Prototype

tra�c like a Load Balancer component and should therefore not be used in production systems.
Since this thesis aims to investigate whether ECM systems can be managed by Kubernetes at
all the aspect of load balancing is out of scope but is considered in the companion master
thesis [Hag21].

Endpoints
Endpoints are dynamic objects that contain all the available Pods and their IP-addresses and
ports. Before directing tra�c to Pods the corresponding Service queries the Endpoints object
to get the addresses of currently available Pods and then chooses one to direct the request to.

Figure 5.2 illustrates the previously presented components and its interactions inside a cluster to
maintain its specified desired state.

Cluster

Storage
Class

Namespace

Persistent
Volume
Claim

Persistent
Volume Pod

DeploymentReplica Set

Endpoint

Service

Pod Generator

NetworkStorage

Kubernetes
Component

Creates References

Figure 5.2: The Interactions of the Components Inside a Kubernetes Cluster [TKA20]

5.3 Initially Aspired System Topology

The following Figure 5.3 shows the previously presented components and its role to implement a
scalable Enterprise Content Management system based on the concept introduced in Chapter 4.

36

5.4 Refactored ECM System Topology

The overall System is split in two parts the Kubernetes cluster and a NFS server which holds all
the data needed to operate the applications inside the cluster. The vertical dashed lines indicate
the separation of the individual ECM applications. Each application utilizes a PersistentVolume
with a corresponding PersistentVolumeClaim to either load needed application data or read from or
write to database files. The Resource Manager application requires two JDBC connections to the
Object Catalog and Data Catalog as well as an external connection for administration. The Web
Client portal application only requires an internal connection to the Object Catalog, an internal
connection to the Resource Manager and an external to provide user access. External connections
are implemented through Nodeports to enable user interaction.

Cluster Web Client
Object
Catalog

Resource
Manager

NFS Server

External Communication
Internal Communication
Cluster Component

Peristent Storage

Physical Storage Volume

Nodeport Service

Persistent
Volume

Persistent
Volume

Persistent
Volume

Persistent
Volume Claim

Persistent
Volume Claim

Persistent
Volume Claim

Service

Data
Catalog

Persistent
Volume

Persistent
Volume Claim

Service

Nodeport

User Administrator

Figure 5.3: Initial Topology of the ECM System Inside a Kubernetes Cluster

5.4 Refactored ECM System Topology

The initially aspired system topology described in Section 5.3 turned out to be brittle when put
under load. During functional tests it was discovered that the topology design required a refactoring
as the stateful database service was very unstable and unreliable. It could sometimes handle manual
queries as well as file uploads and sometimes the databases would crash for no obvious reason.
Following investigations showed that running DB2 instances on NFS storage was the source of the
occurring issues.

37

5 Prototype

To enhance the prototype stability and therefore availability we decided to remove the state-
ful database services from the cluster and operate it as Docker containers on a di�erent host server.
This decision resulted in removing the Deployment, PersistentVolume and PersistentVolumeClaim
components and adding a Endpoints component for both the Object Catalog and the Data Catalog.
Besides that a new Docker image was created which contains all essential files of the Resource
Manager and Web Client applications such that external file mounts are avoided. Hence the
Persistent Volume and Persistent Volume Claim component were removed from the topology. The
new image incorporates both applications and the startup of the separate systems is enforced
through various configurations when starting the corresponding container. The following Figure 5.4
illustrates the refactored topology to prevent the previously discussed challenges of the initial
implementation.

Cluster Web Client

Object
Catalog

Resource
Manager

Data
Catalog

External Server

External Communication

Internal Communication

Cluster Component

Physical Storage Volume

Nodeport Nodeport

Service

Endpoint Endpoint

Service

Service

User Administrator

Figure 5.4: Improved Topology of the ECM System Inside a Kubernetes Cluster

38

5.5 Implementation Details of the Kubernetes Components

5.5 Implementation Details of the Kubernetes Components

The following section describes the configuration of the components of a Enterprise Content
Management system within a Kubernetes cluster. It describes the implementation by means of
source code with a detailed explanation of the design decisions made.

5.5.1 Data Catalog and Object Catalog

Because the Data Catalog and Object Catalog are relocated to an external server outside the cluster
they require means to communicate with the applications left inside the cluster. To achieve this a
Service without the app selector and a manually configured Endpoint object is necessary. Since
the configuration files of both components have only minor disparities only the Data Catalog
configuration is displayed.

Service
The Service configuration file is described in Listing 5.2. The specified port in the spec
section has to correspond to the port exposed within the cluster whereas the targetPort needs
to correspond with the port configured in the Endpoint object. The Service configuration of
the Object Catalog component is identical except for the port and targetPort number which is
50001.

Listing 5.2 Data Catalog Database Service Configuration File

kind: Service
apiVersion: v1
metadata:

name: icm86-�s
namespace: ecm

spec:
ports:

- port: 50000
targetPort: 50000

Endpoint
The Endpoint configuration file is described in Listing 5.3. The described port corresponds
directly to the exposed port of the external data source which is reachable through the specified
IP-address. The configuration file of the Object Catalog Endpoint is identical except for the
port number which is 50001

5.5.2 Resource Manager Application and Content Navigator

Since the configuration files for the components of the Resource Manager and Web Client applications
are almost identical just the Resource Manager is considered in the following section. As displayed
in Figure 5.4 both applications depend of the following Kubernetes components:

39

5 Prototype

Listing 5.3 Data Catalog Database Endpoint Configuration File

kind: Endpoints
apiVersion: v1
metadata:

name: icm86-�s
namespace: ecm

subsets:
- addresses:

- ip: 192.168.221.148
ports:

- port: 50000

Nodeport
The Nodeport configuration file is described in Listing 5.4. Because we want Kubernetes to
take as much work from our hands as possible the Nodeport configurations of components
inside the cluster all contain the app selector in the spec field. Therefore we don’t need to
worry about Endpoints objects. The defined nodePorts inside the ports specification exposes
the corresponding ports and targetPorts of the application inside the Pods. Since our cluster
resides in an emulated environment using Docker containers the exposed ports need to be
looped through the Docker network layer to be reachable from outside the Control Plane
container. Figure 5.1 illustrates the applied port mappings.

Listing 5.4 Resource Manager Application Nodeport Configuration File

kind: Service
apiVersion: v1
metadata:

name: icm86-rmapp-nodeport
namespace: ecm

spec:
type: NodePort
se�ector:

app: icm86-rmapp
ports:

- name: icm86-rmapp-websphere-admin-port
port: 9043
targetPort: 9043
nodePort: 30044
protoco�: TCP

- name: icm86-rmapp-insecure-app�ication-port
port: 9080
targetPort: 9080
nodePort: 30080
protoco�: TCP

- name: icm86-rmapp-secure-app�ication-port
port: 9443
targetPort: 9443
nodePort: 30443
protoco�: TCP

40

5.5 Implementation Details of the Kubernetes Components

Service
The Service configuration contains only minor di�erences compared to the Nodeport
configuration described in Listing 5.4. It does not contain a spec.type attribute nor a
spec.ports.nodePort attribute in each port definition. This Service handles the communication
between Web Client and Resource Manager.

Deployment
The Deployment configuration file is described in Listing 5.5. It contains all information
needed to operate the applications within a cluster. For the Minimum Viable Prototype
implemented during this thesis the number of spec.rep�icas was set to 1. The entry
spec.se�ector.matchLabe�s.app sets a label to describe with which Pods the Deployment is
associated. The following section spec.temp�ate contains all information for the ReplicaSet
to generate new Pods if necessary. spec.temp�ate.metadata defines the label inside the cluster
which is used by Services to direct tra�c to the deployed Pods The next section defined in
spec.temp�ate.spec.containers specifies the structure of the launched Containers inside
the Pod and details concerned with its life cycle. Following the generation of the Container
based on the chosen image and the exposed ports the specified command is executed. The
spec.temp�ate.spec.containers.command runs the entrypoint script inside the root directory
of the image which is described in Listing 5.6. Simultaneously when starting the command

the startupProbe is launched. It continuously evaluates whether a TCP connection can be
established with port 9443. The configuration of this probe allows a 15 minute time frame
for the application to start before terminating the Pod. The port 9443 was selected because
the main application can be reached that way so as soon as a connection would succeed
the Ressource Manager Application could be used. The large time frame is chosen due to
long start up phase of the WebSphere Application Server. Due to design decisions of the
Docker image the Container has to be kept running. Therefore Kubernetes is not able to know
whether the application inside the container was still in a healthy state. As a countermeasure
the �ivenessProbe and readinessProbe are utilized based on the same assumptions regarding
the port as the startupProbe. The first reports to Kubernetes after 3 failed connection attempts
that the Pod has to be restarted. The second probe instructs the Service to stop directing tra�c
to the Pod after 1 failed connection attempt. After a Pod is flagged as failed or the Pod gets
terminated due to scaling requirements spec.temp�ate.spec.containers.�ifecyc�e.preStop

is executed. This command allows a graceful shutdown of the Websphere Application Server
inside the Pod within the default time frame of 30 seconds to prevent eventual resource leaks.

Entrypoint Script
To successfully start the Resource Manager and the Content Navigator applications
the following entrypoint.sh script is run during setup time. The developed script is
displayed in Listing 5.6. At first it is enforced through pipefai� that the whole script
should exit with a non-zero status code if any command or pipe exits with a non-zero
status code. Subsequently the start script for the WebSphere Application Server is
called. After a successful start the script maps the logs of the application to STDOUT
using the tai� command. The final step serves two purposes, at first it allows to inspect
the logs from the outside of the Pod by using kubect� �ogs. Secondly it prevents the
container from exiting and thus terminating the whole Pod. This procedure is necessary
because the initially generated Docker image was operated in interactive mode. This

41

5 Prototype

means that the Docker Demon keeps the STDIN open even if the container is running in
detached mode. Since Kubernetes Deployments do not support an interactive mode this
workaround had to be implemented.

5.6 Source Code

The source code and image developed during this master thesis can be obtained from an internal
repository resp. registry of the Institute of Parallel and Distributed Systems at the University
Stuttgart. It includes the configuration files for the Kubernetes cluster as well as scripts to install all
required dependencies, setup the environment and start all cluster components except the required
Docker image. The following steps work only within the environment of the university.

To install all dependencies and load the Docker images from the internal registry simply run
./runSetupJobs.sh in the root directory of the repository. It is important to mention that the required
image to start the Pods inside the KiND cluster needs to be loaded in the Docker instance of the host
beforehand. After all dependencies are available the ./start.sh script can be executed which goes
through following steps:

1. Delete any old KiND cluster with the name kind-ecm

2. Create a new cluster based on the configuration file displayed in Listing 5.1

3. Set the kubectl context to the newly generated cluster

4. Load the required Docker images into the cluster

5. Instruct kubect� to create all required components

Since loading all Docker images into KiND can take a long time the additional script repopu�ate.sh
was created. It allows to delete all components inside the cluster and recreate them based on new
configuration files without deleting the cluster and reloading all Docker images.

42

5.6 Source Code

Listing 5.5 Resource Manager Application Deployment Configuration File

kind: Dep�oyment
apiVersion: apps/v1
metadata:

name: icm86-rmapp
namespace: ecm

spec:
rep�icas: 1
se�ector:

matchLabe�s:
app: icm86-rmapp

temp�ate:
metadata:

�abe�s:
app: icm86-rmapp

spec:
containers:
- name: icm86-rmapp

image: ecmdocker.nova�oca�:5043/ipvs-as/icm86/cm8-rmapp:v1.2.5
ports:
- containerPort: 80
- containerPort: 9043
- containerPort: 9080
- containerPort: 9443
command:
- "/root/entrypoint.sh"
startupProbe:

fai�ureThresho�d: 30
periodSeconds: 20
timeoutSeconds: 10
tcpSocket:

port: 9443
�ivenessProbe:

periodSeconds: 5
timeoutSeconds: 2
successThresho�d: 1
fai�ureThresho�d: 3
tcpSocket:

port: 9443
readinessProbe:

periodSeconds: 5
timeoutSeconds: 2
successThresho�d: 1
fai�ureThresho�d: 1
tcpSocket:

port: 9443
�ifecyc�e:

preStop:
exec:

command:
- "/bin/bash -c"
- "/opt/IBM/WebSphere/AppServer/profi�es/icm86AppProfi�e/bin/stopServer.sh

server1 -profi�eName icm86AppProfi�e -username wasadmin -password passw0rd"

43

5 Prototype

Listing 5.6 Resource Manager Application Deployment entrypoint.sh script

#!/usr/bin/env bash
set -Eeuo pipefai�

echo -e "\n start the ICN-WAS server in the foreground "
/root/icmStartWas.sh

echo -e "ICN-WAS instance ready to go; tai�ing the sysout �og fi�e ..."
/usr/bin/tai� -n 100 -F /opt/IBM/WebSphere/AppServer/profi�es/icm86AppProfi�e/�ogs/server1/rm/
icmrm/icmrm.�ogfi�e

44

6 Conclusion and Outlook

This thesis demonstrates that the approach by Shao [Sha20] can be operated properly on a Docker
based container environment but it was not possible to apply a one to one porting into a Kubernetes
cluster. The cluster needs to be further enhanced to handle stateful database services in an automated
manner by leveraging Kubernetes technology.

This work evaluates two approaches of operating stateful applications inside Kubernetes. Based on
this investigation the first concept is proposed and implemented in the form of a prototype. While
conducting reliability tests it turned out that the developed solutions of running the Data Catalog
and Object Catalog of the ECM system could not guarantee a stable and reliable operation inside
the cluster. The objective of managing stateful database applications inside a Kubernetes cluster
poses as a serious challenge and requires a much more complex deployment design. This is mainly
because Kubernetes was designed to autonomously manage stateless workloads. Therefore the
stateful components were removed and managed on an external infrastructure. In the end the e�ort
was split in two phases: primarily focus on implementing the stateless components and secondarily
further improve the initial approach to handle stateful components. Given the time constraints for
this thesis and the complexity of the task the stateful databases services are left on the external
docker environment. Additionally the stateless applications which stayed inside the cluster required
the creation of a new Docker image which eliminated the need of external data sources mounted
into the Pods.

Future work might improve the developed prototype through investigating the areas of load
balancing, dynamic scaling and security in Kubernetes clusters.

45

Bibliography

[Aa10] M. Armbrust, et al. “A View of Cloud Computing”. In: Communications of the ACM
53.4 (Apr. 2010), pp. 50–58. ���: 10.1145/1721654.1721672 (cit. on p. 14).

[ABG+15] S. Adkins, J. Belamaric, V. Giersch, D. Makogon, J. E. Robinson. OpenStack Cloud
Application Development. Wrox, 2015. ����: 1119194318 (cit. on p. 18).

[ACSA21] The Apache CloudStack Authors. The O�cial Apache CloudStack Documentation.
2021. ���: http://docs.c�oudstack.apache.org/en/�atest/ (cit. on p. 19).

[AIIM13] AIIM. What is Enterprise Content Management (ECM)? 2013. ���: https://www.
aiim.org/Resources/G�ossary/Enterprise-Content-Management (cit. on p. 13).

[BBH19] B. Burns, J. Beda, K. Hightower. Kubernetes: Up and Running - Dive into the Future
of Infrastructure. O’Reilly Media, Inc., 2019. ����: 1492046531 (cit. on pp. 31, 33).

[BSD20] The FreeBSD Team. The O�cial FreeBSD Documentation. 2020. ���: https:

//docs.freebsd.org/en/books/handbook/jai�s/ (cit. on p. 21).

[EKT21] M. Elder, J. Kitchener, B. Topol. Hybrid Cloud Apps with OpenShift and Kubernetes:
Delivering Highly Available Applications and Services. O’Reilly Media, Inc., 2021.
����: 9781492083818 (cit. on p. 23).

[GHH+12] K. R. Grahlmann, R. W. Helms, C. Hilhorst, S. Brinkkemper, S. Van Amerongen.
“Reviewing enterprise content management: A functional framework”. In: European
Journal of Information Systems 21.3 (2012), pp. 268–286 (cit. on p. 13).

[Hag21] P. Hagemann. “Evaluating Dynamic Load Balancing of ECM Workload Pattern
Wmployed in Cloud Environments Managed by a Kubernetes/Docker Eco-System”.
MA thesis. Germany: University of Stuttgart, 2021 (cit. on p. 36).

[HKZ+11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker,
I. Stoica. “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center”.
In: 8th USENIX Symposium on Networked Systems Design and Implementation (NSDI
11). Boston, MA: USENIX Association, Mar. 2011. ���: https://www.usenix.
org/conference/nsdi11/mesos-p�atform-fine-grained-resource-sharing-data-

center (cit. on p. 22).

[IH19] B. Ibryam, R. Huss. Kubernetes Patterns: Reusable Elements for Designing Cloud
Native Applications. O’Reilly Media, Inc., 2019. ����: 1492050288 (cit. on pp. 27,
33).

[JBB+19] I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli, R. Montanari,
A. Palopoli. “Container Orchestration Engines: A Thorough Functional and Per-
formance Comparison”. In: ICC 2019 - 2019 IEEE International Conference on
Communications (ICC). 2019, pp. 1–6. ���: 10.1109/ICC.2019.8762053 (cit. on pp. 17,
18, 22).

47

https://doi.org/10.1145/1721654.1721672
http://docs.cloudstack.apache.org/en/latest/
https://www.aiim.org/Resources/Glossary/Enterprise-Content-Management
https://www.aiim.org/Resources/Glossary/Enterprise-Content-Management
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://doi.org/10.1109/ICC.2019.8762053

[Kha17] A. Khan. “Key Characteristics of a Container Orchestration Platform to Enable
a Modern Application”. In: IEEE Cloud Computing 4.5 (2017), pp. 42–48. ���:
10.1109/MCC.2017.4250933 (cit. on p. 17).

[Kum17] S. Kumaran. Practical LXC and LXD Linux Containers for Virtualization and
Orchestration. Apress, 2017. ����: 9781484230244 (cit. on pp. 15, 16, 21).

[LXC20] The LXC Team. The O�cial LXC Documentation. 2020. ���: https://�inuxcontain
ers.org/�xc/introduction/ (cit. on p. 21).

[MG11] P. Mell, T. Grance. The NIST Definition of Cloud Computing. 2011. ���: https:
//csrc.nist.gov/pub�ications/detai�/sp/800-145/fina� (cit. on p. 14).

[MS15] J. P. Mullerikkal, Y. Sastri. “A comparative study of OpenStack and CloudStack”. In:
2015 Fifth International Conference on Advances in Computing and Communications
(ICACC). IEEE. 2015, pp. 81–84 (cit. on p. 19).

[New19] S. Newman. Monolith to Microservices - Evolutionary Patterns to Transform Your
Monolith. O’Reilly Media, Inc., 2019. ����: 1492047848 (cit. on p. 17).

[Por16] M. Portnoy. Virtualization Essentials. Sybex, 2016. ����: 1119267722 (cit. on p. 15).

[Pou20a] N. Poulton. Docker Deep Dive - Zero to Docker in a Single Book. Independently
Published, 2020. ����: 1521822808 (cit. on pp. 15, 20, 22).

[Pou20b] N. Poulton. The Kubernetes Book. Independently Published, 2020. ����: 1521823634
(cit. on pp. 21, 33).

[RB14] T. Rosado, J. Bernardino. “An overview of openstack architecture”. In: Proceedings
of the 18th International Database Engineering & Applications Symposium. 2014,
pp. 366–367 (cit. on p. 18).

[RDG20] P. Reznik, J. Dobson, M. Gienow. Cloud Native Transformation - Practical Patterns
for Innovation. O’Reilly Media, Inc., 2020. ����: 9781492048909 (cit. on p. 17).

[Sha20] G. Shao. About the Design Changes Required for Enabling ECM Systems to Exploit
Cloud Technology. 2020. ���: https://e�ib.uni-stuttgart.de/bitstream/11682/
11274/1/GangShaoMasterArbeit.pdf (cit. on pp. 25–27, 31, 45).

[TKA20] The Kubernetes Authors. The O�cial Kubernetes Documentation. 2020. ���: https:
//kubernetes.io/docs/concepts/ (cit. on pp. 21, 33, 36).

[TKA21] The Kubernetes Authors. KiND - Kubernetes in Docker. 2021. ���: https://kind.
sigs.k8s.io (cit. on p. 31).

[TONA21] The OpenNebula Authors. The O�cial OpenNebula Documentation. 2021. ���:
https://opennebu�a.io/docs (cit. on p. 19).

[TPT19] The Podman Team. The O�cial Podman Documentation. 2019. ���: https://docs.
podman.io/en/�atest/ (cit. on p. 20).

[VGM+16] A. Vogel, D. Griebler, C. A. Maron, C. Schepke, L. G. Fernandes. “Private IaaS clouds:
a comparative analysis of OpenNebula, CloudStack and OpenStack”. In: 2016 24th
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP). IEEE. 2016, pp. 672–679 (cit. on p. 19).

All links were last followed on August 30, 2021.

https://doi.org/10.1109/MCC.2017.4250933
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://elib.uni-stuttgart.de/bitstream/11682/11274/1/GangShaoMasterArbeit.pdf
https://elib.uni-stuttgart.de/bitstream/11682/11274/1/GangShaoMasterArbeit.pdf
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kind.sigs.k8s.io
https://kind.sigs.k8s.io
https://opennebula.io/docs
https://docs.podman.io/en/latest/
https://docs.podman.io/en/latest/

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

Christoph Trybek
Reutlingen, 01.09.2021

	1 Introduction
	2 Foundations
	2.1 Enterprise Content Management
	2.2 Cloud Computing
	2.3 Virtualization
	2.4 Containerization
	2.5 Microservices
	2.6 Orchestrating Containers within a Microservice Architecture
	2.7 OpenStack
	2.8 Docker
	2.9 Kubernetes

	3 Related Work
	3.1 About the Design Changes Required for Enabling ECM Systems to Exploit Cloud Technology

	4 Concept
	4.1 Implications of a Kubernetes Cluster
	4.2 Aspired ECM System Topology

	5 Prototype
	5.1 Infrastructure
	5.2 Kubernetes Components
	5.3 Initially Aspired System Topology
	5.4 Refactored ECM System Topology
	5.5 Implementation Details of the Kubernetes Components
	5.6 Source Code

	6 Conclusion and Outlook
	Bibliography

