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Abstract— Data lakes are on the rise as data platforms for 
any kind of analytics, from data exploration to machine 
learning. They achieve the required flexibility by storing 
heterogeneous data in their raw format, and by avoiding the 
need for pre-defined use cases. However, storing only raw data 
is inefficient, as for many applications, the same data processing 
has to be applied repeatedly. To foster the reuse of processing 
steps, literature proposes to store data in different degrees of 
processing in addition to their raw format. To this end, data 
lakes are typically structured in zones. There exists various zone 
models, but they are varied, vague, and no assessments are 
given. It is unclear which of these zone models is applicable in a 
practical data lake implementation in enterprises. In this work, 
we assess existing zone models using requirements derived from 
multiple representative data analytics use cases of a real-world 
industry case. We identify the shortcomings of existing work 
and develop a zone reference model for enterprise-grade data 
lake management in a detailed manner. We assess the reference 
model’s applicability through a prototypical implementation for 
a real-world enterprise data lake use case. This assessment 
shows that the zone reference model meets the requirements 
relevant in practice and is ready for industry use. 

Keywords— Data Lake, Zones, Reference Model, Industry 
Case, Industry Experience  

I. INTRODUCTION 

In recent years, data lakes gained popularity as they not 
only allow reporting but also flexible and advanced 
analytics on heterogeneous data for both batch and real-time 
processing [1]. Work on data lake management, i.e., the 
management of data within a data lake, is however 
premature and inconsistent [2]. In particular, practical 
experience shows that the initial idea of deferring any kind of 
data transformation and data processing until data are 
retrieved for analysis (as seen e.g., in [3]) is not viable. 
Especially when data are reused for at least similar purposes 
multiple times, starting with raw data and performing the same 
processing steps each time is inefficient [4].  

A solution to this problem is to store not only raw, but also 
pre-processed data in the data lake [4]. To manage these 
diversely processed data, literature frequently suggests zone 
models (e.g., in [4–6]). These zone models define in which 
processing degrees (e.g., raw, cleansed, aggregated) data are 
available in the data lake, and how they are governed (e.g., 
regarding access rights, data quality, and responsibilities). For 
different use cases, data in the most fitting processing degree 
can then be accessed. Zone models thus allow to share and 
reuse pre-processed data between use cases. Zones are similar 
to the layers in data warehousing (e.g., in [7]), but data may 
not move through all zones or even move back. 

Literature describing these zone models is varied, vague, 
and inconsistent. There neither exists a uniform concept for 
zone-based data lake management, nor any form of systematic 
assessment of available concepts. When building data lakes in 
practice, this diversity poses a challenge, as it remains unclear 
which zone model to use and how to implement it. 

We address this problem in this work. As a basis, we use 
the following data lake definition based on [3]: the data lake 
serves as a data management platform for all kinds of 
analytics, from reporting and OLAP (Online Analytical 
Processing) to advanced analytics. Data of any format can be 
stored and used for any analytical use case without the need to 
define all of the data’s future use upon ingestion. To achieve 
this flexibility, data are stored in their raw format. Various 
user groups can access and make use of these data in their 
everyday work life.  

Based on industry experience with an enterprise-wide data 
lake, we assess existing zone models and develop a zone 
reference model for enterprise-grade data lake management. 
The term “enterprise-grade” means that the model can support 
use cases typical for enterprises. To this end, we make 
following contributions: 

 We investigate representative real-world data analytics 
use cases for data lakes from multiple business 
domains and derive a set of requirements from 
practice. 

 We use these requirements to assess existing data lake 
management concepts, in particular data ponds [8] and 
zone models [4–6, 9–11].  

 We introduce a meta-model for zones that defines a 
zone’s attributes and interactions within and outside of 
the zone model. 

 We develop a zone reference model that addresses the 
identified requirements as an instantiation of the meta-
model. This zone reference model provides guidance 
for the realization of zone-based data lake 
management.  

 We assess this reference model in two ways: 1) we 
provide a prototypical implementation for an 
additional data analytics use case not covered during 
the requirement analysis to assess its adaptability, 2) 
we evaluate its suitability with regard to the derived 
requirements.  

The remainder of this paper is structured as follows: 
Section II gives an overview of the underlying industry case 



and derives a set of requirements from typical use cases. 
Section III presents related work in data lake management and 
assesses existing zone models using the derived requirements. 
Section IV introduces the meta- model for zones, which serves 
as a basis to develop and detail the zone reference model in 
Section V. Section VI assesses the developed reference 
model. Section VII concludes the paper. 

II. USE CASES AND REQUIREMENTS DERIVATION 

We use multiple real-world use cases from a global 
manufacturer as a basis for our assessment of existing zone 
models and the development of the zone reference model. 
According to our experience, the observations made here also 
apply to other large enterprises. The business of the 
considered manufacturer is very diverse ranging from mass 
production to individual production. To enhance its business 
and increase competitiveness [12], the manufacturer 
implements methodologies from industry 4.0 [13] by 
integrating data analytics in the entire industrial value chain. 
Various data analytics use cases from varied contexts manage 
their data in an enterprise-wide data lake. 

The investigated use cases originate from four different 
but frequently represented business domains, namely finance, 
quality management, manufacturing, and end costumer 
services. The use cases cover a wide variety of analytics 
(traditional reporting to advanced analytics using machine 
learning) and data (structured to unstructured), and thus can 
be considered representative for data lake applications. We 
have already used three of these use cases as a representative 
basis for previous work [14] , where we evaluated the Data 
Vault modeling technique for the usage in data lakes. In the 
following, we examine these use cases and their requirements. 

The finance analytics use case aims at realizing reporting 
and OLAP [15] on the data lake. Structured batch data from 
multiple different sources have to be integrated with each 
other, e.g., from multiple ERP (Enterprise Resource Planning) 
systems. As the results of financial analyses are of high 
relevance to the enterprise, the data used should be cleansed 
and carefully governed. Certain analyses like the calculation 
of KPIs (Key Performance Indicators), such as the operating 
cash flow, are executed regularly and would thus benefit from 
pre-processed data. 

The quality management analytics use case uses data from 
a wide variety of sources to investigate quality defects in 
manufactured products. To this end, root-cause analyses are 
executed using defect reports, together with other advanced 
analytics. Additionally, batch data are used for traditional 
reporting and OLAP, e.g., measuring the number of defects 

for a certain product line. Since data are acquired from 
different source systems, they have to be integrated. The 
quality of data is assured in the source systems, which makes 
cleansing in the data lake redundant. Some of the data used in 
this use case are personal, e.g., customer data from defect 
reports. Thus, they need to be governed accordingly, since 
legal regulations, e.g., GDPR, apply to personal data. Again, 
this use case comprises analyses that are executed regularly 
and thus benefit from pre-processed data. An additional 
requirement is that data scientists should be able to share the 
results of their analyses with other users by writing them back 
into the data lake. These results, such as transformations or 
data mining models, then can be reused for other use cases. 

The goal of the manufacturing analytics use case is to gain 
insights into the manufacturing process of car parts, where 
various parts from different suppliers are used in assembly. 
Batch data on the supplied parts, and real-time sensor data 
from machines and measuring stations are used to support 
various analyses, from reporting and OLAP on manufacturing 
data (see for example [16]), to advanced analytics [17], e.g., 
machine learning on structured and unstructured data [18]. A 
large number of source systems (over 600) are involved in this 
use case. Thus, the data available have to be integrated. Some 
data are captured manually by workers, e.g., defect 
descriptions, while others are sensitive, e.g., workers’ 
personal data. Thus, cleansing and governing data are of high 
importance. So is pre-processing a subset of the data, as 
certain use cases are executed periodically (e.g., KPI 
calculation). Data scientists should be able to write results 
back in the data lake for future use.  

The End Customer Services analytics use case is part of 
the mobility sector. Real-time field data, e.g., GPS data, are 
collected at the customer’s site and used to offer services to 
the customer via an app (e.g., route planning services or 
dashboards). Additionally, analyses are executed on batch 
data to improve the product. As data are collected about 
certain customers, thorough data analytics can affect the 
customers’ privacy. Thus, data need to be governed and 
protected. To improve the product, data scientists analyze the 
data in an advanced manner (e.g., using machine learning). 
Reporting and OLAP are also performed. Results acquired by 
the data scientists should be available for further use in the 
data lake and thus be written back. Again, this use case 
involves various data sources that have to be integrated with 
each other. In addition, various analyses, such as the creation 
of dashboards, are executed periodically on the data and thus 
benefit from pre-cleansed and pre-processed data. 

TABLE I.  REQUIREMENTS OF THE INVESTIGATED DATA ANALYTICS USE CASES 

Requirement Finance Quality  
Management 

Manufacturing End Customer 
Services 

Pre-Processed    

Cleansed  X   

Integrated     

Governed     

Reporting and OLAP    

Advanced Analytics X   

Writing back X    
 



From investigating these representative data analytics use 
cases, we derive seven feature requirements (in addition to 
storing raw data) a data lake management has to meet.  

 Data should be available in a pre-processed state, i.e., 
they are no longer in their raw format, but, e.g., 
aggregated or filtered to support several use cases.  

 Data should be available in a cleansed format, 
meaning that syntactical errors are erased.  

 Data from different sources should be available in an 
integrated format, where they are consolidated and 
connected.  

 Sensitive and critical data should be governed 
accordingly.  

 Reporting and OLAP [15] for, e.g., KPI calculation, 
should be supported.  

 Advanced analytics [17] using, e.g., machine learning 
should be supported.  

 To make results available to other users of the data 
lake, writing back data into the data lake should be 
supported.  

Table I depicts all these requirements and how the 
different data analytics use cases contribute to them. We use 
these general requirements to assess existing data lake 
management models in Section III and to development a zone 
reference model in Section V.  

III. RELATED WORK 

Literature provides different concepts for data 
management in data lakes. This section describes the existing 
concepts (Section A) and assesses available zone models 
using the requirements from Section II (Section B). 

A. Overview of Existing Data Lake Management Concepts 

Two major approaches exist to manage pre-processed data 
in data lakes [19]: The data pond architecture and the zone 
architecture. The following paragraphs give a short overview 
over the basics of these approaches. 

The data pond architecture [8] by Inmon separates the 
data lake into five disjoint ponds: Raw Data Pond, Analog 
Data Pond, Application Data Pond, Textual Data Pond, and 
Archival Data Pond. Data are always only available in one of 
the mentioned ponds at any given time, and they are processed 
as they make their way through the ponds.  Thus, the original 
data are lost. This contradicts the concept of data lakes [19] 
and prevents advanced analytics. Regarding the other 
requirements in Section II, the data pond architecture does 
separate data into disjoint data ponds, which prevents 
comprehensive integration. Governance is not discussed in the 
data pond architecture and there is no possibility to write data 
back into the data lake. Due to these restrictions, the data pond 
architecture is not considered in the remainder of this work. 

There exists a multitude of different variants of the zone 
architecture [4–6, 9–11]. These variants differ greatly not 
only in the zones they include (see Fig. 1), but also in the 
number of zones, the supported user groups (data scientists 
only vs. data scientists and business users alike), and their 
focus (processing [4] vs. governance [9]). The fundamental 
idea, however, remains the same: Different zones contain data 
in different degrees of processing, for example raw or 

processed. To this end, each zone defines certain 
characteristics data in it must have (e.g., data are cleansed and 
in a common format). In contrast to the pond architecture, 
zones are not disjoint. Data might be copied from zone to 
zone, or a zone might contain views on data from a different 
zone. That way, raw data always remain available in what is 
mostly called the “Raw Zone”. The characteristics of this zone 
remain the same across all zone models: data are stored 
permanently in their raw format. Regarding the number and 
characteristics of other zones, however, existing concepts are 
varied and inconsistent. 

B. Assessment of Existing Zone Models 

As part of our research, we have discovered five major 
zone models (i.e., variants of the zone architecture): 
Gorelik [9], IBM [11], Madsen [4], Ravat [10], and Zaloni, 
whose model exists in multiple versions by different authors 
[5, 6]. Fig. 1 shows an overview of all five zone models in a 
systematic format to visualize their key characteristics.  

In this section, we assess these zone models with respect 
to the feature requirements derived in Section II. We also 
investigate two methodological requirements: 1) the level of 
detail in which the zone model is described, including 
implementation details, and 2) whether it provides a derivation 
methodology (i.e., a description of the process by which the 
models were created) and an assessment. Table II shows the 
assessment results, i.e., to what extent the zone models fulfill 
the requirements. A bracketed checkmark indicates that while 
the zone model provides some of the requested characteristics, 
we do not consider the requirement as sufficiently met. The 
following paragraphs detail on our assessment. 

In Gorelik’s zone model [9] (Fig. 1 (1)), the Gold Zone 
allows to manage pre-processed data. However, there is no 
zone for explicitly cleansed or integrated data. The Sensitive 
Zone allows to govern especially sensitive data and ensures 

 
Fig. 1. Overview of the five different zone models: 
(1) Gorelik [9], (2) IBM [11], (3) Madsen [4], (4) Ravat [10], and (5) 
Zaloni [5, 6]. 
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that legal regulations are complied with. Reporting and OLAP 
can be done using the Gold Zone. The Work Zone provides 
data for advanced analytics for data scientists. Results from 
the Work Zone can be written back into the Gold Zone for 
further use. While for each zone, a detailed description is 
given, the model is lacking implementation details. Thus, we 
only consider this requirement partially met. There exists no 
derivation methodology or assessment of the model. 

IBM’s zone model [11] (Fig.1 (2)) provides zones for pre-
processed, cleansed, and integrated data . However, there is 
little information on governed data. Especially legal 
regulations are not addressed, which is why this requirement 
is not fully met. The zone model provides both places for 
reporting and OLAP, and advanced analytics with the 
Exploration Zone and the Business Reporting Zone. However, 
the model provides no possibility for writing back into the data 
lake. The zone descriptions in this model mix logical and 
physical aspects and do not explicitly state the interactions 
between zones. We thus rate the description detail as 
insufficient. Again, no derivation methodology and 
assessment are provided. 

In Madsen’s zone model [4] (Fig.1 (3)), the Management  
Zone provides storage for pre-processed, cleansed, and 
integrated data. A place for governed data is not part of the 
model. Both reporting and OLAP, and advanced analytics are 
supported by two different zones. Again, there is no possibility 
of writing results back. The zones are only briefly described 
with low description detail. There is neither a derivation 
methodology nor an assessment. 

Ravat’s zone model [10] (Fig. 1 (4)) only provides a place 
for pre-processed data. Neither cleansed nor integrated data 
are part of the model. However, it is empathized that all data 
is governed. Since compliance with legal regulations is not at 
all discussed in the model, this requirement is only partially 
met. The model provides both reporting and OLAP, and 
advanced analytics in the Access Zone. Writing back data and 
results is not part of the model. Only very little description 
detail is provided, and there is no derivation methodology or 
assessment. Thus, both requirements are unmet. 

Finally, Zaloni’s zone model [5, 6] (Fig.1 (5)) provides a 
possibility to manage pre-processed, cleansed, integrated, 
and governed data. It even includes legal regulations in the 
management of data by allowing masking and anonymization. 

While there is a zone for advanced analytics, there is none for 
reporting and OLAP. In this model, writing back data is 
available only for systems, not for human users. We thus 
consider this requirement not met. While a detailed 
description is given in [6], it lacks implementation details. 
There is no derivation methodology or assessment.  

This assessment shows that while all feature requirements 
are addressed by at least one existing zone model, none of the 
related work could meet all requirements. In particular, the 
available description details these zone models are insufficient 
for a practical implementation. In many cases, the zones are 
only described vaguely. Only IBM’s zone model provides any 
hints for its implementation, but they are heavily mixed with 
the conceptual model. It remains unclear how the zones can 
be realized, what standardized data format should be used, etc. 
In addition, none of the investigated models were derived in a 
systematic way, and no assessment or discussion of related 
work is given. In the following sections, we thus develop and 
describe a zone reference model systematically, based on the 
requirements derived in Section II.  

IV. META-MODEL FOR ZONES 

When investigating different zone models it became 
apparent that even across models, the general concept of a 
zone remains the same. Each zone can be described by a 
limited set of attributes (e.g., processing degree of the 
contained data) and its interactions with other zones and the 
outside world (e.g., where it imports data from). In this 
section, we develop a meta-model for zones from both 
literature and the industry case. This meta-model enables a 
standardized and generic, and thus comparable, description 
for zones. It is the basis of a systematic approach to defining 
a zone reference model in Section V as an instance of this 
meta-model. 

Fig. 2 depicts the meta-model for zones as an entity-
relationship-diagram. Zones are modeled as entities. We 
introduce the meta-model for zones in two parts: 1) the 
attributes of a zone (left in Fig. 2) and 2) a zone’s interaction 
within and outside of the zone model (right in Fig. 2). Each 
zone is identified by a unique name within the zone model.  

A zone defines multiple data characteristics that data in 
this zone have. Each characteristic refers to one of four 
aspects: granularity, schema, syntax, and semantic. 
Granularity describes whether data are raw or aggregated, 

TABLE II.  ASSESSMENT OF THE EXISTING ZONE MODELS WITH RESPECTIVE TO THE REQUIREMENTS FROM SECTION II. 
– REQUIREMENT MET, X – REQUIREMENT NOT MET, () – REQUIREMENT INSUFFICIENTLY MET. 

 Requirement Gorelik [9] IBM [11] Madsen [4] Ravat [10] Zaloni [5, 6]  

F
ea

tu
re

 

Pre-Processed     

Cleansed X   X 

Integrated X   X 

Governed  () X () 

Reporting and OLAP     X 

Advanced Analytics     

Writing back  X X X X 

M
et

ho
d-

ol
og

ic
al

 Description Detail () X X X () 

Derivation and  
Assessment X X X X X 

 



e.g., through KPI calculation. Schema refers to the data’s 
structure, which might change through adding new fields or 
relationships. Syntax refers to whether the data are changed 
syntactically, e.g., through data type conversions. Semantic 
refers to the data’s meaning, which can be changed by, e.g., 
removing semantical flaws, such as outliers. 

In addition to its data characteristics, each zone has 
properties that describe the zone’s nature. From literature 
(e.g., ), we identified governed, historized, persistent, 
protected, and use case independent as important properties 
for zones. Governed refers to whether the zone is managed by 
IT and thus has to comply with corporate rules. Historized 
means that changes in the source data are traceable in the 
respective zone. Persistent describes whether data in this zone 
are stored for a prolonged time in contrast to temporary 
storage. Protected describes whether data in a zone are 
protected beyond the default, e.g., through encryption or 
stricter access controls. Use case independent refers to 
whether data in a zone were processed according to a specific 
use case or use case groups, or can be used flexibly. Madsen’s 
zone model [4] also names immutable as a zone property. 
However, practice shows that storing all data immutably, and 
not archiving or deleting them, leads to storage and 
management issues. Additionally, some legal regulations, e.g., 
the GDPR, explicitly demand data mutability. Thus, we 
decided to not include this property. 

One or more user groups interact with the zone. Possible 
are human users (data scientist, domain expert, business user, 
see [19]) and non-human users (systems, processes). Each 
zone has at least one user group, namely the processes that 
enter data into the zone.  

Finally, each zone has a modeling approach associated 
with it, i.e., a description of how to achieve a specific schema, 
such as dimensional tables. Note that we also consider “no 
pre-defined schema” a schema. Even within a data lake, data 
modeling should not be neglected, as this may lead to issues 
with data quality, data comprehensibility, or data 
integration [20]. Examples for possible modeling approaches 
are copying source system formats, flat files, or Data 
Vault [7], which is suitable for data lakes [14].  

Zones have interactions with both other zones and systems 
that are beyond the data lake. A zone receives data from zero 
or multiple other zones, and can forward data to zero or 
multiple zones. This allows data transfer between zones. 
Similarly, a zone can import data from and export data to 
external data sources and data sinks not part of the zone 
model, e.g., operational systems, data streams, or file systems.  

This meta-model for zones provides a systematic and 
generic description of the concept of zones. Using this 
description, we can develop a zone reference model. 

V. ZONE REFERENCE MODEL 

The meta-model for zones developed in Section IV allows 
a wide variety of possible instantiations. However, not all of 
the zone models that are valid according to the meta-model are 
also reasonable. Our investigation of related work showed that 
certain zones and data characteristics reappear, such as zones 
for cleansed or integrated data. We thus combine the 
frequently encountered concepts from literature with the 
general requirements derived in Section II to develop a zone 
reference model that meets the requirements posed in practice. 
By systematically defining zones and their characteristics, the 
zone reference model provides guidance and a scope towards 
the implementation of zone-based data lake management. 
Within this scope, the zone reference model can be adapted to 
the specific needs of the application scenario, e.g., by omitting 
certain zones that are not needed in a specific implementation. 

Our reference model can be applied to both batch and real-
time processing for data of any structure. For batch 
processing, the zones store data in different processing 
degrees. For real-time processing, zones define processing 
steps for the passing data stream. 

In the following subsections, we detail on the different 
zones in the developed zone reference model. While the 
Landing Zone and the Raw Zone are named in accordance 
with existing literature (e.g., [6]), the remaining zones 
received new names. We use the meta-model as a basis to 
describe each of the zones. In these descriptions, we provide 
insights for the zone implementation using the End Customer 
Service analytics use case. Table III summarizes the attributes 
of the zones. A description of a prototypical implementation 
can be found in Section VI. Fig. 3 depicts the zone reference 
model and the interactions between the zones. The model 
consists of a use case independent and a use case dependent 
part. Zones in the use case independent part preserve all of the 
original information that is in the data, while zones in the use 
case dependent part accept information loss to achieve a better 
support of certain uses. According to the zone reference 
model, any zone aside from the Raw Zone can be omitted.  

As depicted in Table III and Fig. 3, all zones contain a 
protected part. This part is encrypted and secured, and stores 
data that need extensive protection (e.g., personal data). Data 
wander from the protected part of one zone to the protected 
part of the next zone. They may only leave the protected part 

 
Fig. 2. The meta-model for zones describes a zone as an ER diagram. The left side of the meta-model contains the attributes of a zone. The right side describes 
how a zone interacts with other zones and the outside world. 
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after being desensitized (e.g., by anonymization). Data in this 
part are subject to strict access controls and governance. The 
protected part shares all other characteristics with the rest of 
the zone it is in. 

A. Landing Zone 

The Landing Zone is the first zone of the data lake. Data 
are ingested as batch or as data stream from the sources. The 
Landing Zone is beneficial when the requirements of the 
ingested data and those of the Raw Zone diverge. For 
example, data might need to be ingested at a vast rate due to 
its volume and velocity. If the technical implementation of the 
Raw Zone cannot provide this high ingestion rate, a Landing 
Zone can function as a mediator in between: data are ingested 
at a high rate into the Landing Zone, and then are forwarded 
to the Raw Zone as batches. 

For the data characteristics, data ingested into the 
Landing Zone remains mostly raw. Their granularity remains 
raw, just like in the source systems. The schema of the data is 
not changed; they can simply be copied in their source system 
format. However, their syntax might be changed. Basic 
transformations are allowed upon ingestion into the Landing 
Zone, such as adjusting the character set of strings or 
transforming timestamps into a common format. In addition, 
data may be masked or anonymized to comply with legal 
regulations. Aside from these changes, the semantic of the 
data remains the same as in the source systems. 

As shown in Table III, the properties of the Landing Zone 
are: governed, non-historized, non-persistent, i.e., data are 
removed when moving to the Raw Zone; and use case 
independent, as data remain mostly raw. With regards to user 
groups, the Landing Zone is not intended to be used by end 
users. Only systems and processes may enter data into or 

                                                           
1 https://kafka.apache.org/ 
2 https://hadoop.apache.org/ 

retrieve it from the Landing Zone. Finally, no modeling 
approach is defined as data may be ingested in any format. 

In the End Customer Service analytics use case, both batch 
data from, e.g., ERP systems, and streaming data from the 
field are ingested into the data lake. The Landing Zone 
forwards streaming data to both a batch Raw Zone for 
permanent storage and batch processing, and to a real-time 
Raw Zone, based on hybrid processing architectures 
(e.g., lambda architecture [21]). The Landing Zone is 
implemented using Kafka1, forwarding the data to diverse 
storage systems (e.g., HDFS 2 , relational databases), and 
stream processing engines (e.g., Spark Streaming3). As the use 
case uses customer data, a lot of the data captured are personal. 
They are stored in the protected part of the Landing Zone that 
is realized through separated databases. In addition, 
anonymized versions of these data are available in the normal 
Landing Zone for arbitrary use. 

B. Raw Zone 

All data in the data lake is available in mostly raw format 
in the Raw Zone. Only basic transformations (see Landing 
Zone) are applied on the data. If the Landing Zone is omitted, 
these transformations are performed in the Raw Zone. 

The attributes of the Landing and the Raw Zone only differ 
in two aspects (see Table III): the properties and the user 
groups. For properties, the Raw Zone stores data persistently. 
In general, data should neither be manipulated nor deleted 
from the Raw Zone. However, according to our experiences, 
such an approach is not feasible in practice, as the amount of 
data to be stored grows rapidly (e.g., sensor measurements) 
and some data are subject to legal regulations that demand 
deletability (e.g., GDPR). Thus, data may be manipulated or 
deleted, resulting in a trade-off between storage space 
reduction and compliance, and completeness of data. 

3 https://spark.apache.org/streaming/ 

TABLE III.  OVERVIEW OVER THE ZONES’ ATTRIBUTES IN THE ZONE REFERENCE MODEL.  

 Landing  Raw Harmonized  Distilled Explorative Delivery 

Granularity 
(Raw – Aggregated) 

Raw Raw Raw Aggregated Any Any 

Schema 
(Any – Consolidated) 

Any Any Consolidated Consolidated, 
enriched 

Any Any 

Syntax 
(Unchanged –  
Consolidated) 

Basic 
transformations 

Basic 
transformations 

Consolidated Consolidated Any Any 

Semantics 
(Unchanged – 
Processed) 

Mostly  
unchanged,  
unless needed for 
compliance 

Mostly  
unchanged,  
unless needed for 
compliance 

Mostly  
unchanged,  
unless needed for 
compliance 

Complex 
processing 

Any Any 

Properties Governed, 
non-historized, 
non-persistent, 
protected part, 
use case 
independent 

Governed, 
historized,  
persistent,  
protected part,     
use case 
independent 

Governed, 
historized,  
persistent,  
protected part, 
use case 
independent 

Governed, 
historized,  
persistent,  
protected part, 
use case 
dependent 

Not governed, 
non-persistent,  
protected part, 
use case 
dependent 

Governed, 
persistent,  
protected part, 
use case 
dependent 

User Groups Systems, 
processes 

Data scientists, 
systems, 
processes 

Data scientists,  
systems, 
processes 

Data scientists, 
domain experts, 
systems, 
processes 

Data scientists Any human  
users,  
systems, 
processes 

Modeling Approach Any Any Standardized Standardized Any Any 
 



Additionally, data stored in the Raw Zone are historized, i.e., 
changes in the data are traceable. As for the user groups, data 
scientists may access the Raw Zone. This user group has a 
deep understanding for data analytics. They can copy data to 
e.g., the Explorative Zone for analytics. However, use of data 
from the protected part is heavily restricted. 

All data gathered in the End Customer Service analytics 
use case are permanently stored in the Raw Zone, batch and 
streaming data alike. The Raw Zone consists of various 
storage systems (e.g., HDFS, relational databases, cf. [22]), 
storing data where it fits best. For example, streaming data are 
typically stored as JSON files in HDFS, while data from ERP 
systems are stored in relational databases. To historize data 
changes, updates are added as new, timestamped records. All 
personal data in the Raw Zone are anonymized, rendering the 
protected part irrelevant in this use case. 

C. Harmonized Zone 

A subset of the data stored in the Raw Zone is passed to 
the Harmonized Zone in a demand-based manner. It is 
important to note that these data are not deleted from the Raw 
Zone. Instead, the Harmonized Zone contains a copy of or a 
view on the data in the Raw Zone. The Harmonized Zone is 
also the place where master data [23] are accessible for 
analyses. As these data are crucial for enterprises, master data 
management is of high importance in the data lake. Thus, they 
should exclusively be accessed after being cleansed. 

The data characteristics in this zone differ greatly from 
those in the Raw Zone (see Table III). Data schema and syntax 
change when compared to the source data. Data from different 
source systems are integrated into a consolidated schema, 
regardless of their structure (e.g., by link-based 
integration [24]). The data syntax is also consolidated in the 
Harmonized Zone: when data from multiple source systems 
are merged (e.g., multiple tables into one), data types have to 
be adapted. The properties and user groups do not change 
compared to the Raw Zone.  

The aim of the Harmonized Zone is to provide a 
harmonized and consolidated view on data. To this end, the 
Harmonized Zone uses a standardized modeling approach 
(e.g., dimensional modeling or Data Vault [14]) that all of the 
enterprise’s data are modeled in. This does not mean all data 
are part of one overarching schema. Rather, multiple partial 
schemata exist that cover different data sources and contexts. 
Each of these partial schemata is growing incrementally when 
new data are added to the Harmonized Zone in a demand-
based manner. It might happen that multiple of these partial 
schemata are connected to one bigger partial schemata. 
However, it is not the goal of the Harmonized Zone to provide 
one single schema for all data in the enterprise. In the partial 
schemata, a high level of data integrity (e.g., primary key and 
foreign key constraints) should be satisfied.  

For the End Customer Service analytics use case, data in 
the Harmonized Zone are modeled using Data Vault, 
connecting data across storage systems. Heterogeneous data 
from various sources are integrated, e.g., structured data on 
customers are connected to pictures of travel routes the 
customers took using link-based integration [24]. Consistency 
and correctness are ensured. 

D. Distilled Zone 

In contrast to the Raw and Harmonized Zone, where the 
focus is to quickly make data available for use, the Distilled 
Zone focuses on increasing the efficiency of following 
analyses by preparing the data accordingly. To this end, the 
data characteristics differ with regards to granularity and 
semantics (see Table III). The granularity of the data may be 
changed, e.g., data may be aggregated for the calculation of 
KPIs. Complex processing is applied that change the data’s 
semantics but are too extensive for the Landing Zone, Raw 
Zone, and Harmonized Zone. However, the schema might also 
change slightly, depending on the supported use case. For 
example, fields to enrich the data could be added.  

Regarding the properties, the Distilled Zone is the first 
zone that is use case dependent. Data are processed to fit a 
certain group of use cases. This applies to both batch and 
streaming data. For batch data, multiple different 
transformations of the same data might be available in the 
Distilled Zone. The user groups of the Harmonized Zone also 
have access to the Distilled Zone. In addition, domain experts 
with less experience in data analytics are allowed to access 
data in the Distilled Zone. To access the data, easy-to-use 
interfaces should be provided that allow to query the data 
using known query languages (e.g., SQL).  

In the End Customer Service analytics use case, the 
Distilled Zone is modeled using Data Vault. Additional fields 
are added to the data, such as pre-defined KPIs that are of 
interest for multiple business divisions. Data are transformed 
using business logic and the results are stored as views, e.g., 
point in time views providing the most recent data values 
instead of the full change history. 

E. Explorative Zone 

The Explorative Zone is the place where data scientists can 
play with and flexibly use the data. There are no common data 
characteristics that apply to all data in the Explorative Zone 
(see Table III). Data scientists can use and explore data in the 
data lake in any way they desire, except for sensitive data. 
These data are only usable according to strict rules. 
Granularity, schema, syntax, and semantic may be changed in 
any way necessary for analyses. The properties differ from 
those of the Distilled Zone. The Explorative Zone is not 
governed, allowing a user to process data in any way 
beneficial for their intent. Depending on the use case, data are 
not necessarily historized anymore, which is why the 
historized property is not set for this zone. In addition, the 
Explorative Zone is non-persistent. However, as results of an 
analysis may be useful for data analytics in general (e.g., a 
transformation beneficial for analysis or a mining model that 
should be used operationally), these results can be forwarded 
to the Distilled Zone before being deleted from the 
Explorative Zone. There are few rules and restrictions for the 
use of data, which makes the Explorative Zone the most 
flexible zone. Sometimes, it is necessary to perform advanced 
analytics on sensitive data. These analyses have to be 
performed in the protected part of the Exploration Zone, 

 
Fig. 3. The developed zone reference model comprises six zones. From the 
left to the right, data are processed more and more for specific usage.  
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which is encrypted and secured. For the user groups, only data 
scientists access data in this zone. They are allowed to write 
into the Explorative Zone and thus can store transformations 
or analysis results. Also, they can pull data from any other 
zone into the Explorative Zone. Any modeling approach is 
allowed, as data scientists process the data as needed.  

In the End Customer Service analytics use case, data 
scientists use the Explorative Zone to discover, e.g., novel 
KPIs that might be of interest for different lines of business. 
They do so in a Sandbox on a system based on, e.g., Hadoop4 
and use tools, such as Python5 or various visualization tools. 

F. Delivery Zone 

In the Delivery Zone, small subsets of data are tailored to 
specific usage and applications. This does not only include 
analytical use cases, such as reporting and OLAP, but also 
operational use cases, e.g., providing data relevant for certain 
use as context-aware decision information packages [25]. This 
zone thus provides functionality similar to data marts and 
operational data stores in data warehousing. Data from this 
zone may be forwarded to external data sinks. Similarly to the 
Explorative Zone, the data characteristics depend on specific 
use cases in contrast to use case groups in the Distilled Zone 
(e.g., data are prepared for specific tools). To this end, 
multiple different transformations of the same data might be 
available. As seen in Table III, however, the Delivery Zone 
differs from the Explorative Zone in its properties and user 
groups. Data in the Delivery Zone is governed and stored 
persistently, unless the use case it was processed for is no 
longer of interest. Data in this zone can be accessed by a large 
number and variety of users. Human users (data scientists, 
domain experts, business users) as well as systems and 
processes read data from the Delivery Zone. The Delivery 
Zone especially supports users with little knowledge on data 
analytics. Data have to be easily findable and importable into 
various analytics tools. As for the modeling approach, data are 
available in whatever format supports the intended use case 
best, e.g., dimensional modeling for OLAP, or flat tables for 
operational use.  

For the End Customer Service analytics use case, the 
Delivery Zone is realized using relational databases. Data are 
prepared for traditional reporting and OLAP use cases, and 
modeled using dimensional modeling, such as the star schema. 
Managers access this zone for their sales and revenue reports. 

VI. PROTOTYPICAL IMPLEMENTATION AND ASSESSMENT 

In this section, we describe our prototypical 
implementation of the zone reference model for an analytic 
use case (Section A) and assess it in two steps: first, we assess 
our model’s applicability and feasibility based on the 
prototypical implementation. Second, we show that the zone 
reference model meets the requirements derived in Section II 
(Section B). 

A. Prototype 

We illustrate the feasibility, applicability, and the benefits 
of the zone reference model by prototypically implementing it 
for a use case from product lifecycle management. This data 
analytics use case was not yet considered in the development 
of the zone reference model. This subsection first details on 
the use case itself, before discussing the zones needed and 
providing a detailed description of the zones’ 
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implementations. In particular, we highlight implementation 
decisions that were guided by the zone reference model. 

The used analytics use case is well suited for assessing the 
generality of the zone reference model, as it covers multiple 
business domains (e.g., product design, engineering, customer 
service), as well as a wide variety of data sources (e.g., 
sensors, ERP systems) and data formats (structured, semi-
structured, unstructured). The aim is to use field data collected 
at the customer’s site to discover defects in the product and to 
enhance future product generations. To this end, semi-
structured sensor data are combined with structured product 
and customer information, and unstructured data from the 
engineering process (e.g., CAD files). In particular, domain 
experts investigate the history of field data to identify trends 
and unexpected behavior. A visualization tool is used to depict 
these trends. Semi-structured sensor data are combined with 
structured information on the product, such as technical 
specifications. These data are used to discover irrational 
behavior. Insights are forwarded to product design and 
engineering to prevent such behavior in future product 
iterations. While this is an enterprise use case, similar use 
cases are conceivable in other areas, such as healthcare (e.g. 
monitoring patient heart rates). 

Fig. 4 depicts our implementation of the zone reference 
model. As the data used in this use case are partially streaming 
data, we decided to add a Landing Zone to our 
implementation. This way, the rapidly arriving data can be 
buffered and forwarded as batches. The Raw Zone is 
mandatory and part of every zone model implementation. 
Connecting the streaming data and the technical data used in 
this use case is beneficial for other applications as well, e.g., 
root cause analysis on a product failure. We thus decided to 
include a Harmonized Zone, where data from different source 
systems are consolidated and connected. This connected 
schema then can be reused by other use cases as well. We also 
included a Distilled Zone, as certain processing steps are often 
re-executed on the same data. Such processing steps are, for 
example, the aggregation of sensor measurements. While the 
data lose their use case independence through the aggregation, 
they can still be reused in other applications that require 
aggregated measurements. For this use case, a certain 
visualization tool is used to investigate the data. Thus, we also 
include the Delivery Zone in the prototype to hold data in the 
right format for the import into the tool. Since the intended use 
of the data in this use case is pre-defined, we did not 
implement an Explorative Zone. The use of the zone reference 
model here was beneficial, as it defined which zones to 
include to store the desired data in.  

The Landing Zone was implemented using Kafka. Field 
data are collected as data stream from the product in intervals 

5 https://www.python.org/ 

 
Fig. 4. The prototypical implementation of the zone reference model uses 
five of the six zones. Data are stored in different systems and schemata to 
realize the defined characteristics of the zones. 

Delivery
HDFS/
Impala,

Flat Table

Landing

Kafka,
Data 

Stream

Raw

HDFS,
CSV

Harmon-
ized

HDFS/
Impala,

Data Vault

Distilled

HDFS/
Impala,

Data Vault

 Use Case Independent Use Case Dependent 



of around 200 milliseconds. Kafka buffers these data before 
storing them in the Raw Zone. In this use case, no 
transformations are applied to the data in the Landing Zone.  

We used HDFS to implement the Raw Zone. The 
streaming data arriving from Kafka are stored as csv files 
organized by a timestamp. These files contain measurements 
from various sensors, e.g., temperature or the speed of moving 
parts, each associated with a timestamp and the id of the smart 
thing (e.g., a sensor) that captured the data. This id refers to a 
table in the Raw Zone that originates from an ERP system and 
contains further data on the smart thing itself, such as its name 
and description. If data change in the source systems, they are 
historized by adding a new record containing the updated 
values with the change timestamp to the Raw Zone. This way, 
changes are available quickly in the data lake. Further tables 
are available in the Raw Zone, containing information on, e.g., 
the bill of material. This information originates from Excel 
files. The table containing the bill of material holds the ids of 
all sub-components of a stored thing, their description, and 
their used quantity. However, these data are not of interest for 
the current use case. For the Raw Zone, the zone reference 
model specifies no standardized modeling approach, which is 
why the data remain in the format used in the source systems, 
i.e., tables and csv files. 

The Harmonized Zone was also realized using HDFS. 
Data are processed and forwarded to this zone by ETL 
processes. For the standardized modeling approach, we 
decided on Data Vault, as it supports flexible modeling for 
data lakes [14]. Fig. 5 depicts the tables of the Data Vault 
model for our use case implementation. They were 
implemented using Impala6. From the ERP table on the smart 
thing, we created a hub table Hub_Thing and a respective 
satellite table Sat_Thing according to the Data Vault 
methodology. These two tables contain all information that 
originates from ERP systems, such as the thing’s name. If the 
thing is also a sensor, the same-as link connects it to the 
respective entry in the sensor hub. Attached to the sensor hub 
are various satellites, one for each observed sensor. These 
satellites do not only contain the measured values, but also 
their timestamps and their unit. Data Vault comprises a 
historization methodology, which makes use of the change 
timestamps from the Raw Zone. The zone reference model 
here guides the integration of data sources by specifying a 
standardized modeling approach. Data available in the 
Harmonized Zone can be used whenever it is necessary to link 
sensor measurements to the sensor or thing that captured them. 

In the Distilled Zone, we prepared the measurements of 
one sensor for visualization. To this end, we aggregated the 
measurements to minutes using the average. In addition, we 
reduced the number of decimal places from 15 to two. This 
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processing was performed according to the requirements of 
the use case. We added these processed values as a new 
aggregated satellite to the hub table Hub_Sensor using Impala. 
The guidance the zone reference model provides here is to 
separate use case independent but cleansed data (in the 
Harmonized Zone) from use case dependent data (in the 
Distilled Zone). While data in the Harmonized Zone can be 
used in any analysis that requires integrated data, data in the 
Distilled Zone has been changed semantically, and is thus 
tailored to use cases where one value per minute is sufficient.  

We also realized the Delivery Zone with HDFS and 
Impala. We extracted one day of aggregated sensor 
measurements from the Distilled Zone. As the visualization 
tool used in this use case requires a flat table, we combined 
these selected data with the thing id from the hub table 
Hub_Thing of the Harmonized Zone. The resulting table 
contains the thing id, the timestamp of the measurement, and 
the aggregated and rounded measurement itself. The zone 
reference model provides the benefit of supporting pre-
defined use cases in the Delivery Zone, while still maintaining 
the data lake’s flexibility in preceding zones. Data available in 
the Delivery Zone can only be reused for very few use cases. 
However, should a use case have the same requirements as the 
implemented one (one day of data, flat table, same data and 
aggregation degree), the data can still be reused.  

B. Applicability and Requirements Assessment 

The discussion above shows that the zone reference model 
is applicable for a use case that was not considered during the 
development of this reference model. This use case is 
representative, as it combines various kinds of data (structured 
batch data and semi-structured streaming data from sensors), 
and performs a typical analysis in the form of visualization. 
Overall, this implementation shows that the zone reference 
model is applicable and can be tailored to the use case at hand, 
as zones can be omitted for certain uses (e.g., the Exploration 
Zone in this case). The zone reference model provided 
guidance by defining each zones characteristics in a 
systematic manner. All zones are realizable by choosing 
appropriate realization techniques. For each zone, we 
provided examples of how the data in this zone can be reused 
for other use cases to reduce the number of processing steps.  

In Section II, we derived seven general requirements a 
zone model must meet to support a wide variety of data lake 
use cases relevant in practice. These requirements served as a 
basis for the development of the zone reference model. The 
following paragraphs detail on how the requirements are met. 

The reference model considers pre-processed data within 
the Distilled Zone, as data are prepared for specified use cases. 
For example, data might be aggregated, filtered, or otherwise 
enhanced to improve analyses. The Harmonized Zone holds 
data in a syntactically cleansed format, and semantical errors 
in the data can be corrected in the Distilled Zone. Hence, 
syntactically and semantically cleansed data are considered as 
well. The standardized modeling approach in the Harmonized 
Zone is used to provide integrated data from different sources. 
Sensitive data are governed in different parts of the zone 
reference model: data are available with ensured quality in the 
Harmonized Zone. In addition, the protected part of each zone 
contains critical data and secures them using appropriate 
access controls. Outside of these protected parts, these data are 

 
Fig. 5. In the Harmonized Zone, we modeled the data using Data Vault. 
The collected field data are linked to a sensor hub, which connects to a thing 
hub holding additional information from different source systems. 
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only available in an anonymized and insensitive format if at 
all. The Delivery Zone of the zone reference model provides 
functionality similar to data marts. Data in this zone are 
specifically prepared for reporting and OLAP, and operational 
use cases. Data scientists can access the Explorative Zone for 
advanced analytics. Data from any zone, except the landing 
zone, can be used to uncover new insights. While the 
Exploration Zone itself is non-persistent, results that provide 
a benefit when reused can be written back into the Distilled 
Zone. It follows that the zone reference model provides the 
features that we derived in Section II as mandatory for 
practical use. 

Overall, our assessment underlines that the zone reference 
model is applicable for real-world data lake use cases. 
Additionally, it can be adapted and tailored to a specific use 
case as shown in the implementation and thus streamline the 
realization of data lake use cases. Data can be reused between 
use cases as detailed in Section VI.A. Yet, the zone reference 
model focuses on a conceptual view on data lake management. 
That is, the efficiency and reusability of a specific zone model 
instance still depend on its technical implementation. 

VII. CONCLUSION AND FUTURE WORK 

Data lakes promise the flexible and comprehensive 
analyses of data. To increase the efficiency of data analyses 
on data lakes and exploit synergies between use cases by 
reusing processed data, different processing degrees of data 
are often managed in zones. Literature introduces a multitude 
of different zone models, but there exists no consensus and no 
assessment. It remains unclear which zones should be 
included in a zone model in practice to support the multitude 
of use cases that are implemented on a data lake. 

In this work, we addressed this gap. From multiple data 
analytics use cases at a large, globally active manufacturer, we 
derived requirements towards an enterprise-grade zone-based 
data lake management. It showed that existing zone models 
could not meet all requirements. In addition, they significantly 
lacked description detail as well as a derivation methodology 
and assessment. We thus developed a meta-model for zones 
that allows to describe zones in a zone model in a generic 
scheme. Based on this meta-model for zones and the derived 
requirements, we developed the zone reference model to 
streamline the realization of use cases in an enterprise-wide 
data lake. This reference model specifies six zones (Landing 
Zone, Raw Zone, Harmonized Zone, Distilled Zone, 
Explorative Zone, and Delivery Zone) and details their 
characteristics. Finally, we prototypically implemented the 
zone reference model as a proof of concept for a data analytics 
use case from a real-world enterprise. In doing so, we 
evaluated our concept’s practicability in a realistic scenario. 
We also assessed the reference model’s suitability with regard 
to the derived requirements. Overall, our assessment shows 
that the reference model was generally applicable.  

Our current implementation of the zone reference model 
served just as a proof of concept. Future work thus has to 
investigate possible implementations for zones in a data lake, 
identify challenges, and derive implementation patterns for 
the zones of the reference model. These patterns consider the 
dependencies between zones, data modeling, storage 
architecture, and other aspects of the data lake. In doing so, 
they provide guidance towards the definition of a data lake 
architecture, allowing for standardization and interoperability 
among data lakes and other systems.   
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