

Modeling Metadata in Data Lakes

- A Generic Model
Rebecca Eichler, Corinna Giebler, Christoph Gröger, Holger Schwarz and Bernhard

Mitschang

In: Data & Knowledge Engineering (2021), 101931.

BIBTEX:
@article{eichler2021,

 title={Modeling metadata in data lakes—A generic model},

 author={Eichler, Rebecca and Giebler, Corinna and Gr{\"o}ger,

Christoph and Schwarz, Holger and Mitschang, Bernhard},

 journal={Data \& Knowledge Engineering},

 year={2021},

 publisher={Elsevier}

}

© 2021. This manuscript version is made available under the CC-BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

This is the author's version of the work. The final authenticated version is available online at:

https://doi.org/10.1016/j.datak.2021.101931

University of Stuttgart - Institute for Parallel and Distributed Systems / AS

https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1016/j.datak.2021.101931

Modeling Metadata in Data Lakes - A Generic Model

Rebecca Eichler1, Corinna Giebler1, Christoph Gröger2, Holger Schwarz1, and Bernhard
Mitschang1

1 University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
{Firstname.Lastname}@ipvs.uni-stuttgart.de

2 Robert Bosch GmbH, Borsigstraße 4, 70469 Stuttgart, Germany
{Firstname.Lastname}@de.bosch.com

Abstract Data contains important knowledge and has the potential to provide new insights. Due to
new technological developments such as the Internet of Things, data is generated in increasing volumes.
In order to deal with these data volumes and extract the data’s value new concepts such as the data
lake were created. The data lake is a data management platform designed to handle data at scale for
analytical purposes. To prevent a data lake from becoming inoperable and turning into a data swamp,
metadata management is needed. To store and handle metadata, a generic metadata model is required
that can reflect metadata of any potential metadata management use case, e.g., data versioning or data
lineage. However, an evaluation of existent metadata models yields that none so far are sufficiently
generic as their design basis is not suited. In this work, we use a different design approach to build
HANDLE, a generic metadata model for data lakes. The new metadata model supports the acquisition
of metadata on varying granular levels, any metadata categorization, including the acquisition of both
metadata that belongs to a specific data element as well as metadata that applies to a broader range
of data. HANDLE supports the flexible integration of metadata and can reflect the same metadata
in various ways according to the intended utilization. Furthermore, it is created for data lakes and
therefore also supports data lake characteristics like data lake zones. With these capabilities HANDLE
enables comprehensive metadata management in data lakes. HANDLE’s feasibility is shown through
the application to an exemplary access-use-case and a prototypical implementation. By comparing
HANDLE with existing models we demonstrate that it can provide the same information as the other
models as well as adding further capabilities needed for metadata management in data lakes.

Keywords: Metadata Management · Metadata Model · Data Lake · Data Management · Data Lake
Zones · Metadata Classification.

1 Introduction

In the course of the digitalization, new technological developments such as the Internet of Things
led to a considerable increase in generated data [28]. This data contains important knowledge and
has the potential to provide new insights that can be used, for example, to optimize processes or to
achieve a competitive advantage [2]. However, handling the generated data volumes and extracting
the data’s value poses a challenge for organizations [28] and requires new strategies and concepts
beyond, e.g., traditional data warehousing and business intelligence solutions. In this context, the
data lake concept was born. It is a data management platform designed to incorporate data at
scale, from heterogeneous sources, of varying structure, and in its raw format [12,9]. With these
properties, the data lake enables varying analysis such as exploration or machine learning, to exploit
the data’s value [9].

In order to preserve the data’s value and prevent the data lake from turning into a data swamp,
which is an inoperable data lake, metadata management is required [24]. Metadata is a type of
data, which provides information about other entities, such as other data, processes or systems [1].
Metadata management constitutes all activities which involve managing an organizations’ knowl-
edge on its data [3]. Without this knowledge, data may not be applicable for the intended purpose,
e.g., due to a lack of quality or trust.

2 R. Eichler et al.

One important aspect of metadata management is the definition of a metadata model (e.g.,
[15,22,25]). By our definition a metadata model describes the relations between data and metadata
elements and what metadata is collected, e.g., in the form of an explicit schema, a formal definition,
or a textual description. For the purpose of creating such a metadata model, it is necessary to
know roughly what metadata will be acquired so that the model can reflect these. However, both
general and data-lake-specific definitions of metadata management focus on different purposes for
conducting it, such as the implementation of data governance specifications [11], the support of
query processing and data quality management [12] or topics like tracing the data’s lineage [6].
Since these topics are very diverse and cannot be easily combined into an overall picture, yet
all require different metadata, there is no comprehensive overview of what metadata needs to be
collected within a data lake. Nonetheless, to increase or retain the data’s value the metadata model
must be able to record a broad range of metadata and must therefore be very generic. To be
sufficiently generic, such a metadata model must reflect any potential metadata management use
case of a data lake. This includes standard use cases like the collection of lineage information, as
well as organization-specific use cases such as use cases for the manufacturing domain. The generic
nature also includes the ability to map metadata of any kind, i.e. metadata on different topics,
metadata which describes data properties as well as its relations, and also metadata that refers to
specific data as well as metadata that is relevant to the entire data lake.

However, existent metadata models applicable to data lakes, e.g., [4,23,26], are not sufficiently
generic as they cannot support every potential metadata management use case. For instance, some of
them were developed for only one specific metadata management use case [13,16,30]. The existent
metadata models are based on metadata categorizations and/or lists of metadata management
features. As our discussion reveals, both do not produce truly generic models. In this paper we
address this gap by making the following contributions:

1. We provide a tangible definition of metadata management within organizations, together with
a list of associated tasks. It is shown in which way metadata modeling fits into this context and
which role it plays.

2. We introduce a new approach for constructing a generic metadata model for data lakes by
investigating existent models and their shortcomings.

3. Based on this approach, we developed a generic metadata model called HANDLE, short for
Handling metAdata maNagement in Data LakEs.

4. We highlight HANDLE’s ability to model the same metadata in various ways according to the
intended usage, together with HANDLE’s ability to reflect both metadata specific to a data
element or the entire data lake.

5. We demonstrate how HANDLE supports the inheritance of metadata, meaning the ability to
transfer metadata across data elements.

6. Finally, we assess HANDLE by firstly, testing its applicability on a standard use case in the
Industry 4.0 context, secondly, we prototypically implemented HANDLE based on this use case,
and lastly, compare it to existing metadata models. The comparison yields that HANDLE can
reflect the content of the existent metadata models as it is defined on a higher abstraction
level which also makes it more generic and that it provides additional metadata management
capabilities.

HANDLE has been presented previously in [5]. The paper at hand extends the published ver-
sion by examining additional aspects, reflected in the contributions 1, 4 and 5, and by explaining
individual aspects in more detail. In the following, Section 2 provides a definition on metadata man-
agement and the involved tasks. Metadata models presented in scientific literature are introduced

Modeling Metadata in Data Lakes - A Generic Model 3

and assessed in Section 3. Section 4 specifies the requirements for the new metadata model, which
is presented in Section 5, followed by an assessment in Section 6. Lastly, the paper is concluded by
Section 7.

2 Metadata Management

This paper presents a metadata model and consequently also deals with the modeling of metadata.
In order to understand the role of metadata modeling and its relevance, we take a look at metadata
management in a broader context. At the heart of metadata management is metadata. Metadata
is data that provides information on other entities, such as other data, processes or systems [1].
For example, the information that “John Doe” created dataset X provides a description on the
author of dataset X and is therefore metadata. As metadata is data which describes a specific type
of content, it can be seen as a type of data, like master data. Like other data, metadata must also
be managed, which is referred to as metadata management [3]. To gain an overview of metadata
management tasks and which metadata must be collected we examined existent definitions of
metadata management.

Present definitions often refer to the management of metadata [11,6] or the term is circumscribed
through a list of the negative outcomes when metadata management is omitted, as in [3,12]. The
definitions are frequently accompanied by a list of benefits and example topics which it involves
or enables. However, we have found that these topics are very different, ranging from the imple-
mentation of data governance specifications [11], over productionizing data science [34] and query
processing to data quality management [12]. These cannot be integrated easily to form an overall
picture of metadata management and derive a set of metadata management tasks. Therefore, we
provide a more tangible definition: Metadata management is data management for metadata.

Based on this definition there are different variants of data management depending on the type
of data, as illustrated in Figure 1. The basic set of data management tasks, however, remains
the same for all data types, including metadata. These are depicted in Figure 2, and involve the
three main blocks: data governance, lifecycle management and foundational activities [3]. The
blocks and contained tasks are mainly based of DAMA’s data management function framework [3].
Data governance presents the basis for data management as it involves the planning, monitoring
and enforcement of both the data lifecycle management and foundational activities. This includes
creating policies, which specify what has to be done and standards, which specify how to do
things [3]. Lifecycle management involves all processes related to the design, creation, obtaining,
storing, using, maintaining, enhancing as well as archiving and deleting of data [3,32]. According to
DAMA, data modeling and hence metadata modeling is part of the lifecycle management “Design”

METADATA

MANAGEMENT

DATA
MANAGEMENT

MASTER DATA

MANAGEMENT

TRANSACTIONAL
DATA

MANAGEMENT

…
MANAGEMENT

depend on

types of

Figure 1. The relation and interdependencies between data management and metadata management.

4 R. Eichler et al.

DATA MANAGEMENT

GOVERNANCE

FOUNDATIONAL

Security & Privacy & Compliance

Quality

LIFECYCLE

Design
Create &
Obtain

Store Usage
Maintain &

Enhance
Archive &
DisposePlan

Monitor &
Enforce

Figure 2. Data Management Activities (Based on [3]).

step [3]. The metadata model developed within this step determines what metadata will be stored
and how it will be structured. The following lifecycle steps build on this metadata model. The
foundational tasks are performed throughout all of the above described lifecycle steps and include
the realization of security, privacy, compliance and data quality management. With this definition
of metadata management there is an overview of the tasks involved in metadata management and in
which of these metadata modeling is conducted. These tasks can also be understood as requirements
for metadata management.

Besides the tasks metadata management involves, the explanations above also provide a rough
overview of the metadata which need to be collected and reflected by the metadata model. Metadata
management and data management are generally viewed as two separate procedures as there is a
dependency between metadata management and the other data management types, as shown in
Figure 1. In order to conduct data management, metadata is required throughout the depicted
data management tasks in Figure 2. For example, retaining data privacy and security involves
introducing and enforcing access rights, which are essentially metadata as these describe who is
allowed to access the data. Data quality is also documented through metadata as well as data
models and the process of creating and obtaining data. Each task can contain several management
use cases which may require the collection of metadata, like the “Usage” task may contain the
tracking of data lineage, data access and more. Furthermore, metadata specific to various domains
may be collected throughout these tasks such as ontologies on manufacturing or biological aspects.
In terms of the metadata modeling, this means there is a large amount of use cases, including
various domain-specific use cases which require documentation through metadata. The metadata
model must be very generic in order to be able to reflect all of these use cases.

Today, metadata management is considered to be a challenge in the context of data lakes [24].
Therefore, we focus on metadata models for data lakes in the remainder of this paper and investigate
which characteristics these must have.

3 Related Work: Discussion of Existent Metadata Models

A literature research was conducted to get an overview of the existent models. Metadata models
presented in the scope of metadata management systems applicable to data lakes include the model
for the Generic and Extensible Metadata Management System (GEMMS) [22], for Walker and
Alrehamy’s personal data lake solution [31], and lastly, the metadata model for the data context
service Ground [15]. Many systems both in the research and commercial context do not disclose their
metadata model and thus we cannot examine their generic extent, e.g., [12,14,17]. Other models
exist which are not part of a specific system. However, many of these, also including that by Walker
and Alrehamy, focus on a specific topic and thus, only support a limited set of use cases which

Modeling Metadata in Data Lakes - A Generic Model 5

INTRA

INTER

GLOBAL

MEDAL

STRUCTURE

SEMANTIC

METADATA-
PROPERTIES

GEMMS

APPLICATION

BEHAVIORAL

VERSION

GROUND

INTRA

INTER

Ravat and Zhao

BUSINESS

BUSINESS-TECHNICAL

TECHNICAL

TECHNICAL-OPERATIONAL

OPERATIONAL

OPERATIONAL-BUSINESS

Diamantini et al.

API

CORE

IOT

ANALYSIS RESULTS

Gröger and Hoos

Figure 3. Set of metadata categorizations, the first five belong to the selected metadata models [26,22,15,23,4]. The
sixth, in dashes, does not belong to a metadata model [11].

makes them non-generic, e.g., [13,16,25,29,30]. Thenceforth these models are not considered here.
More general models also created for data lakes include those by Ravat and Zhao [23], Diamantini
et al. [4], and lastly, Sawadogo et al.’s model MEtadata for DAta Lakes (MEDAL) [26].

The generic degree of the five models GEMMS, Ground, MEDAL, and those by Ravat and
Zhao, and Diamantini et al. is examined and discussed in the following. Section 3.1 shows that the
basis on which the existent models were constructed is insufficient for building a generic metadata
model. A representative use case is presented in Section 3.2 and Section 3.3 shows that it cannot
be realized by the existing models, thereby demonstrating that these are not sufficiently generic.

3.1 Assessing the Basis of Existent Models

An examination of the five selected metadata models yields that these were built with two general
approaches. The first approach uses a categorization of metadata, the second, employs a list of
metadata management features that must be supported.

The categorization-based approach differentiates types of metadata. As can be seen in Figure 3,
each categorization differentiates metadata through other qualities, thereby providing different
perspectives on metadata. For example, the categories in MEDAL refer to how the metadata is
modeled whereas Diamantini et al. categorize the metadata by its content. Building a metadata
model based on only one of these perspectives makes it less generic. Furthermore, a categorization
does not provide any guidance on modeling use cases and therefore does not contribute to building
a generic metadata model.

The feature-based approach involves building the model to support a predefined list of features.
Features are derived from metadata management use cases. If the list covers all relevant metadata
management features, and if the metadata model supports all of these features, then the model
would be complete. As can be seen in Figure 4, some of the lists contain high-level and some

• Data Indexing
• Data polymorphism
• Data versioning
• Usage tracking
• Semantic enrichment
• Link generation & conservation

MEDAL

• Metadata Repository
• Business Glossary
• Data Lineage
• Impact Analysis
• Rules Management
• …

Gartner

• Data Discovery
• Assessment of data origin and quality
• Interpretation of data and results
• Rule Management and compliance
• Efficient data lake operations

Gröger and Hoos

Figure 4. This is a display of three lists of metadata management features. The first belongs to the model
MEDAL [26], whereas the other two, in dashes, are from Gartner [27], and Gröger and Hoos [11] and are created
independent of a metadata model.

6 R. Eichler et al.

detailed feature descriptions, making it impossible to combine them. Defining high-level features
might not suffice to derive all necessary requirements for a metadata model. However, defining one
comprehensive list of detailed features is not realistic as each organization will have its own set of
relevant metadata management use cases and a different thematic focus, also visible in Figure 4.

In conclusion, neither the categorization-based nor the feature-based approach are an adequate
foundation for building a generic metadata model.

3.2 Metadata Management Use Case for Model Evaluation

To evaluate the existent models by testing their limits and generic extent we use a representative
metadata management use case, which is based on an Industry 4.0 scenario with an enterprise data
lake. The data lake contains data on products, processes and customers including personal data
(see [18] for data management in industrial enterprises and Industry 4.0).

Data lake projects which involve personal data on EU citizens, e.g., data on customers, are
subject to legal requirements such as the General Data Protection Regulation (GDPR) [8]. Confor-
mity to the GDPR requires the collection of information on the personal data’s use and the users
accessing it [7]. Therefore, we introduce the data-access-use-case, which involves collecting access
information. It is a representative metadata management use case frequently implemented in the
data lake context.

Within our Industry 4.0 scenario, access information is collected amongst other things on a table
containing customer data, as depicted in Figure 5. Data access information may include details on
the user or application accessing it, and the type and time of the action. Hence, the model must
support some form of metadata object with properties to reflect most varied information. For
example, an object could be created for each user and action with properties such as name, id,
or action time and type. Figure 5 illustrates metadata objects, in dashed/green, grouped by a
metadata object called “Access Info”. In order to allocate the metadata to a specific dataset some
form of pointer or reference is required, depicted as the solid/blue “Data Pointer” object.

Data within data lakes is often organized in so-called zones according to its processing de-
gree [10], e.g., as standardized data in the trusted zone [33]. Therefore, the same dataset may
be stored multiple times in different zones in varying processing degrees. The metadata collected
on datasets throughout zones should be distinguishable according to the particular zone. Conse-
quently, the access information must be collected per zone. Assuming the example data lake has
two or more zones, such as a raw zone containing the data in its native format, and a trusted
zone holding pseudonymised data. It should be recognizable who accessed a customer’s personal

1/23

READHANS

ACCESS
INFO

READ

ANA

CUSTOMER

ID Surname … Product Nr …

0000 Smith … 111-111 …

DATA
POINTER

RAW ZONE (1)

CUSTOMER

ID …

1234 …

TRUSTED ZONE (2)

ACCESS
INFO

DATA
POINTER

MAX

READ

LEO WRITE

ANA

Figure 5. The image displays access metadata collected on varying granular levels of the customer table. The customer
table is stored twice, once in each data lake zone. The dashed/green circles are metadata objects with properties,
e.g., a user object with the name “Max”. They belong to the accordingly highlighted part of the table. The solid/blue
circles denote a pointer containing the data’s storage location.

Modeling Metadata in Data Lakes - A Generic Model 7

information and who only saw the customer’s pseudonym. For example, in Figure 5 “Max” read
personal data, but “Ana” only saw pseudonymised data.

Assuming it is desired to track the access to each customer’s personal data, then the access
information must be collected per customer. The pseudonymised version of the customer table does
not yield any personal information and consequently does not require collecting the access info per
customer. In this case, it is sufficient to collect the access information on the entire table as opposed
to a single row. Therefore, our use case requires collecting metadata on varying granular levels.

The presented scenario imposes three requirements which we use to test the metadata models’
limits. For this use case the metadata models must be flexible in creating Metadata properties for
Metadata objects to reflect most varied information, the model must support data lake zones and
it must support the collection of metadata on various granular levels.

3.3 Assessing the Generic Extent of the Existent Models

Within this section, the five models selected in the beginning of Section 3 are examined in respect
to the three use case requirements: metadata properties, data lake zones and granularity.

As signified in Table 1, all models except that by Diamantini et al. support adding metadata
properties in some way or another, and therefore fulfill the first requirement. Ravat and Zhao’s
model is partially checked as they support adding keywords describing their data elements, which
does not however, suffice for modeling, e.g., an actor accessing the data. For this purpose, they
have explicitly defined access properties, but they are missing the type of action performed.

Of the five models, only that by Ravat and Zhao addresses the zone concept of data lakes.
They use a specified zone architecture. However, their model description does not reveal how they
allot their data and metadata to specific zones. Therefore, this quality is partially checked for their
model. Diamantini et al.’s model and MEDAL both support data polymorphism, which denotes
the ability to store multiple representations of the same data [4,26]. This is required for building
zones. It does not however, enfold all the zone concept’s characteristics, such as a clear specification
of the data’s processing degree within each zone. Therefore, they are partially checked in Table 1.

GEMMS and Diamantini et al.’s model define two levels of granularity, partially fulfilling re-
quirement three. Ravat and Zhao mention dataset containment, but it is not clear whether this can
be used to implement the granularity topic. Therefore, none of the models support adding multiple
levels of granularity.

In conclusion, none of the five metadata models are flexible enough to support the presented
access-use-case and thus, are not sufficiently generic.

Table 1. Coverage of Access-Use-Case Requirements by the Metadata Models. The
√

represents a fulfilled require-
ment and the (

√
) a partially fulfilled requirement.

Requirements GEMMS Ravat and Zhao Ground Diamantini et al. MEDAL

Metadata Properties
√

(
√

)
√ √

Data Lake Zones (
√

) (
√

) (
√

)
Granularity (

√
) (

√
)

4 Requirements for a Generic Metadata Model

Section 3 demonstrated the necessity for a new generic metadata model for data lakes. We acquired
the knowledge that both a categorization- and feature-based approach do not yield a truly generic

8 R. Eichler et al.

model. This was demonstrated with a set of use case specific requirements. Therefore, a different
approach is proposed to define a new set of more general requirements for building a generic model
which can reflect a broader scope of use cases across various domains. This approach is flexibility-
oriented, whereby the requirements are based on the existent models’ strengths and limits, but
mainly aim at providing a basis for a highly flexible model.

In order to support any metadata management use case, the model must be very flexible in
its ability to assimilate metadata. Therefore, the first requirement is (1) modeling the metadata
as flexible as possible. According to our analysis of the existent models, a high level of flexibility
is achieved through the following six conditions: (1.1) Metadata can be stored in the form of
metadata objects, properties and relationships; (1.2) The amount of metadata objects per use case is
unlimited; (1.3) Each metadata object can have an arbitrary number of properties; (1.4) Metadata
objects can exist with or without a corresponding data element; (1.5) Metadata objects can be
interconnected and (1.6) Data elements can be interconnected.

The second requirement denotes the ability to collect metadata on (2) multiple granular levels,
thus maintain flexibility with regard to the level of detail and allocation of metadata. Through
granular levels the model supports heredity of metadata. For example, technical metadata added
on a schema level also applies to more granular data elements such as tables, columns, rows and
fields.

The metadata model is developed for metadata management in data lakes and should therefore
support data lake characteristics. Most metadata is collected on specific data elements, which are
organized in zones, thus the model must support (3) the concept of data lake zones [10]. This means,
metadata should be distinguishable across zones, hereby gaining flexibility in allocating metadata.

Lastly, it should be flexible in the sense that it can (4) integrate any categorization in the form
of labels, e.g., MEDAL’s intra, inter and global labels or Gröger and Hoos’ labels API, Core and
so on (see Figure 3). This helps to speedily identify the context of the data. It can also be used to
check whether all types of metadata are being collected.

These four requirements constitute the new set of general requirements for a generic metadata
model in the data lake context.

5 HANDLE - A Generic Metadata Model

We used the requirements given in Section 4 to develop a new model which we present in this
section. The new model is called HANDLE, short for “Handling metAdata maNagement in Data
LakEs”. The new model’s intent is to handle all metadata management use cases, general and
domain-specific, thereby getting a handle on all metadata. To achieve this HANDLE is defined
on a high abstraction level, which gives it the necessary flexibility in assimilating any metadata.
Consequently, it does not explicitly specify which metadata needs to be collected or provide decision-
support capabilities in this context. The intention is rather to provide a foundation so domain
experts such as data scientists can model, collect and also retroactively extend any metadata they
require for their specific use cases.

The conceptual metadata model consists of two parts, the core model, illustrated in Figure 6,
and three core model extensions, which need to be adapted for each data lake implementation.
The core model is a metamodel defining all the elements and the relations required for modeling a
metadata management use case and is introduced in Section 5.1. The core model extensions each
address the granularity, zone and categorization topics in more detail, according to the requirements
2-4 and are explained in the Sections 5.2-5.4 respectively. All of the models are modeled according
to the Crow’s Foot Notation.

Modeling Metadata in Data Lakes - A Generic Model 9

Metadata

connectionContext

has a describes

Data

storageLocation

Categorization

defined
through

Property

key
value

ZoneIndicator

has a

GranularityIndicator
has a

group
together

connected
to

Data Pointer
Metadata Object
Extension Anchor

Figure 6. HANDLE’s Core Model

5.1 The Core Model

As depicted in Figure 6, one of the core models main entities is the data entity, illustrated in
solid/blue. In order to avoid storing data redundantly, the data entity represents a pointer to the
data in the data lake. The path to the data element is stored in the storageLocation attribute.
According to requirement 1.6, data elements can be interconnected. For instance, a data element
representing a table’s row can be connected to the superior data element representing the overall
table. The data element has two entities attached to it, the zoneIndicator and the granularity-
Indicator. They indicate the zone the data is stored in and the level of granularity on which the
metadata is collected, as dictated by the requirements 2 and 3. The intended usage of both indica-
tors is explained on the basis of model extensions in the subsequent paragraphs.

The second central entity of the core model is the metadata entity, depicted in dashed/green.
It is the metadata object specified in requirement 1.1, by way of example it could represent a
user who accessed data. The metadata entity is connected to none, one, or many data elements
and each data entity may have zero or many metadata entities connected to it, hereby fulfilling
requirement 1.4. For instance, the user can access many data elements and data elements can
be accessed by many users. An attribute called connectionContext describes what information the
metadata element contains. For example, the user metadata element may have a connection context
called “accessing user”. In line with requirement 1.3, the metadata entity can have an arbitrary
number of properties in the form of key-value pairs, e.g., “name: Hans Müller”. According to
requirement 1.5, the metadata entity’s self-link enables to group zero or more metadata elements
together, like the “Access Info” group, as illustrated in Figure 5. Grouping the elements according
to some context is helpful when a lot of metadata on the same topic is collected for a data element.
As specified through requirement 4, the metadata entity is labeled according to any content-based
categorization, represented by the categorization entity.

Figure 7 depicts an example instantiation of the core model. In the following, instances of
the data and metadata entities are illustrated as circles with the according attributes attached
underneath and the categorization, zone and granularityIndicator attached on top like a label. In
this example the data element has a storageLocation attribute containing the path to customer data
in the lake. The granularityIndicator “Table” implies that the path points to a table. Furthermore,
the referenced content is stored in the raw zone, implied through the zoneIndicator “Raw”. The
data element has one metadata element, which describes the data’s content, as declared through
the connectionContext attribute. Additionally, the metadata element has the properties “name”
and “description”, which are instances of the core model’s property entity. Lastly, the metadata
element is of the type “Business” as specified through the categorization entity.

10 R. Eichler et al.

DataMetadata

storageLocation:
Path/To/CustomerTable

Business

connectionContext:
Content Description
name: Customer Table
description: Contains general
information on customers such as …

Table

Raw Data Pointer Instance
Metadata Instance
Categorization, Zone or
GranularityIndicator
Instance
Attributexyz:

Figure 7. Example Instantiation of the Core Model Entities.

Modeling Metadata According to Utilization: The core model provides the ability to
model the same content in various ways. Figure 8, for instance, depicts three options, a), b) and
c), for storing metadata on how a data element was accessed and by whom. In option a) all of
the information, i.e., the actor and action, are inserted into a single metadata object, pictured in
dashed/green, and attached to the according data entity, in solid/blue, for each executed action.
This simple version does not require human modeling and facilitates adding new metadata with
little effort and in an automated fashion. However, if this metadata is collected to see which users
have accessed a data element, then each metadata element would have to be checked individually.
This is inefficient and could be sped up by creating a separate actor and action metadata object, as
shown in option b). In this model the information is structured for each data entity, but although it
is related information, it is still kept separate as in a silo. Hence, the question “what data elements
does the user Hans work with” also elicits a high effort. For this the metadata on every possible
data entity would have to be loaded to see whether Hans performed an action on it. Therefore,
the metadata can be interconnected across data entities as pictured in option c). Interconnecting
metadata objects across various data entities is also less redundant as the same information is not
stored several times for each data element. In this model, the access metadata is also attached to

R

R

R
Data

2
Data

3

Data
1

R

Hans

Hans

R
R

Hans

R

R

R

Data
2

Data
3

Data
1

Access
Info

Access
Info

Access
Info

R

Hans

R

R
R

Data Pointer Instance
Metadata Instance
Metadata Instance - Read Action

Data
2

Data
3

Data
1

Hans,
Read

Hans,
Read

Hans,
Read Hans,

Read

Hans,
Read

Hans,
Read

a) b) c)

Figure 8. This image shows three modeling variants of the same metadata management use case in which the access
to data is recorded. The metadata objects are depicted in dashed/green and the data objects in solid/blue. From left
to right the same content is stored according to increasing specifications, based on the metadata’s intended usage.
Properties, indicators and categorizations are not displayed due to space reasons.

Modeling Metadata in Data Lakes - A Generic Model 11

Machine

DrillChuck

Drill Bit

Product

Hammer
Drill

Rotary
Hammer

is a
part of

Data

Data Pointer Instance
Metadata Instance
More Metadata
Attached

Products

Figure 9. An extract of a knowledge base demonstrating global metadata. When implemented, the “part of”, “type
of” and “is a” relations are specified through the metadata elements’ connectionContext attribute.

an intermediary “Access Info” node in order to group this information and prevent the data entity
being swamped by indefinitely increasing access metadata. Through these examples we demonstrate
that the core model allows for the metadata to be modeled according to the intended employment,
be it the automated acquisition of new metadata or specific queries.

Data-Specific and Global Metadata: The core model supports collecting both metadata
which belongs to specific data entities and also metadata which is more universal and can exist
without a corresponding data element. In Figure 8 the metadata exemplifies the former, i.e. meta-
data which only makes sense with an according data element. Other metadata, such as knowledge
bases are applicable to a broader scope of data, potentially across the entire data lake and are
examples of what Sawadogo et al. call global metadata [26]. These can be represented through
the core model by creating and interconnecting several metadata objects which can have, but do
not necessarily need a connection to a data element. By way of example, Figure 9 illustrates an
extract of a simplified knowledge base. The knowledge base is composed of metadata objects which
do not describe a specific dataset in the lake but rather provide a contextual overview of domain
knowledge on machines. This domain knowledge applies to data across the whole or a substantial
part of the data lake and is therefore an example of global metadata. Nonetheless, it may contain
links to matching data in the lake, such as the “Product” table.

5.2 The Granularity Extension

The granularityIndicators have to be adapted according to the intended usage, e.g., for relational
structures, as depicted in Figure 10. Thus, the are modeled as an extension to the core model. The
granularityIndicator entity enables collecting metadata on different granular levels. These levels are
closely tied to some kind of structure in the data. For example, the object, key, value, or key-value

Table

GranularityIndicator
has a

Data

storageLocation

Row

Column Header

Field

is enum
literal

…

for a relational
structure

Data Pointer
Extension Anchor

Figure 10. The Granularity Extension to the Core Model

12 R. Eichler et al.

pair instances in a JSON Document may be used as granularity levels. The granularityIndicator
is not, however, limited to “structured data.” For instance, videos are categorized as “unstruc-
tured data” and yet, one may want to collect metadata on single frames of the video. In this case,
there would be a video level and a frame level. Domain knowledge provided by domain experts
can be helpful for selecting granularity levels, as often it is necessary to understand, e.g., if the
metadata refers to the content of a single frame or an entire video.

Figure 10 lists a few enumerations, which can be used to indicate the granular levels of relational
data. The “...” indicates that other enumerations may be added as needed. In order to collect
metadata on different levels, a corresponding data element must be created that points to that
granular instance. So, there may be a set of data elements all referring to the same dataset, simply
pointing to more or less specific granular levels. Demonstrating the granularityIndicators defined
here, the “Data Pointer” in Figure 5’s raw zone would have a label called Row and the “Data
Pointer” in the trusted zone would have a label called Table. There could be other “Data Pointers”
in these zones, for instance another pointer to the overall table in the raw zone with the label Table.

Metadata Inheritance Through GranularityIndicators: The granularityIndicators en-
able collecting metadata on various granular levels but it has not yet been considered to what extent
metadata can be transferred to other elements. As mentioned in Section 4, the granularityIndicators
can facilitate the inheritance of metadata. By our definition, the inheritance of metadata signifies
the transferability of metadata attached to data of lower granularity to that of higher granularity.
Within relational data, for instance, a table is of a lower granularity and a row of higher granu-
larity. When a user wishes to access a few rows within this table, metadata on access rights are
required to ascertain whether this user has the clearance to view this data. In this case it would
not make sense to collect the access rights per row, therefore, they are stored on a lower granular
level, like the table level. Nonetheless, even though the metadata is attached to the table level,
it is also applicable to the according rows and is thereby, heritable. This has the advantage that
the metadata can be stored once on a lower granular level and be transfered to higher levels, as
opposed to storing it several times for each element in the higher level.

In order to access the inheritable metadata from data of a lower granular level, the hierarchy
between the granularityIndicators must be defined. There may be several data entities with vari-
ous granularityIndicators all pointing to various granular levels of the same dataset without their
connection being known. By using the granularityIndicators as depicted in Figure 10, Figure 11

Table

GranularityIndicator
has a

Data

StorageLocation

RowColumn Header

Field

is enum literal

part ofpart of

has

has part of

Data Pointer
Extension Anchor

Figure 11. An exemplary definition of the hierarchy among granularityIndicators to facilitate metadata inheritance.

Modeling Metadata in Data Lakes - A Generic Model 13

illustrates an exemplary hierarchy between these granularityIndicators. It defines that a Table con-
sists of Rows and a Row consists of one or more Fields as these are connected through a part of
relation. Furthermore, a Field and Row have either one or one or many Column Headers respec-
tively. Having accessed a data entity pointing to a row, the according parent element pointing to
the table can be queried through the part of relation and hence, heritable metadata can be found.

5.3 The Zone Extension

Figure 12 illustrates the intended usage of the zoneIndicator entity, using the zone model by Za-
loni [33]. The zoneIndicator entity is a label on the data entity supplying information on the location
of the data element in the data lake’s zone architecture. Depending on the zone definition, the data’s
transformation degree is immediately apparent through it. The different zones are modeled as enu-
merations for the zoneIndicator. In order to use another kind of architecture, the zone enumerations
and their relationships need to be adjusted.

The model illustrates that every data element must have exactly one zoneIndicator, but the
indicators may be applied to zero or many data elements. In this model, the rawZone entity is
designed to be the central zoneIndicator. The reason behind this design decision is that the data
is sometimes directly loaded into the raw zone, even though it is the second zone, because the first
zone, the transient loading zone, is optional and can be omitted. Furthermore, data loaded into the
transient loading zone is only stored temporarily and may not move on into other zones if it does
not pass the quality checks. Consequently, if data is stored in any of the other zones, it will have a
corresponding data element in the raw zone, however, not necessarily in the transient loading zone.
Thus, the raw zone is the most stable reference. The other zoneIndicators, the transientLoadingZone,
trustedZone, refinedZone and sandbox, have a link entity, connecting them to the corresponding
data element in the raw zone. The information from where the data was imported into the zone
is stored within the importedFrom property and the corresponding timestamp are stored with the
link. The importedFrom attribute may contain the name of a zone or the original source. Within
Zaloni’s zones, the data should first move through the transient loading zone, the raw zone, the
trusted zone and lastly, through the refined zone. In the case of the raw zone and sandbox, the data
may be loaded directly from the source. The importedFrom attribute enables tracing the data’s
progress through the zones. As the data may not be moved into the raw zone from the transient
loading zone this enumeration can exist without a link to the rawZone element. If it was moved
into the raw zone, then it must have a link connecting them.

Figure 13 shows an exemplary instantiation of the the zone extension presented in Figure 12.
The four illustrated data elements are all pointers to versions of the same table stored in different
zones. The left element is stored in the rawZone and, therefore, points to the original unaltered
version of the data. The other data elements are connected to it through a link, illustrated by an

Data

storageLocation

RawZone

TansientLoadingZone

TrustedZone

RefinedZone

Sandbox

Link

importedFrom
timestamp

points to

has a

is
enumZoneIndicator

has a

Data Pointer
Extension Anchor

Figure 12. The Zone Extension to the Core Model, Using Zaloni’s Zones [33,20].

14 R. Eichler et al.

Data

storageLocation:
path/raw…

Table

RawZone
storageLocation:
path/trusted…

Data

storageLocation:
path/sandbox…

Table

Sandbox

Data

storageLocation:
path/refined…

Table

RefinedZone

importedFrom: TrustedZone
timestamp: …

Data

Table

TrustedZone

Data Pointer Instance

Categorization, Zone or GranularityIndicator Instance

Meta
data

Meta
data

Metadata Instance

Meta
data

Figure 13. This image depicts an exemplary instantiation of the zone extension presented in Figure 12. It shows a
scenario in which a table is stored four times in the data lake within four zones. There is a data entity for each of the
four tables pointing to its location. The zoneIndicators and the links illustrate each table’s zone together with the
information from where and when it was imported. The metadata entities indicate that metadata may be attached
to the data entities.

arrow. As depicted, the data has moved from the raw zone into the trusted zone and then into the
refined zone. It was also loaded into the sandbox. The importedFrom attribute specifies that the
data element in the sandbox was not loaded from any zone in the data lake, but from the source
directly.

These zones could also be modeled differently, e.g., such that each zoneIndicator is connected
to the zoneIndicator from which the data was imported. In this case, the TrustedZone indicator
would have a link to the rawZone indicator and the refinedZone indicator a link to the trustedZone
indicator. However, with this alternative design the sandbox indicator might not have any connec-
tion to any other indicator when its data was imported from the data source directly, which is why
we chose the design as described above as we want to have all instances of the same dataset to be
connected.

5.4 The Categorization Extension

Figure 14 illustrates the intended usage of the categorization entity, exemplified using the metadata
categorization by Gröger and Hoos [11]. Like the zone and granularityIndicator, the categorization

Metadata

connectionContext

has a

Business

Technical

Operational

is enum
API

IoT

Analysis Results

Core

is enum

Categorization

Extension AnchorMetadata Object

Figure 14. Categorization Extension to Core Model, with the categorization by Gröger and Hoos [11] and subcate-
gories they adopted from [3].

Modeling Metadata in Data Lakes - A Generic Model 15

entity is a label assigned according to the metadata element’s context. For instance, access infor-
mation is core metadata and therein operational metadata as defined by [3], and thus a metadata
element storing any type of access information will have an operational label. This extension to-
gether with the granularity and zone extension as well as the core model add up to be HANDLE.

6 HANDLE Assessment

To asses HANDLE’s suitability as a generic metadata model we assess its applicability to a metadata
management use case and its implementation aspects. Furthermore, we examine whether it fulfills
the requirements specified for a generic metadata model in Section 4 and we compare it to the five
metadata models discussed in Section 3.

6.1 HANDLE Demonstration on Access-Use-Case

Figure 15 shows an example instantiation of HANDLE. The depicted model belongs to the access-
use-case described in Section 3.2.

As defined through the core model, a data instance with zone and granularityIndicator as well
as three metadata instances, action, actor and accessInfo, with the categorization operational, are
introduced in Figure 15. A data entity has zero or exactly one accessInfo entity. In order to avoid
the data element being overloaded by indefinitely increasing access information, all access related
nodes are connected to the accessInfo entity as an intermediate node. The accessInfo entity is a way
of adding structure. The model suggests that an action element is created for every executed action.
It is connected to the involved data’s accessInfo element and stored with the time it was performed.
The term access covers a variety of actions, such as create, read, update or delete actions. An action
is performed by an actor who is connected to one or many actions. For instance, a specific data
scientist may repeatedly load data from the customer table. The accessInfo element for the customer
table will have one actor element with the data scientist’s name and id. This actor element will be
connected to read actions, one for every time they loaded the data with the according time.

Data

storageLocation

Action

connectionContext
timestamp

Actor

connectionContext
name
id

groups
info on

Update

Read

Create

Delete
is
enum

Data Pointer
Metadata Object

AccessInfo

connectionContext

GranularityIndicator

ZoneIndicatorOperational

Operational

Operational

Performed by

Figure 15. Instance of HANDLE for Access-Use-Case

16 R. Eichler et al.

Access
Info

Cust.
Table
Row

Access
Info

Access
Info

Read

Read

Hans

PART_OFCustomer
Table

Customer
Table

LI
N

K
GROUPS_ACCESS_INFO

GROUPS_ACCESS_INFO

Johannes

ACTION_PERFORMED_ON Read

PERFORMED_ACTION_ON

TableData Raw

Metadata Operational

<id>: 62 timestamp: 1580401172361 type: Read

<id>: 117 storageLocation: path/to/Raw/CustomerTable

Figure 16. Visualization of the HANDLE access-use-case implementation in Neo4J. The solid/blue and dashed/green
nodes represent data and metadata objects respectively. The two highlighted node’s labels are depicted on the bottom
left, e.g., Data, Table and Raw. The elements’ properties are listed next to the labels. The text on the edges is the
metadata entity’s connectionContext attribute, e.g., actor “Johannes” performed an action and is connected to the
data’s accessInfo with the connectionContext “performed action on”.

6.2 Prototypical Implementation

Apart from HANDLE’s applicability, we assess its realizability, that is, whether it can be properly
implemented. As previously emphasized, flexibility is one of the most important features of the
new metadata model. This poses an additional challenge during the implementation as the system
components must be able to reflect this flexibility. More specifically, the database of choice must
support the aspects of the model which constitute its flexibility. This section shows by way of
example that a graph database provides the necessary prerequisites for implementing HANDLE.
As a graph database is a NoSQL database it does not require a predefined schema, which makes it
more flexible than the traditional relational databases [19]. Also, it is well suited for storing strongly
linked data, which is required for many metadata management use cases such as the access-use-case
described above, lineage-use-case etc. In the following example, we use the graph database Neo4J1.

Figure 16 illustrates an implementation of the access model and thus of the core model, as well
as aspects of the zone, granularity and categorization extensions. It depicts an extract of a Neo4J
graph database and therefore a set of nodes and edges each with labels. Neo4J supports adding
properties and labels to both nodes and edges [21]. The labels and properties of one data instance
and one metadata instance are displayed at the bottom of the picture, wherein the labels are on the
left and properties on the right. The three solid/blue nodes are instantiations of the data entity and
each have the property storageLocation containing the path to the according data element, here
the customer table. The granularityIndicators introduced in Figure 10 are implemented through
labels on the data elements. For example, the highlighted data element on the top left hand side
has the label “Table”. The solid/blue data element on the top right points to a row and thus

1 https://neo4j.com/

Modeling Metadata in Data Lakes - A Generic Model 17

has the label “Row”. The row and table pointers are interconnected according to the hierarchy
of granularityIndicators defined in Figure 11, meaning the row pointer is connected to the table
pointer through a “part of” relation. This relation enables the inheritance of metadata as described
in Section 5.2. The zoneIndicators presented in Section 5.3 are also implemented through a label
on the data elements, as exemplified in Figure 13. For instance, Figure 16 lists the label “Raw”
for the highlighted data element. The zone extension’s link entity is implemented through an edge
in the graph with the according properties. As can be seen in Figure 16, the two solid/blue nodes
on the left are connected through an edge with the label “Link”. The link connects the bottom
data element to its according instance in the raw zone. The dashed/green nodes are instances of
the core model’s metadata entity. They are also instances of the access-use-case model’s metadata
entities: accessInfo, actor and action. The metadata object’s connectionContext is realized as a
label on their relations, e.g., the actor elements’ “performed action on” and accessInfo elements’
“groups access info” connectionContext describe the relation to the according data object. As can
be seen, the actors “Hans” and “Johannes”, on the far right in Figure 16, have performed “Read”
actions on data elements. “Johannes” read information on a particular customer stored in the raw
zone. “Hans” read the entire customer table in both the raw zone in its unpseudonymised state and
in another zone, in its pseudonymised state, as indicated by Figure 5. The categorization entity is
also implemented as a label, e.g., the highlighted “Read” action’s “Operational” label can be seen
in Figure 16.

6.3 Fulfillment of Requirements

In the following we demonstrate that HANDLE fulfills the requirements for a metadata model listed
in Section 4 and the requirements for the access-use-case, as defined in Section 3.2. Furthermore, we
discuss whether it is use case and domain independent, and to what extent it fulfills the metadata
management requirements.

Requirements for a Generic Metadata Model: To begin with, Requirement (1), enabling
flexible modeling, comprises the six sub-requirements (1.1)-(1.6). As prescribed by (1.1), the core
model allows the creation of metadata objects with properties. This can be seen in the access-
use-case model in Figure 15 through, e.g., the actor entity and its properties name and id. The
core model also allows to interconnect metadata objects and data objects, facilitating the wanted
relationships in (1.1). As defined per (1.2), the core model does not restrict the amount of metadata
objects created and thus, any use case can have an arbitrary number of metadata objects. Equally,
metadata properties can be created freely for metadata objects, as required by (1.3). In the access-
use-case this is reflected by the three metadata entities action, actor and accessInfo, which have
varying properties and can have numerous instantiations. Metadata objects may or may not be
connected to a data element, thereby fulfilling (1.4). A metadata entity such as dataLakeDescrip-
tion may be created for instance, containing general information on a data lake, which need not
be connected to any data entity. The self-link of both the metadata and data objects enable the
required interconnection of these objects, defined in (1.5) and (1.6). For instance, in the access-use-
case the metadata entity actor is connected to another metadata entity called accessInfo which is
connected to a data element that may also be connected to other data elements to represent, e.g.,
a partOf relation. Requirement (2), denoting the support of multiple granular levels, is realized by
creating multiple data objects, containing a path to more or less granular elements of a dataset,
labeled through the granularityIndicator. If, for example, the granular levels shown in Figure 10 are
used, the data element in the access-use-case may point to a table, a row or other level. Require-
ments (3) and (4), denoting the support of zones and any categorization, are supported through the
zoneIndicator and categorization entities, as explained in Section 5. Using Zaloni’s zones as shown

18 R. Eichler et al.

in Figure 12 the data element in the access-use-case may for example point to a table in the raw
zone as specified by its zoneIndicator. Similarly, the access-use-case’s metadata objects carry an
operational label in Figure 15 according to the categorization shown in Figure 14. In conclusion,
HANDLE supports all of the requirements for a generic metadata model as specified in Section 4.

Requirements for the Access-Use-Case: HANDLE also meets the requirements of the
access-use-case as described in Section 3.2. According to these the model must be flexible in creat-
ing metadata properties for metadata objects to reflect most varied information, the model must
support data lake zones and it must support the collection of metadata on various granular levels.
These properties are addressed through the model requirements (1.2) and (1.3) on metadata ob-
jects and properties and requirements (2) on granular levels and (3) on data lake zones. Given that
HANDLE fulfills these, as described in the previous paragraph, it is suited to model the access-
use-case which sets it apart from the existent metadata models which are not suited, as shown in
Section 3.3. An exemplary instantiation of HANDLE for this use case is given in Section 6.1.

Use Case and Domain Independence: The high abstraction layer in which the metadata
object and its properties are defined in HANDLE’s core model does not only enable modeling
metadata from various use cases, but also from differing domains. As indicated in Figure 9, metadata
instances can be created that represent different machines, but in the same way metadata instances
can be created that represent proteins and their amino acids. It is irrelevant for the instantiation
of the core model whether the metadata originate from the biology or manufacturing domain. It is
therefore possible to reflect metadata from different domains and consequently our model is domain
independent.

Model Placement in the Metadata Management Requirements: As explained in Sec-
tion 2 the execution of the data management tasks, data governance, lifecycle management and
foundational activities are also required within metadata management. The model we created pro-
vides the basis for the required metadata model in the data lifecycle’s “Design” step. However, it
does not fully satisfy the metadata model as the required instances of HANDLE still need to be
designed by domain experts. In this regard HANDLE serves as an enabler for metadata modeling
and only satisfies the metadata modeling step in combination with its instances. To which extent
the instances of HANDLE are comprehensive must be assessed by domain experts. For example,
by comparing the collected metadata with a company-specific list of metadata management use
cases or using the categorization label to check if metadata of all specified types are collected.
Besides the categorization label, HANDLE does not offer support in assessing the completeness, as
the valuation of this will vary between companies and the focus of the model is to create a basis
for modeling metadata with which the most diverse use cases can be reflected, as opposed to a
guideline which use cases must be reflected.

6.4 Comparison to Existent Models

To further asses HANDLE’s generic extent we also compare it to the five selected metadata models.
HANDLE can represent the content of all five models through the core model because it is defined
on a higher abstraction level. It addresses the use cases in a more general way and can represent
any metadata through its abstract entities: data, metadata and property. This means that metadata
stored according to one of the existent models can be transferred and mapped into HANDLE and
possibly even combined with metadata stored through yet another model. Besides representing
their content, HANDLE adds additional features such as the granularityIndicator, zonIndicator
and categorization label. We exemplary demonstrate how HANDLE can represent the content of
other models, using two of the existent metadata models that are specified on different levels of
abstraction and in varying detail. First, we map HANDLE to the model by Ravat and Zhao as this

Modeling Metadata in Data Lakes - A Generic Model 19

model is not abstract, but very concrete and specified in great detail. The second model to which
we compare HANDLE is GEMMS as this model is specified on a higher abstraction level giving
more flexibility to its instances, similar to HANDLE. By comparing HANDLE to these models we
also demonstrate how HANDLE relates to models that are specified differently.

Comparison of HANDLE to the Model by Ravat and Zhao: The mapping of HANDLE
to the model by Ravat and Zhao [23] is pictured in Figure 17. The image shows an extract of
the model with dashed lines where more elements are originally attached. Most of the elements
in Ravat and Zhao’s model can be represented by the metadata object and properties, shown in
dashed/green. As the location of the data is stored separately in the data object with HANDLE,
the attribute “ds location”, which we assume is short for dataset location, was extracted from the
“Dataset” entity and is now used equivalently to the storageLocation attribute in the newly added
data object. To be conform with HANDLE the connectionContext attribute was added to each
metadata object to describe its content or relation to other elements. In the original model by
Ravat and Zhao an object called “Relationship” was attached in between the “Datalake Datasets”
self-link. It is used to represent various types of relationships between the “Datalake Dataset”
objects, such as provenance, logical clusters or content similarity [23]. The Relationship-object
becomes negligible through the “Datalake Datasets”’s connectionContext attribute as this is also
used to describe interconnections and can therefore also contain, e.g., content similarity. Overall,
the content of Ravat and Zhaos model can be represented through HANDLE.

HANDLE’s granularityIndicator, zoneIndicator and categorization label can be partially ap-
plied to Ravat and Zhao’s model. The granularityIndicator can be added to the data object to
indicate what it represents, e.g., a table or perhaps video. The relation in between data objects
is, however, attached to the “Datalake Dataset” object in the original model and therefore can-
not be represented as intended by HANDLE. The zoneIndicator could also be added to the data
object according to Ravat and Zhaos four zones: the raw-data-zone, process-zone, access-zone and
governance-zone. Ravat and Zhao only differentiate between inter- and intra-metadata, which refer

Datasets
connectionContext
ds_id
ds_name

Data
ds_location

Datalake_Datasets
ds_size
ds_description
ds_type
ds_creation_date
…

Source_Datasets
sd_owner
sd_administrator
sd_type
…

Keywords
connectionContext
kw_id
kw_word Access

connectionContext
acc_time Users

connectionContext
user_id
user_last_name
…

Applications
connectionContext
app_id
app_name
app_description

HANDLE‘s Data Entity
HANDLE‘s Metadata Entity
Type of
More Metadata Objects are
attached here

HANDLE mapped onto model by Ravat and Zhao

Figure 17. The image illustrates how the model by Ravat and Zhao [23] can be represented through HANDLE. The
entities are color matched to the entities in HANDLE’s core model. Only an extract is displayed, for the sake of a
better overview. The missing elements are indicated by the black dashed lines attached to the metadata entities and
can be modeled exactly like the Users, Access and Datalake Datasets entities.

20 R. Eichler et al.

HANDLE‘s Data Entity
HANDLE‘s Metadata Entity

Data File

Data Unit

Metadata
Property

TreeStructure
Data

MatrixStructure
Data

Ontology

Term

DataUnit

Template

Semantic
Data

annotatedBy

annotatedBy

HANDLE mapped onto conceptual model GEMMS

Structure
Data

Figure 18. The image depicts the model of GEMMS [22], which’ entities are color matched to the entities in HAN-
DLE’s core model.

to the object relations and attributes respectively. In this case, each metadata-object would have a
categorization called intra-metadata. The inter-metadata categorization would have to be applied
to the “Datalake Datasets”’s relations which is not intended by HANDLE. Therefore, HANDLE’s
categorization cannot be used in this case. Nonetheless, additional metadata management capabil-
ities can be added by applying HANDLE’s zone- and granularityIndicators to the model by Ravat
and Zhao.

Comparison of HANDLE to GEMMS: Figure 18 exemplifies how GEMMS’ model can
be mapped onto HANDLE. The colors indicate that the solid/blue elements are an instance of
the core model’s data entity and the dashed/green ones instances of the metadata entity. All of
GEMMS’ entities can be represented through the core model’s data, metadata and property entities.
In contrast to GEMMS, HANDLE strictly separates data and metadata, therefore the metadata is
not stored within the “Data File” or “Data Unit” entities but in the “Metadata Property” nodes.

Furthermore, HANDLE’s categorization and granularity topics can be integrated, hereby adding
some of HANDLE’s features to GEMMS. As can be seen in Figure 19 showing an example instan-
tiation of GEMMS through HANDLE, the “Data File” and “Data Unit” instantiations are labeled

filename: xyz
size: …

Key:
Value

HANDLE‘s Data Entity
HANDLE‘s Metadata Entity

storageLocation: …

storageLocation: …
type: Tree
…

Example Instantiation of GEMMS through HANDLE

GranularityIndicator Label
Categorization Label
ZoneIndicator LabelContent

Description: …
…

Unit

File

Meta. Prop

Structure

Semantic

Object properties

Indicator that more
Elements can be
connected here
according to GEMMS‘
model

Raw

Raw

Ontology Term: …

Semantic

Figure 19. An instantiation of GEMMS through HANDLE is illustrated. The image shows that HANDLE can
represent GEMMS content and adds features, e.g., the zoneIndicator, shown on the “File” entity in grey.

Modeling Metadata in Data Lakes - A Generic Model 21

with the granularityIndicators “File” and “Unit”. According to GEMMS’ metadata types, the cat-
egorization labels are added to the metadata instantiations on the right hand side, “Semantic”,
“Structure” and “Metadata Property”. Although GEMMS does not address the zone concept,
HANDLE’s zoneIndicator can be attached, as shown through the grey “Raw” label on the “File”
entity. Thereby GEMMS is extended and becomes compatible with zones.

The other three models’ content can be represented through HANDLE in a similar fashion,
by mapping their main entities onto HANDLE’s data, metadata and property elements. Having
demonstrated that HANDLE fulfills the specified requirements, can represent the content of other
metadata models, and extends these with features required for metadata management in data lakes,
it can be said that HANDLE is more comprehensive and is a generic metadata model which can
reflect any metadata management use case and consequently any metadata.

7 Conclusion

In order to exploit the value of data in data lakes, metadata is required. Metadata is a type of
data, which provides information on, e.g., other data, processes or systems. As it is a type of data
it also needs to be managed. Metadata management is essentially data management for metadata
and therefore, involves the data management activities, data governance, lifecycle management and
foundational activities like data quality management. One of these activities involves the design of
a metadata model, which defines the relation in between data and metadata elements and which
metadata can be stored. As metadata is required for the management of all other data types, and
throughout each of their management activities, there is a multitude of metadata which needs to be
collected. The above mentioned metadata model must therefore be generic, meaning that it should
be able to reflect any given metadata management use case and consequently all metadata.

We conducted a literature research and found five comprehensive metadata models which are
created for or are applicable to data lakes. For each of these models, the generic extent and the
approach through which it was built, were examined. Thereby we found that the models were built
based on two general approaches which involve a metadata categorization and/or a list of metadata
management features which should be supported. Our assessment of these approaches yields that
both are not fully suited for creating a generic metadata model. Consequently, the existent models
do not fulfill the required generic extent, as also demonstrated through an exemplary use case in
an Industry 4.0 scenario.

A new approach was used to develop a new metadata model for data lakes, called HANDLE.
The new model supports the acquisition of metadata on varying granular levels, any metadata
categorization, including the acquisition of both metadata which belongs to a specific data element
as well as metadata which applies to a broader range of data. HANDLE can also be used to
model the same metadata in various ways according to the intended utilization. Most importantly,
HANDLE is explicitly created for data lakes and therefore also supports data lake characteristics
like data lake zones. Our assessment shows that it is easily applicable to metadata management use
cases, can be implemented through a graph database, can reflect the content of existent metadata
models and offers additional metadata management features. As the research has demonstrated, it
is the most generic metadata model for data lakes up to date. In future, we intend to investigate
how HANDLE can be expanded to provide decision-support for domain experts with respect to
what metadata needs to be collected for comprehensive metadata management and also whether
HANDLE is applicable beyond the scope of data lakes, e.g., to other systems like data warehouses
or whether it is applicable across a combination of various data storage systems.

22 R. Eichler et al.

References

1. ISO/IEC 11179-1: Information technology — Metadata registries (MDR) — Part 1: Framework. Tech. rep.,
International Organization for Standardization (2004)

2. Cao, L.: Data science: A comprehensive overview. ACM Comput. Surv. 50(3) (2017).
https://doi.org/10.1145/3076253

3. DAMA International: DAMA-DMBOK: Data Management Body of Knowledge. Technics Publications (2017)

4. Diamantini, C., Giudice, P.L., Musarella, L., Potena, D., Storti, E., Ursino, D.: A new metadata model to
uniformly handle heterogeneous data lake sources. In: Proc of the 22nd European Conference on Advances in
Databases and Information Systems (ADBIS 2018). pp. 165–177. https://doi.org/10.1007/978-3-030-00063-9 17

5. Eichler, R., Giebler, C., Gröger, C., Schwarz, H., Mitschang, B.: Handle - a generic metadata model for data
lakes. In: Proceedings of the 22nd International Conference on Big Data Analytics and Knowledge Discovery
(DaWaK 2020). pp. 73–88. https://doi.org/10.1007/978-3-030-59065-9 7

6. Erwin: Metadata Management : The Hero in Unleashing Enterprise Data ’ s Value Connect all the pieces of your
data. Tech. rep., erwin (2020)

7. GDPR.EU: Art. 15 GDPR - Right of access by the data subject, https://gdpr.eu/article-15-right-of-access/, last
accessed 2020-02-28

8. GDPR.EU: What is GDPR, the EU’s new data protection law?, https://gdpr.eu/what-is-gdpr/, last accessed
2020-02-28

9. Giebler, C., Gröger, C., Hoos, E., Eichler, R., Schwarz, H., Mitschang, B.: Data lakes auf den grund gegangen.
Datenbank-Spektrum pp. 1–13 (2020). https://doi.org/10.1007/s13222-020-00332-0

10. Giebler, C., Gröger, C., Hoos, E., Schwarz, H., Mitschang, B.: Leveraging the Data Lake: Current State and
Challenges. In: Proc of the 21st International Conference on Big Data Analytics and Knowledge Discovery
(DaWaK 2019). pp. 179–188. https://doi.org/10.1007/978-3-030-27520-4 13

11. Gröger, C., Hoos, E.: Ganzheitliches Metadatenmanagement im Data Lake: Anforderungen, IT-Werkzeuge und
Herausforderungen in der Praxis. In: Proc of the 18. Fachtagung für Datenbanksysteme für Business, Technologie
und Web (BTW 2019). https://doi.org/10.18420/btw2019-26

12. Hai, R., Geisler, S., Quix, C.: Constance: An intelligent data lake system. In: Proc of the 2016 International
Conference on Management of Data (SIGMOD 2016). pp. 2097–2100. https://doi.org/10.1145/2882903.2899389

13. Hai, R., Quix, C., Wang, D.: Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes. In: Proc
of the 39th International Conference on Conceptual Modeling (ER 2019). pp. 225–239

14. Halevy, A., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.: Managing Google’s data lake:
an overview of the Goods system. IEEE Data Eng. Bull. 39(3), 5–14 (2016)

15. Hellerstein, J.M., Sreekanti, V., Gonzalez, J.E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S.,
Bhattacharyya, A., Das, S., Donsky, M., Fierro, G., She, C., Steinbach, C., Subramanian, V., Sun, E.: Ground :
A Data Context Service. In: Proc of the 8th Biennial Conference on Innovative Data Systems Research (CIDR
2017)

16. Isuru, S., Plale, B.: Provenance as Essential Infrastructure for Data Lakes. In: Proc of the 6th International
Provenance and Annotation Workshop (IPAW 2016). pp. 178–182. https://doi.org/10.1007/978-3-319-40593-3

17. Kandogan, E., Roth, M., Schwarz, P., Hui, J., Terrizzano, I., Christodoulakis, C., Miller, R.J.: LabBook:
Metadata-driven social collaborative data analysis. In: Proc of the IEEE International Conference on Big Data
(Big Data 2015). pp. 431–440. https://doi.org/10.1109/BigData.2015.7363784

18. Kassner, L., Gröger, C., Königsberger, J., Hoos, E., Kiefer, C., Weber, C., Silcher, S., Mitschang, B.: The
Stuttgart IT Architecture for Manufacturing. In: Hammoudi S., Maciaszek L., Missikoff M., Camp O., C.J.
(ed.) Enterprise Information Systems (ICEIS 2016). Revised Selected Papers, pp. 53–80. Springer (2017).
https://doi.org/10.1007/978-3-319-62386-3 3

19. Kaur, K., Rani, R.: Modeling and querying data in NoSQL databases. In: Proc of the IEEE International
Conference on Big Data (Big Data 2013). pp. 1–7. https://doi.org/10.1109/BigData.2013.6691765

20. LaPlante, A., Sharma, B.: Architecting Data Lakes: Data Management Architectures for Advanced Business Use
Cases. O’Reilly Media (2018)

21. Neo4j: The Definitive Guide to Graph Databases for the RDBMS Developer. Tech. rep. (2016)

22. Quix, C., Hai, R., Vatov, I.: Metadata Extraction and Management in Data Lakes With GEMMS. Complex
Systems Informatics and Modeling Quarterly (9), 67–83 (2016). https://doi.org/10.7250/csimq.2016-9.04

23. Ravat, F., Zhao, Y.: Metadata Management for Data Lakes. In: Proc of the 23rd European Conference on
Advances in Databases and Information Systems (ADBIS 2019). pp. 37–44. https://doi.org/10.1007/978-3-030-
30278-8 5

24. Sawadogo, P., Darmont, J.: On data lake architectures and metadata management. Journal of Intelligent Infor-
mation Systems (2020). https://doi.org/10.1007/s10844-020-00608-7

Modeling Metadata in Data Lakes - A Generic Model 23

25. Sawadogo, P.N., Kibata, T., Darmont, J.: Metadata management for textual documents in data lakes. In:
Proc of the 21st International Conference on Enterprise Information Systems (ICEIS 2019). pp. 72–83.
https://doi.org/10.5220/0007706300720083

26. Sawadogo, P.N., Scholly, É., Favre, C., Ferey, É., Loudcher, S., Darmont, J.: Metadata Systems for Data Lakes:
Models and Features. In: Proc of the 23rd European Conference on Advances in Databases and Information
Systems (ADBIS 2019). pp. 440–451. https://doi.org/10.1007/978-3-030-30278-8 43

27. Simoni, G.D., Dayley, A., Edjlali, R.: Magic Quadrant for Metadata Management Solutions (2018)
28. Skluzacek, T.J.: Dredging a data lake: Decentralized metadata extraction. In: Proceedings of

the 20th International Middleware Conference Doctoral Symposium (Middleware 2019). p. 51–53.
https://doi.org/10.1145/3366624.3368170

29. Spiekermann, M., Tebernum, D., Wenzel, S., Otto, B.: A metadata model for data goods. In: Proc of the Multi-
konferenz Wirtschaftsinformatik (MKWI 2018). pp. 326–337

30. Theodorou, V., Hai, R., Quix, C.: A Metadata Framework for Data Lagoons. In: Proc of the 23rd
European Conference on Advances in Databases and Information Systems (ADBIS 2019). pp. 452–462.
https://doi.org/10.1007/978-3-030-30278-8 44

31. Walker, C., Alrehamy, H.: Personal Data Lake with Data Gravity Pull. In: Proc of the 5th International Confer-
ence on Big Data and Cloud Computing (BDCloud 2015). pp. 160–167. https://doi.org/10.1109/BDCloud.2015.62

32. Yu, X., Wen, Q.: A view about cloud data security from data life cycle. In: 2010 Interna-
tional Conference on Computational Intelligence and Software Engineering, CiSE 2010. pp. 1–4.
https://doi.org/10.1109/CISE.2010.5676895

33. Zaloni: The Data Lake Reference Architecture - Leveraging a Data Reference Architecture to Ensure Data Lake
Success. Tech. rep. (2018)

34. Zitron, G., Yarmoluk, D.: Metadata Management as a Strategic Imperative – Towards Data Science. Tech. rep.,
Octopai (2017), https://towardsdatascience.com/metadata-management-as-a-strategic-imperative-88a16c6ec731

