

The Data Lake Architecture Framework:
A Foundation for Building a

Comprehensive Data Lake Architecture

Corinna Giebler, Christoph Gröger, Eva Hoos, Rebecca Eichler, Holger Schwarz,
Bernhard Mitschang

In: Proceedings der 19. Fachtagung für Datenbanksysteme für Business,
Technologie und Web (BTW 2021)

BIBTEX:
@inproceedings{Giebler2021,
author = {Giebler, Corinna and Gr{\"{o}}ger, Christoph and Hoos, Eva and Eichler, Rebecca
and Schwarz, Holger and Mitschang, Bernhard},
booktitle = { Proceedings der 19. Fachtagung für Datenbanksysteme für Business,
Technologie und Web (BTW 2021)},
title = {{ The Data Lake Architecture Framework: A Foundation for Building a
Comprehensive Data Lake Architecture}},
year = {2021},
doi = {}
}

© by GI

The final authenticated version is available online at https://doi.org/[insert DOI].

University of Stuttgart - Institute for Parallel and Distributed Systems / AS

cba

Herausgeber et al. (Hrsg.): BTW,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

The Data Lake Architecture Framework: A Foundation for

Building a Comprehensive Data Lake Architecture

Corinna Giebler1, Christoph Gröger2, Eva Hoos2, Rebecca Eichler1, Holger Schwarz1,

Bernhard Mitschang1

Abstract: During recent years, data lakes emerged as a way to manage large amounts of heterogeneous
data for modern data analytics. Although various work on individual aspects of data lakes exists,
there is no comprehensive data lake architecture yet. Concepts that describe themselves as a “data
lake architecture” are only partial. In this work, we introduce the data lake architecture framework. It
supports the definition of data lake architectures by defining nine architectural aspects, i.e., perspectives
on a data lake, such as data storage or data modeling, and by exploring the interdependencies between
these aspects. The included methodology helps to choose appropriate concepts to instantiate each
aspect. To evaluate the framework, we use it to configure an exemplary data lake architecture for
a real-world data lake implementation. This final assessment shows that our framework provides
comprehensive guidance in the configuration of a data lake architecture.

Keywords: Data Lake; Data Lake Architecture; Framework

1 Introduction

In recent years, data lakes emerged as platforms for big data management and analy-

ses [Ma17b]. They are used in various domains, e.g., healthcare [RZ19] or air traffic [Ma17a],

and enable organizations to explore the value of data using advanced analytics such as

machine learning [Ma17b]. To this end, data of heterogeneous structure are stored in their

raw format to allow analysis without predefined use cases.

However, implementing a data lake in practice proves challenging, as no comprehensive data

lake architecture exists so far. Such an architecture specifies, e.g., the data storage or data

modeling to be used. In this work, we define comprehensive as “all necessary architectural

aspects of a data lake and their interdependencies are covered”. An architectural aspect

is a perspective on a data lake architecture, such as data modeling or infrastructure. To

define a comprehensive data lake architecture, multiple such aspects have to be considered.

While some concepts are called “data lake (reference) architecture” (e.g., in [Sh18]) by their

authors, they only focus on a subset of necessary architectural aspects.

In addition, the possible applications of data lakes are very diverse. A data lake might only

process batch data [Ma17a] or both batch data and data streams [MM18]. It might be limited

1 Universität Stuttgart, IPVS, 70569 Stuttgart, Germany {firstname.lastname}@ipvs.uni-stuttgart.de
2 Robert Bosch GmbH, 70469 Stuttgart, Germany {firstname.lastname}@de.bosch.com

2 Corinna Giebler et al.

Aspect A

Aspect B

Aspect I

Data Lake

Architecture Framework
Data Lake

Architecture

Methodology

Aspect A

Aspect B

Aspect I

…

Possible implementation
concept

…

Chosen concept for
concrete architecture

Decision-Making
Process

• Guiding Questions
• Decision Guidelines

Aspects

E.g., Aspect A:

Fig. 1: The data lake architecture framework contains possible implementation concepts. To configure

a data lake architecture, concrete concepts are chosen from the framework using the contained

methodology.

to data scientists and advanced analytics [ML16] or additionally support traditional data

warehousing [Ma17b]. Depending on the kind of data in the data lake and on the scenario in

which it is used, different requirements are posed on a data lake architecture. Thus, defining

a generic and universally applicable data lake architecture proves difficult. Instead, we

propose the data lake architecture framework (DLAF) as a foundation for comprehensive

data lake architecture development. Architecture frameworks exist in varoius domains, e.g.,

the Zachman framework [Za87] provides both guidance and a methodology to define an

appropriate information system architecture. However, in the context of data lakes, we

are not aware of such an approach. Fig. 1 depicts the connection between the framework

and a configured data lake architecture. The guidance provided by the DLAF is threefold:

1) It defines the architectural aspects necessary for a data lake, e.g., data modeling, 2) it

associates each aspect with a set of possible implementation concepts, e.g., data vault [Li12],

and 3) it provides a methodology that helps picking appropriate concepts for a data lake

architecture while also considering interdependencies between aspects, e.g., between data

modeling and infrastructure. A data lake architecture derived from the framework can be

understood as a DLAF instance. In this paper, we make the following contributions:

• From a categorization of literature on data lakes, we identify their necessary architec-

tural aspects. We use these aspects to build the data lake architecture framework, which

serves as a support for the configuration of a comprehensive data lake architecture.

• We present a methodology as part of the data lake architecture framework that guides

the development of a specific data lake architecture from the aspects in the framework.

• We assess the data lake architecture framework with regards to its comprehensiveness

and applicability. This assessment shows that the data lake architecture framework

is not missing any important aspects for data lakes, and that its methodology is

applicable in practice to configure a comprehensive data lake architecture.

The Data Lake Architecture Framework 3

• We show how the framework can be used to configure a comprehensive data lake

architecture, to evaluate existing data lake architectures, and to extend incomprehensive

data lake architectures to become comprehensive.

The remainder of this work is structured as follows: Sect. 2 discusses related work on data

lake architectures and architecture frameworks. Sect. 3 describes the developed DLAF, before

Sect. 4 presents the contained methodology for its use. Sect. 5 assesses the framework by

analyzing existing data lake implementations and by defining an exemplary comprehensive

data lake architecture for real-world industry. Finally, Sect. 6 concludes the work.

2 Related Work

In literature, multiple so called “data lake architectures” are proposed (e.g., in [In16; JQ17;

RZ19; Sh18]). The goal of these architectures is to be generic. Sawadogo and Darmont

differentiate three kinds of data lake architectures [SD20]: 1) functional architectures

that cover data ingestion and storage, e.g., [JQ17], 2) data maturity-based architectures,

where data are organized according to their refinement level, e.g., [Sh18], and 3) hybrid

architectures that combine both. As functional architectures and data maturity-based

architectures focus only on singular aspects of the data lake [SD20], they do not qualify as

comprehensive data lake architectures. We thus only consider hybrid architectures in the

remainder of this section. Sawadogo and Darmont name two hybrid architectures: Inmon’s

data pond architecture [In16] and Ravat’s data lake functional architecture [RZ19]. To the

best of our knowledge, no other generic hybrid architectures are available.

However, defining data ingestion, data storage, and data organization is not sufficient for

a data lake. Examples for further aspects of importance are data modeling and metadata

management [Gi19a]. Neither Inmon’s nor Ravat’s architecture cover these additional

aspects. While there is work on both data modeling and metadata management in data lakes

(e.g., [Ei20; HGQ16; Ho17; NRD18]), it focuses only on singular aspects. Overall, none of

the generic data lake architectures in literature is comprehensive.

In addition to the generic architectures, there are hybrid data lake architectures in specific

implementations, e.g., in [Ma17a; MM18]. These architectures are however tailored to

specific use cases and are not applicable as generic data lake architectures. Thus, to the best

of our knowledge, there is no guidance for defining a comprehensive data lake architecture.

3 Aspects forming the Data Lake Architecture Framework

To address the lack of support for configuring a comprehensive data lake architecture, we

present the data lake architecture framework (DLAF) as a foundation for such a configuration.

The framework consists of two parts: I) It describes necessary architectural aspects of a

4 Corinna Giebler et al.

Data Flow

Data Modeling

Data Organization

Data Processes

D
a

ta
 S

e
c
u

ri
ty

 &
 P

ri
v
a

c
y

D
a
ta

 Q
u

a
lit

y

C

D

E

F

G H I

Data Storage

Infrastructure

B

A

Conceptual and physical

Only conceptual, implementation

through individual layers

M
e

ta
d

a
ta

 M
a

n
a

g
e

m
e

n
t

e.g., HDFS

e.g., Distributed File System

e.g., Lambda Architecture

e.g., Data Droplets

e.g., Data Zones

e.g., Archiving Processes

e
.g

.,
 H

A
N

D
L
E

e
.g

.,
 C

h
e
c
k
in

g
L
e
g
a
l
C

o
n
fo

rm
a
n
c
e

e
.g

.,
 T

ru
s
te

d
D

a
ta

 i
n
 Z

o
n
e
 A

rc
h
it
e
c
tu

re
s

Fig. 2: The data lake architecture framework consists of nine data lake aspects that have to be

considered when creating a comprehensive data lake architecture.

data lake. In doing so, it defines the scope for a comprehensive data lake architecture. This

section first describes the DLAF aspects that represent the different architectural aspects

(Sect. 3.1) before detailing on their interdependencies (Sect. 3.2). II) Moreover, the DLAF

includes a methodology to configure a comprehensive data lake architecture, guiding the

selection of appropriate concepts for each aspect. This methodology is presented in Sect. 4.

Each part of the framework in Fig. 2 represents one architectural aspect of data lakes

associated with a set of concepts for its implementation (cf. Fig. 1). The architectural

aspects included in the DLAF were derived by clustering the results of a thorough literature

review on concepts for data lake implementation (cf. [Gi19a]). The nine resulting clusters

we formulated into disjoint architectural aspects depicted in Fig. 2: A) infrastructure, B)

data storage, C) data flow, D) data modeling, E) data organization, F) data processes, G)

metadata management, H) data security & privacy, and I) data quality. These aspects can

neither be combined further, as they describe different perspectives on the data lake, nor did

we find further aspects to be considered. Aspects A-F are sorted by their abstraction degree,

with infrastructure as the most physical aspect at the bottom and data processes as the most

abstract aspect at the top. Aspects G-I span all of these aspects. We differentiate between

aspects that consist of a concept and its physical implementation (white), and aspects that

comprise only a conceptual view but are implemented through other aspects (grey). For

example, if the data security & privacy aspect requires data encryption, the infrastructure

has to offer this functionality. The following paragraphs explain the architectural aspects.

3.1 DLAF Aspects

A) Infrastructure. The infrastructure aspect comprises concepts for the physical imple-

mentation of the data lake. The focus lies on concrete storage systems and tools, e.g.,

The Data Lake Architecture Framework 5

HDFS3 as distributed file system or MySQL4 as a relational database, and their deployment

on-premise or in the cloud. An example is given by [Zi15], who use Hadoop5 and DB26. As

an exemplary concept for deployment, hybrid data lakes [Lo16] are data lakes built both

on-premise and in the cloud.

B) Data Storage. The data storage focuses on the types of systems and tools used for data

storage and processing (e.g., file systems and NoSQL databases, or batch processing and

stream processing tools). In contrast to the infrastructure aspect, no specific tools are chosen.

Exemplary data lakes are built on a single distributed file system (e.g., [Ma17a]) or on

multiple storage systems (e.g., [Zi15]).

C) Data Flow. The data flow aspect covers the architecture and interaction for the two modes

of data movement that may occur in a data lake: batch data and streaming data. Batch data

are persistently stored in a storage system and are processed in large volumes [CY15]. In

contrast, streaming (or real-time) data are continuously delivered into the data lake and

typically need to be processed immediately [CY15]. Streaming data can also become batch

data if it is stored for later use. Examples for data flow concepts are hybrid processing

architectures such as the Lambda architecture [MW15] or BRAID [Gi18].

D) Data Modeling. The data modeling aspect describe whether and how data are modeled

within the data lake. Typically, the modeling technique used will differ depending on the

data’s characteristics and their usage. Examples of data modeling techniques applicable in

data lakes are data droplets [Ho17] or data vault [Li12].

E) Data Organization. The data organization aspect defines the conceptual set-up within the

data lake. To this end, associated concepts describe what data can be found where and what

state they are in (e.g., raw or pre-processed). Examples are the data pond architecture [In16],

the zone architectures (e.g., [Gi20; Sh18]), Jarke’s and Quix’ conceptual architecture [JQ17],

and data meshes for semantical data organization [De19].

F) Data Processes. The data processes aspect comprises all concepts that focus on data

movement and processing. Data processes can be divided into processes for data lifecycle

management and for data pipelining. Data lifecycle management processes manage the

data from creation and obtaining to disposure [DA17]. These processes have to be carefully

defined and standardized within a data lake to facilitate self-service, ensure data usability,

and support legal compliance. In contrast, data pipelining processes focus on the technical

ingestion, movement, and processing of data, such as extract-transform-load (ETL) processes.

They are used to describe, e.g., how data move between zones in a zone model. In contrast

to the data flow aspect, the data processes aspect rather describes what is done with data

instead of focusing on the characteristics of the data themselves. An exemplary data lifecycle

management process for data lakes is the archiving process given in [Ch15]. Examples for

3 hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

4 www.mysql.com/de/

5 hadoop.apache.org/

6 www.ibm.com/analytics/db2

6 Corinna Giebler et al.

data pipelining can be found in most zone architectures (e.g., in [Gi20]), or in Jarke’s and

Quix’ conceptual data lake architecture [JQ17].

G) Metadata Management. The metadata management aspect comprises two sub-aspects:

The first one, metadata as enabler, overlaps the horizontal aspects in Fig. 2. In this sub-aspect,

metadata enable other aspects. For example, metadata describe what zone a piece of data

belongs to in a zone model or when data was created for lifecycle management. The other

sub-aspect is metadata as a feature, depicted as the right side of the metadata management

aspect in Fig. 2. This sub-aspect contains the functionalities that metadata can provide

in addition to their enabler capabilities, such as business glossaries [Ba14] or semantical

descriptions. For all metadata, aspects A-F have also to be defined, as metadata have to

be stored, modeled, etc. Exemplary concepts are metadata management systems, such as

Constance [HGQ16], or metadata models, such as HANDLE [Ei20].

H) Data Security & Privacy. Data security & privacy is a solely conceptual aspect. It is of

great importance in a data lake, as it ensures legal conformance, alignment with business

objectives, and much more [Ch15]. Exemplary concepts for this aspect are, e.g., checking

legal conformance in the data wrangling process [Te15] or AMNESIA for GDPR-compliant

machine learning [St20], where data security & privacy are implemented through zones.

I) Data Quality. The data quality aspect is also solely conceptual. Maintaining data quality

is important to ensure the data’s usability and prevent the data lake from turning into a data

swamp [Ch14]. While there are data quality tools, e.g., Informatica data quality7, these still

rely on implementations of other aspects, e.g., metadata management. Data quality can also

be found in, e.g., data organization, where some zones hold trusted data (e.g., [Gi20]).

3.2 Interdependencies between DLAF Aspects

The aspects of the DLAF are not independent from each other, as decisions for one aspect

affect other aspects. For example, the aspect of data storage influences data modeling,

as different kinds of storage systems support different kinds of modeling (e.g., relational

modeling for relational databases, graphs for graph databases). This section explores the

interdependencies between aspects and their implications. Fig. 3 depicts these interdepen-

dencies as a graph. They are in line with interdependencies as described in existing literature.

In this graph, six of the overall nine aspects are visually grouped together for a simpler

visualization. The influences between aspects depicted in this graph form the basis of the

methodology presented in Sect. 4.

The graph shows that the aspects data security & privacy and data quality influence all

other aspects of the DLAF (I1-I4). This is because these two aspects are not implemented

directly, but instead implemented through other aspects. Thus, decisions made for data

security & privacy and data quality have to be considered when choosing concepts for

7 www.informatica.com/de/products/data-quality/informatica-data-quality.html

The Data Lake Architecture Framework 7

Metadata

Management
Data Quality

Data Security

& Privacy

Data

Processes

Data

Organization

Data

Modeling

Data Flow Data Storage Infrastructure

I1

I2 I3

I4I5

I6 I7

I8I9
I10

I11

I12

I13

I14

Fig. 3: The influence graph for the DLAF aspects. Directed arrows point from the influencing aspect

to the influenced aspect.

all other aspects. For the aspect of metadata management all aspects produce and rely on

metadata, e.g., metadata describing how data should be processed (I5). They influence what

metadata should be collected and how it should be organized. At the same time, metadata

are data and thus need to be considered when defining all other aspects (I5).

The data organization aspect influences data processes (I6), as data pipelining processes

have to be adapted to the chosen data organization, e.g., data zones or ponds. Data

organization also influences data modeling (I7), as e.g., data zone architectures typically

dictate standardized data modeling in at least one zone. This means that all data in this zone

are modeled according to specified rules, e.g., the rules of data vault. Furthermore, data

organization influences data storage (I8), as, e.g., the data pond architecture, where data are

separated by their structure, necessitates a different storage concept than, e.g., data zone

architectures. The data flow aspect influences data processes (I9), data organization (I10),

data storage (I11), and infrastructure (I12). This is because the data flow aspect comprises

the different modes of data (batch and stream). Depending on the decisions made for this

aspect, other aspects have to support the respective modes as well. For example, if the

concept chosen for the data flow aspect includes stream processing, the concept chosen for

infrastructure has to include stream processing engines. However, for data organization and

data storage (I10, I11), the influence can also be reversed, as, e.g., using a batch-only data

organization or choosing batch and stream processing in data storage dictates a certain data

flow. The aspect of data storage influences and is influenced by both data modeling (I13)

and infrastructure (I14). Depending on the types of storage systems chosen, certain data

modeling techniques can or cannot be used. For example, if relational storage is chosen,

data models should be applicable to relational schemata. At the same time, the choice of

a certain data model will necessitate a different data storage concept. Data storage and

infrastructure are closely connected, as one chooses the types of systems while the other

defines the concrete systems and tools.

8 Corinna Giebler et al.

H I

C E B A

D G F G

9: Design Metadata

as a Feature

1: Identify

Scenario

2: Design

Data Flow

3: Design Data

Organization

4: Design

Data Storage

5: Design

Infrastructure

6: Design Data

Modeling

7: Design Metadata

as Enabler

8: Design Data

Processes

H I

Fig. 4: To configure a comprehensive data lake architecture with the DLAF, nine steps are necessary.

Each step is associated with different DLAF aspects, depicted in the circles.

4 Methodology for Configuring a Data Lake Architecture

To configure a comprehensive data lake architecture from the framework, specific concepts

have to be chosen from the set of concepts associated with each aspect (see Fig. 2). This

section provides a methodology for this task consisting of nine steps. Several of these steps

directly correspond to aspects of the DLAF (see Fig. 4), and the order of the steps was

determined from the aspects’ interdependencies (see Fig. 3). As shown in Fig. 4, the aspects

data security & privacy and data quality are associated with steps 1 through 9. This means

that during all steps, these two aspects have to be taken into consideration and included

accordingly. Our methodology provides guiding questions for each step that support the

selection of appropriate concepts for architectural aspects. To the best of our knowledge,

no further sources on such questions exists. In addition, we include typical concepts and

associated decision guidelines for each aspect. However, these are not exhaustive due to the

wide variety of available concepts for implementation.

Step 1: Identify Scenario. Understanding the key requirements of the data lake’s application

scenario is a crucial prerequisite for all following architecture decisions. To this end, the

following questions should be answered: 1) What kind of data are managed in the data lake?

What are their characteristics? This question also targets the data security & privacy and

data quality requirements. 2) What time requirements are associated with data and their

usage (e.g., real-time, hourly updates)? 3) How are data used (e.g., advanced analytics only

or also reporting)? Further requirement elicitation should also be performed in this step.

Step 2: Design Data Flow. To determine a suitable data flow concept, especially question 2

from Step 1 (what time requirements are associated with data and their usage) is of relevance.

If data should be both processed in real-time and in larger time intervals, both batch and

stream processing should be used. Hybrid processing architectures comprise both, such as

the Lambda architecture [MW15] or BRAID [Gi18]. A guiding question to this decision is:

Are batch and stream processing independent from each other or should results from one

be available to the other? If they are independent, the Lambda architecture is a sufficient

concept. If data and results should be exchanged, BRAID offers the needed functionality.

The Data Lake Architecture Framework 9

Data are

rarely

accessed

Unsegmented

Data can be

separated

semantically

Data Mesh

Data ZonesData Ponds

Y Y

N

YY

NN

N There is

need for raw

data

Data of different

structure are

often combined

Fig. 5: The decision process for choosing an appropriate data organization concept. Combinations of

concepts are not included due to space restrictions.

Step 3: Design Data Organization. Data organization focuses on the efficient management

of data for different uses. Thus, to choose an appropriate concept for this aspect, question 3

from step 1 (how are data used) is of high importance again. Fig. 5 depicts a possible

decision process for data organization, including some of the guiding questions to be asked.

In our example, the concepts to choose from are no segmentation of the data, semantical

data meshes [De19], Inmon’s data pond architecture [In16], or data zone architectures

(e.g., [Gi20]). A properly segmented and structured data lake provides more efficient

access and usage than an unsegmented one, however, segmenting the data lake increases its

complexity. Note there might be other suitable concepts for data organization, as well as

combinations of these concepts. In addition, some of the concepts mentioned require further

definition, as there are multiple variants of, e.g., the data zone architecture [Gi19a]. Concepts

for data quality are included in most zone architectures and in the pond architecture. Data

security & privacy however are only included in some zone architectures (e.g., [Gi20;

Go16]) and not in the data pond architecture. For other data organization concepts, neither

of the two aspects is considered. However, these aspects cannot be neglected.

Step 4: Design Data Storage. The configuration of a data storage concept depends on the

kind of data to be managed (question 1 from step 1) and how they are used (question

3 from step 1). Exemplary guiding questions for this aspect are: Are multiple types of

storage systems necessary? Which storage systems can support the data’s characteristics?

For example, relational databases provide the most appropriate support for structured data.

If the managed kinds of data are widely varied, a combination of storage systems might

be appropriate. When working with data ponds, each pond can be realized on a different

system, e.g., an relational database for the analog data pond and a file system for the textual

data pond. For this decision, exemplary guiding questions are: How are data used? What

characteristics have to be supported? For example, highly connected data should be managed

in a graph database, while structured data can be stored in relational databases. Further

decision support can be found in e.g., [Ge17]. It is necessary to consider data security &

10 Corinna Giebler et al.

privacy and data quality requirements when defining the data storage aspect, as different

types of data storage systems support different degrees of consistency, constraints, etc.

Step 5: Design Infrastructure. In this step, the defined data storage and data flow concepts

are used to decide on an appropriate infrastructure for the data lake. Storage systems and

data processing tools are constantly maturing, and the requirements towards infrastructure

are manifold. We thus do not provide details on infrastructure decision support in this paper.

However, some guiding questions are: What ingestion rates are required? Are indexes or

foreign keys needed? What read/write performance should be offered? Infrastructure can

then be chosen in accordance with the answers to these questions.

Step 6: Design Data Modeling. The answers given for question 1 and 3 from step 1 (what

data are managed and how are they used) are of great importance for deciding on data

modeling concepts, as they determine which data models are suitable. Exemplary guiding

questions for this step are: How should structured and semi-structured data be modeled?

For example, data vault [Li12] can be used to model these data in data lakes [Gi19b].

How can data be connected across systems? How can unstructured data be connected to

structured data? Possible answers to these questions are data droplets [Ho17] or link-based

integration [GSM14]. If zones are used as a concept for data organization, modeling concepts

differ for each zone. Typically, one zone holds raw data replicated from the source, while

another zone contains data in a standardized format, or even in a use-case specific format

(e.g., as dimensional schema). Requirements towards data security & privacy and data

quality have to be addressed, e.g., through separately treated tables for sensitive data or data

models that consolidate data.

Step 7: Design Metadata as Enabler. The leading question to configure metadata as enabler

is: What information is needed on the data to manage them meaningfully? This includes

1) metadata that are needed to reflect the concepts chosen in other aspects (e.g., metadata

describing the zone of a data), and 2) metadata that are needed for the general operation

of the data lake (e.g., information on lineage, access operations, or last-accessed dates).

Some metadata are needed for the execution of data processes defined in step 8. Thus,

it might be necessary to revisit this step during the definition of data processes to add

additional metadata needed. Step 7 also includes metadata for data security & privacy and

data quality, such as security classifications, a to-be-deleted date, or known quality issues.

As the metadata as enabler identified in this step may vary greatly from one application

scenario to another, it is impossible to provide a decisive guideline. Choosing a flexible

metadata management model such as HANDLE [Ei20] is beneficial, as it can be adapted

and even extended later on. If metadata management has not been considered as data in steps

1-6, step 7 is to fill these gaps. Metadata, just like other data, are in need of infrastructure,

data storage, data flow, data modeling, and data organization concepts.

Step 8: Design Data Processes. Due to space restrictions, we cannot provide detailed

guidelines for the data process configuration. Some guiding questions for this aspect are:

How do data move in the data lake? How are they processed? What is the data’s lifecycle?

The Data Lake Architecture Framework 11

Most data organization concepts include appropriate data process concepts, e.g., how data

move and are processed between zones/ponds in data zone architectures (e.g., [Gi20]) and

the data pond architecture [In16]. These processes have to be adapted and extended to fit

the concepts chosen for the remaining aspects. If it turns out that data processes require

further metadata, step 7 is revisited here. Data processes for data security & privacy, such as

processes for accessing sensitive data, and data quality have to be chosen meaningfully to fit

the application scenario’s needs. The data wrangling process [Te15] and existing lifecycle

management processes can serve as a base for the data process configuration.

Step 9: Design Metadata as a Feature. This final step includes all functionality that

goes beyond the simple description of data. Metadata management systems such as data

catalogs [Ch15] or data marketplaces [Mu13] offer functionalities that go beyond the scope

of metadata as enabler, namely semantical data access or data purchase offers. As these

additional functionalities can only be implemented with a detailed knowledge on the data

lake’s architecture, this step is done last. This part of the data lake can be designed quite

freely. An associated guiding question is: What further benefit can metadata provide?

5 Assessment and Application of the DLAF

In this section, we assess the DLAF’s suitability as architecture configuration guidance

in two ways: 1) we analyze existing data lake implementations and sort their architectural

decisions into the DLAF’s aspects to demonstrate the framework’s comprehensiveness

(Sect. 5.1). The DLAF aids us in identifying shortcomings of existing architectures and

provides pointers for improvement. 2) We assess the methodology’s applicability by defining

an exemplary data lake architecture using the DLAF (Sect. 5.2).

5.1 Comprehensiveness of DLAF

We use two real-world data lake implementations for the evaluation of the DLAF’s

comprehensiveness, in particular AIRPORTS DL [Ma17a] and the Smart Grid Big Data

Ecosystem [MM18]. We chose these implementations because they provide detailed

information on the concepts used and were evaluated using real-world data. They cover

two different domains (air traffic, smart grids) and deal with different data management

requirements. Neither of these papers includes a methodology for the configuration of their

data lake. Tab. 1 matches the decisions made in these implementations with the DLAF

aspects. Based on this categorization, we discuss the implementations’ comprehensiveness

and how they should be extended.

AIRPORTS DL. The AIRPORTS DL [Ma17a] focuses on storing surveillance data of flights,

such as a plane’s position or altitude. These data are combined with data from third parties,

such as weather data, and are streamed into the data lake. The middle column in Tab. 1

12 Corinna Giebler et al.

DLAF Layer AIRPORTS DL [Ma17a] Smart Grid Big Data Eco-
System [MM18]

A. Infrastructure Hadoop (HDFS, MapReduce),
Apache Flume, Apache Spark,
Apache Oozie, Apache Pig,
Apache Atlas, R Studio, Shiny,
Apache Sqoop

Hadoop (HDFS, MapReduce),
Apache Flume, Apache Spark
Streaming, Apache Spark SQL,
Apache Hive, Apache Im-
pala, Radoop, Matlab, Tableau,
Google Cloud Computing

B. Data Storage Single File System Single Eco-System

C. Data Flow Data are ingested as streams,
but processed as batches

Based on the Lambda Archi-
tecture, data are processed as
stream and as batches

D. Data Modeling Raw Messages, AIRPORTS
Data Model

Undefined

E. Data Organization Four Zone Architecture Two Zone Architecture for
the data storage (Master data
and Serving Layer) based on
Lambda Architecture

F. Data Processes Processing Pipeline for Mes-
sages (ETL Processes), Pro-
cesses for Ingestion and Use

Processing Pipeline from the
Lambda Architecture

G. Metadata Management Managed by Apache Atlas Undefined

H. Data Security & Privacy Tracking manipulation of data Undefined

I. Data Quality Tracking manipulation of data,
Quality through Zones

Undefined

Tab. 1: Categorization of Architectural Decisions in Existing Data Lake Implementations

lists the architectural decisions made in this data lake implementation with respect to the

aspects of the DLAF. The following paragraphs detail selected DLAF aspects. There is no

explicit explanation for the data flow aspect in the paper, aside from data being ingested

as data streams. However, data are stored before being processed. In addition, the tools

used for processing (e.g., Hadoop MapReduce8, Apache Pig9) are for batch processing.

These decisions suggest that data are processed in batches only and not as data streams. For

data modeling, data first are stored as raw key-value messages. Then, as they move through

processing, they are transformed to fit the AIRPORTS data model, which was specifically

created for this application scenario. For data organization, a zone architecture consisting

of four zones, called layers in the paper, was chosen. These layers are 1) Raw Layer, 2)

Alignment Layer, 3) Flight Leg Reconstruction Layer, and 4) Integration Layer. Data are

ingested into the Raw Layer and then processed from layer to layer. Finally, data are made

available in the Delivery Layer, which is not a processing layer, but an interface to the data

lake. The data processes in this data lake implementation mostly focus on the movement of

8 hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html

9 pig.apache.org/

The Data Lake Architecture Framework 13

data between zones. In addition, it is defined how data are ingested into the data lake and how

they can be analyzed and delivered to external systems. Apache Atlas10 is used to implement

a governance system on top of the data lake, which provides metadata management, and

basic data security & privacy and data quality by tracking data manipulation. The data

quality aspect is also addressed by the zone architecture of the AIRPORTS DL, where the

quality of data is increased from one zone to the other.

Overall, all architectural decisions of the AIRPORTS DL can be reflected by the aspects of

the DLAF. It also shows that the AIRPORTS DL provided a concept for each of the DLAF

aspects. Thus, the AIRPORTS DL architecture covers all aspects from infrastructure to data

quality and thus underlines the comprehensiveness criteria.

Smart Grid Big Data Eco-System. The second data lake implementation analyzed is applied

in a scenario of smart grids as part of a smart grid big data eco-system [MM18]. The data to

be stored and analyzed in this scenario are highly diverse, including sensor data from, e.g.,

farms and consumers, but also images and videos from plant security cameras. These data

are enriched with data from additional sources, e.g., weather data. Data are ingested into the

data lake as a stream. The right column of Tab. 1 summarizes the architectural decisions

in this data lake. The data storage of this data lake is realized as a single system, namely

the Hadoop eco-system as seen in infrastructure, including HDFS, Hive11, and Impala12.

The data flow concept of this data lake is based on the lambda architecture [MW15]: Data

ingested as data stream are forwarded to both batch processing, where they are stored

persistently, and to stream processing, where they are processed in real-time. The results

from both processing modes are combined in a Serving Layer. The usage of the lambda

architecture influences the data organization concept. According to the lambda architecture,

the data lake is divided into two zones: a Raw Zone, where data are persistently stored

before processing, and the Serving Layer that holds the processing results. Similarly, data

processes are given by the lambda architecture.

While all architectural decisions of this implementation could be assigned to a DLAF aspect,

this analysis shows that the architecture of the smart grid data lake is not comprehensive.

There are no concepts for data modeling, metadata management, data security & privacy,

or data quality. However, without these concepts, a data lake risks turning into a data

swamp, where data are unusable [Ch14]. Using the DLAF, this data lake can be re-designed

including extensive metadata management to also address security and quality.

5.2 Application of the DLAF Methodology

In the second part of our assessment, we configure a data lake architecture using the

DLAF and its methodology introduced in Fig. 2 and Fig. 4. In doing so, we evaluate the

10 atlas.apache.org/

11 hive.apache.org/

12 impala.apache.org/

14 Corinna Giebler et al.

Step Resulting Decision

1: Identify Scenario Structured, semi-structured, and unstructured data

Batch and stream processing

Both advanced and traditional analyses

2: Data Flow Hybrid Processing Architecture BRAID

3: Data Organization Zone Reference Model

4: Data Storage Multi-Storage System

5: Infrastructure Hadoop (HDFS, MapReduce), Kafka, MySQL, Apache Spark, . . . ,
partially Cloud-based

6: Data Modeling Data Vault, Link-Based Integration

7: Metadata as Enabler Metadata Types based on HANDLE

8: Data Processes Organization Specific Processes

9: Metadata as Feature Data Catalog

Tab. 2: Overview of Resulting Decisions in the Definition of an Exemplary Data Lake Architecture

applicability of the DLAF based on a real-world industry case from a large, globally active

manufacturer. The manufacturer’s business is highly diverse, with business domains ranging

from manufacturing to quality management to finance. To increase efficiency and reduce

costs, an enterprise-wide data lake is implemented to employ data analytics in everyday

business. Tab. 2 provides an overview over the decisions made for the data lake architecture.

The following paragraphs describe the decision process that led to these solutions. The data

flow and data organization of the resulting data lake architecture is depicted in Fig. 6.

Step 1: Identify Scenario. In the use case introduced above, a wide variety of data are used

for a multitude of different projects and analyses. To create a proper base for the definition

of an exemplary data lake architecture, we refer to the questions defined in Sect. 4, Step

1. Based on these answers, the remaining steps are performed to configure a data lake

architecture suited for the manufacturer’s needs.

1) Throughout the entire business, data are collected from various source systems, such

as enterprise resource planning systems and manufacturing execution systems, or the IoT.

These data managed in the data lake are highly diverse, not only in structure (e.g., structured

product data, semi-structured sensor data, and unstructured computer aided design (CAD)

files), but also in their characteristics. These characteristics range from highly sensitive

master data to voluminous IoT data of unknown quality.

2) Various time requirements exist in the data lake. In regular intervals, data are extracted

from source systems and transferred to the data lake, where they are processed in periodic

batches. Some of these data should be available within an hour, others need to be processed

once a day or less. At the same time data from sensors arrives as data stream. These data

should be processed immediately, to enable quick and timely reactions to, e.g., malfunctions

in the manufacturing process. Also, they should be stored for later use as batch data. Thus,

both batch and stream processing are of importance in this data lake.

The Data Lake Architecture Framework 15

Sources

Data Lake

Landing

Zone

Raw Zone Harmonized

Zone

Distilled

Zone

Delivery

Zone

Explorative

Zone

Storage Storage Storage Storage Storage Storage

Stream

Batch

Data Flow Grouping (Stream/Batch)

Fig. 6: An excerpt of the resulting data lake architecture, including data organization and data flow.

3) The data lake is the enterprise’s central data repository that is accessed for a wide variety

of use cases. These range from advanced analytics [Bo09], e.g., data mining and machine

learning, to traditional reporting and online analytical processing (OLAP). For example,

data in the data lake might be used to train a machine learning model to improve the quality

of manufactured products, and to create a report for the supervisor of a specific plant.

Step 2: Design Data Flow. As specified in Step 1, the manufacturer relies on both batch

and stream processing for the used data. Thus, the chosen data flow concept has to support

both of these processing modes. For this exemplary data lake architecture, we decided to

use the hybrid processing architecture BRAID [Gi18] as the data flow concept. In this

architecture, data ingested as a stream are both forwarded to a persistent storage and to

a stream processing engine. This behavior is similar to that of the Lambda Architecture

as briefly described in Sect. 5.1. However, the BRAID architecture allows to use results

from batch processing in stream processing. For example, a machine learning model can be

trained on batch data and used to classify data from the data stream. In addition, results can

be stored persistently and are available for later use. These characteristics of BRAID align

with the manufacturer’s requirements. Data ingested in batches are stored in the persistent

storage and processed in batches. This data flow concept is depicted in Fig. 6.

Step 3: Design Data Organization. Because data are frequently accessed and used, a

segmentation of the data lake into different portions is needed in this scenario. As data of

different structure are often combined and the availability of raw data is crucial, we decided

to use a data zone architecture. Due to the decisions made for the data flow aspect, this

architecture needs to support both batch and stream processing. We chose the zone reference

model [Gi20] as it provides fitting zones for the envisioned use cases for both batch and

stream processing. It also contains concepts for both data quality and data security, e.g., the

protected part, or varying access rights for different zones. Fig. 6 depicts the zone reference

model and its interaction with batch data and streaming data.

16 Corinna Giebler et al.

Zone Characteristics that influence Data
Modeling

Data Modeling Technique

Landing Zone Temporary Raw Format

Raw Zone Large amounts of data Raw Format

Harmonized Zone Standardized Modeling Technique Data Vault (Raw Vault), Link-based
Integration

Distilled Zone Standardized Modeling Technique,
Use Case Dependance

Data Vault (Business Vault), Link-
based Integration

Delivery Zone Prepared for specific tools Modeling according to needs

Explorative Zone Modeling done by data scientist Modeling according to needs

Tab. 3: Overview of Data Modeling Decisions

Step 4: Design Data Storage. As the data to be managed is highly diverse, the data storage

concept for this data lake comprises multiple different storage systems. That way, data can

be managed where their characteristics and usage are supported best. For example, sensor

data are stored in time series databases that support effective time-oriented queries (such as

aggregations over time) while unstructured data are stored in a distributed file system.

Step 5: Design Infrastructure. As mentioned in step 4, multiple different storage systems and

tools should be used. We chose various tools for storage and processing from the Hadoop

ecosystem, e.g., HDFS and Apache Spark. Other systems, RDBMS and NoSQL databases

alike, are added to this core to support more data characteristics. In addition, parts of the

data lake are realized on a cloud-based structure to give third parties access to the stored

data, such as suppliers or even end customers.

Step 6: Design Data Modeling. The usage of a data zone architecture for the data organization

results in different modeling techniques in the zones. This is to support the required

characteristics of the zones in the zone reference model. While data in the Landing Zone

and Raw Zone are kept in their original format, Data Vault is used for structured data

in the Harmonized Zone and the Distilled Zone. Data Vault allows flexible, use-case-

independent, and scalable modeling of data in data lakes [Gi19b]. In addition, link-based

integration [GSM14] is used to link structured and semi-structured data to unstructured data.

The Harmonized Zone uses Raw Vault, while the Distilled Zone is modeled in Business

Vault to include business logic. Finally, data in the Delivery Zone and the Explorative Zone

are modeled according to specific needs.

Step 7: Design Metadata as Enabler. To handle all the stored data and to enable their usage,

metadata management is needed. As metadata are also data, steps 1-6 have to be performed

for them as well. Metadata may be structured or semi-structured and are ingested in the same

way as the data it belongs to (e.g., as data stream for streaming data). The data flow concept

for metadata thus is the same as for normal data. The data organization is unsegmented for

metadata, as they span across the zones. For data storage, we decided to manage metadata

in a graph database to support their highly connected structure (e.g., lineage metadata is

The Data Lake Architecture Framework 17

connected to data sources, operations, and resulting data). As infrastructure, we decided

on Neo4J13. The metadata are modeled using HANDLE, which can represent, but is not

limited to, lineage metadata, zone affiliations, and access information [Ei20]. This way, data

security & privacy and data quality metadata can be stored, too.

Step 8: Design Data Processes. Data processes need to be specified in two sub-aspects, data

lifecycle processes and data pipelining processes.

1) Data lifecycle processes in the scenario are defined in accordance with [DA17]. These

processes manage data in all steps of the data lifecycle, ranging from creation over storage,

use, and enhancement, to disposal. In all of these steps, metadata are captured and stored

with the data, e.g., lineage metadata about data’s creation, or metadata on who accessed

data. Due to space reasons, we cannot discuss the aspect of lifecycle management in more

detail. However, appropriate measures to comply with the data security & privacy and data

quality concepts are taken, such as access control and change management.

2) Data pipelining processes are heavily intertwined with the data zone model used in data

organization. Data are ingested and buffered in the Landing Zone before extract-transform-

load (ETL) processes forward them to the Raw Zone. From there on, further ETL processes

move the data into the other zones. These ETL processes apply transformations to the data

to make them fit for the zone they are moving into. For example, data may be transformed

according to data vault when moving from the Raw Zone to the Harmonized Zone. These

processes are also responsible to realize the defined data security & privacy and data quality

concepts. For example, personal data moving from the Landing Zone into the Raw Zone

have to be anonymized. Similarly, data moving from the Raw Zone to the Harmonized Zone

must follow certain quality guidelines.

Step 9: Design Metadata as a Feature. The final step is to specify concepts for metadata as

a feature. In the scenario, we use three concepts that provide features in addition to those of

metadata as enabler, namely a data catalog [Ch14] to allow access of data.

This completes the configuration of an exemplary data lake architecture using the DLAF. As

can be seen in the description above, the usage of the DLAF and the associated methodology

enabled a structured decision-making process. In the industry case, the DLAF provided

guidance on what aspects to include and how to choose appropriate concepts for their

implementation. It thus ensured that every aforementioned aspect is included in the data

lake architecture and that their interdependencies are considered. For example, we could

define data modeling with respect to the chosen zone model, or adjust the data processes

to the chosen metadata management. The DLAF enabled interdisciplinary collaboration

between domain experts, IT, and data scientists at the manufacturer’s site by providing

a common understanding of what a data lake architecture should comprise. Overall, the

definition of this exemplary data lake architecture shows both the guidance DLAF provides

as well as its applicability.

13 neo4j.com/

18 Corinna Giebler et al.

6 Conclusion and Future Work

While various concepts refer to themselves as data lake architectures, none of them covers all

aspects necessary for a functional data lake. Thus, we developed the data lake architecture

framework (DLAF) to support the definition of a scenario-specific data lake architecture.

The DLAF consists of nine data lake aspects to be considered, their interdependencies, and a

methodology to choose appropriate concepts for each aspect. The evaluation showed that the

DLAF can be applied in two ways: 1) It can be used to identify missing aspects in existing

data lake implementations and provide pointers towards re-design of the architecture. Our

discussion of existing real-world data lake architectures showed that important aspects

had been forgotten during the architecture’s definition, such as metadata management. We

showed that the DLAF supports not only the evaluation of existing data lake architectures to

identify such shortcomings, but also their extension towards comprehensiveness. 2) The

DLAF can be used to define a novel comprehensive data lake architecture. We used it in a

real-world industry case. The DLAF enables a structured, step-by-step decision process,

while providing decision support for choosing appropriate concepts. As interdependencies

between aspects are considered by the DLAF methodology, the concepts of the resulting

data lake architecture are well-matched to each other.

For future work, we plan to further apply and evaluate the developed data lake architecture

in practice. Furthermore, the implications of the DLAF for an enterprise-wide usage across

multiple data lakes should be investigated.

References

[Ba14] Ballard, C. et al.: Information Governance Principles and Practices for a Big

Data Landscape. IBM, 2014.

[Bo09] Bose, R.: Advanced analytics: opportunities and challenges. Industrial Manage-

ment & Data Systems (IDMS) 109/2, pp. 155–172, Mar. 2009.

[Ch14] Chessell, M. et al.: Governing and Managing Big Data for Analytics and

Decision Makers. IBM, 2014.

[Ch15] Chessell, M. et al.: Designing and Operating a Data Reservoir. IBM, 2015.

[CY15] Casado, R.; Younas, M.: Emerging trends and technologies in big data processing.

Concurrency and Computation: Practice and Experience 27/8, pp. 2078–2091,

June 2015.

[DA17] DAMA: DAMA-DMBOK: Data Management Body of Knowledge. Technics

Publications, 2017.

[De19] Dehghani, Z.: How to Move Beyond a Monolithic Data Lake to a Distributed

Data Mesh, 2019, visited on: 05/27/2019.

The Data Lake Architecture Framework 19

[Ei20] Eichler, R. et al.: HANDLE - A Generic Metadata Model for Data Lakes. In:

Proceedings of the 22nd International Conference on Big Data Analytics and

Knowledge Discovery (DaWaK2020). 2020.

[Ge17] Gessert, F. et al.: NoSQL database systems: a survey and decision guidance.

Computer Science - Research and Development 32/3-4, pp. 353–365, July 2017.

[Gi18] Giebler, C. et al.: BRAID - A Hybrid Processing Architecture for Big Data. In:

Proceedings of the 7th International Conference on Data Science, Technology

and Applications (DATA 2018). SCITEPRESS - Science and Technology

Publications, pp. 294–301, 2018.

[Gi19a] Giebler, C. et al.: Leveraging the Data Lake - Current State and Challenges. In:

Proceedings of the 21st International Conference on Big Data Analytics and

Knowledge Discovery (DaWaK 2019). 2019.

[Gi19b] Giebler, C. et al.: Modeling Data Lakes with Data Vault: Practical Experiences,

Assessment, and Lessons Learned. In: Proceedings of the 38th Conference on

Conceptual Modeling (ER 2019). 2019.

[Gi20] Giebler, C. et al.: A Zone Reference Model for Enterprise-Grade Data Lake Man-

agement. In: Proceedings of the 24th IEEE Enterprise Computing Conference

(EDOC 2020). 2020.

[Go16] Gorelik, A.: The Enterprise Big Data Lake. O’Reilly Media, Inc., 2016.

[GSM14] Gröger, C.; Schwarz, H.; Mitschang, B.: The Deep Data Warehouse: Link-Based

Integration and Enrichment of Warehouse Data and Unstructured Content. In:

Proceedings of the 2014 IEEE 18th International Enterprise Distributed Object

Computing Conference (EDOC 2014). IEEE, pp. 210–217, Sept. 2014.

[HGQ16] Hai, R.; Geisler, S.; Quix, C.: Constance: An Intelligent Data Lake System.

In: Proceedings of the 2016 International Conference on Management of Data

(SIGMOD’16). Pp. 2097–2100, 2016.

[Ho17] Houle, P.: Data Lakes, Data Ponds, and Data Droplets, Online, 2017.

[In16] Inmon, B.: Data Lake Architecture - Designing the Data Lake and avoiding the

Garbage Dump. Technics Publications, 2016.

[JQ17] Jarke, M.; Quix, C.: On Warehouses, Lakes, and Spaces: The Changing Role of

Conceptual Modeling for Data Integration. In (Cabot, J. et al., eds.): Conceptual

Modeling Perspectives. Springer International Publishing AG, chap. 16, pp. 231–

245, 2017.

[Li12] Linstedt, D.: Super Charge Your Data Warehouse: Invaluable Data Modeling

Rules to Implement Your Data Vault. 2012.

[Lo16] Lock, M.: Maximizing your Data Lake with a Cloud or Hybrid Approach,

tech. rep., 2016.

20 Corinna Giebler et al.

[Ma17a] Martínez-Prieto, M. A. et al.: Integrating Flight-related Information into a (Big)

data lake. In: Proceedings of the 36th IEEE/AIAA Digital Avionics Systems

Conference (DASC). IEEE, 2017.

[Ma17b] Mathis, C.: Data Lakes. Datenbank-Spektrum 17/3, pp. 289–293, Nov. 2017.

[ML16] Madera, C.; Laurent, A.: The Next Information Architecture Evolution: The

Data Lake Wave. In: Proceedings of the 8th International Conference on

Management of Digital EcoSystems (MEDES). ACM Press, New York, New

York, USA, pp. 174–180, 2016.

[MM18] Munshi, A. A.; Mohamed, Y. A.-R. I.: Data Lake Lambda Architecture for

Smart Grids Big Data Analytics. IEEE Access 6/, pp. 40463–40471, 2018.

[Mu13] Muschalle, A. et al.: Pricing Approaches for Data Markets. In: International

Workshop on Business Intelligence for the Real-Time Enterprise (BIRTE 2012).

Pp. 129–144, 2013.

[MW15] Marz, N.; Warren, J.: Big Data - Principles and best practices of scalable

real-time data systems. Manning Publications Co., 2015.

[NRD18] Nogueira, I.; Romdhane, M.; Darmont, J.: Modeling Data Lake Metadata with

a Data Vault. In: Proceedings of the 22nd International Database Engineering

Applications Symposium (IDEAS 2018). 2018.

[RZ19] Ravat, F.; Zhao, Y.: Data Lakes: Trends and Perspectives. In: Proceedings of the

30th International Conference on Database and Expert Systems Applications

(DEXA 2019). Pp. 304–313, 2019.

[SD20] Sawadogo, P.; Darmont, J.: On data lake architectures and metadata management.

Journal of Intelligent Information Systems/, 2020.

[Sh18] Sharma, B.: Architecting Data Lakes - Data Management Architectures for

Advanced Business Use Cases. O’Reilly Media, Inc., 2018.

[St20] Stach, C. et al.: AMNESIA: A Technical Solution towards GDPR-compliant

Machine Learning. In: Proceedings of the 6th International Conference on

Information Systems Security and Privacy (ICISSP 2020). Pp. 21–32, 2020.

[Te15] Terrizzano, I. et al.: Data Wrangling: The Challenging Journey from the Wild

to the Lake. In: Proceedings of the 7th Biennial Conference on Innovative Data

Systems Research (CIDR’15). 2015.

[Za87] Zachman, J. A.: A framework for information systems architecture. IBM Systems

Journal 26/3, pp. 276–292, 1987.

[Zi15] Zikopoulos, P. et al.: Big Data Beyond the Hype. McGraw-Hill Education, 2015,

isbn: 978-0-07-184466-6.

