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Laura Kassner1, Christoph Gröger1,2, Jan Königsberger1, Eva Hoos1, Cornelia
Kiefer1, Christian Weber1, Stefan Silcher1,3, and Bernhard Mitschang1

1 Graduate School of Excellence advanced Manufacturing Engineering,
University of Stuttgart

Nobelstraße 12, 70569 Stuttgart, Germany,
{firstname.lastname}@gsame.uni-stuttgart.de

2 Robert Bosch GmbH,
Robert-Bosch-Platz 1, 70839 Gerlingen-Schillerhöhe, Germany,
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Abstract. The global conditions for manufacturing are rapidly chang-
ing towards shorter product life cycles, more complexity and more tur-
bulence. The manufacturing industry must meet the demands of this
shifting environment and the increased global competition by ensuring
high product quality, continuous improvement of processes and increas-
ingly flexible organization. Technological developments towards smart
manufacturing create big industrial data which needs to be leveraged
for competitive advantages. We present a novel IT architecture for data-
driven manufacturing, the Stuttgart IT Architecture for Manufacturing
(SITAM). It addresses the weaknesses of traditional manufacturing IT
by providing IT systems integration, holistic data analytics and mobile
information provisioning. The SITAM surpasses competing reference ar-
chitectures for smart manufacturing because it has a strong focus on
analytics and mobile integration of human workers into the smart pro-
duction environment and because it includes concrete recommendations
for technologies to implement it, thus filling a granularity gap between
conceptual and case-based architectures. To illustrate the benefits of the
SITAM’s prototypical implementation, we present an application sce-
nario for value-added services in the automotive industry.

Key words: IT Architecture, Data Analytics, Big Data, Smart Manu-
facturing, Industrie 4.0

1 Introduction

The manufacturing industry is changing under the influence of increased global
competition: product life cycles become shorter, products and processes become
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2 Kassner et al.

more complex, production conditions become more turbulent. Manufacturing
companies can only succeed in this shifting environment if they ensure high
product quality, continuous improvement of processes and flexible organizational
structures [1].

Initiatives such as Industrie 4.0 [2] and Smart Manufacturing [3] promote the
digitalization of manufacturing operations and the use of cyber-physical systems
(CPS) [4] to enable the vision of decentralized, self-controlling, self-optimizing
products and processes [5]. These developments are supported especially by the
rise of the internet of things. Increasingly, large amounts of heterogeneous indus-
trial data, that is, big industrial data [6], are created across the entire product
life cycle. These data include both structured and unstructured portions, for
instance, machine sensor data on the shop floor, product usage data, customer
complaints data from social networks or failure reports written by service tech-
nicians. One central challenge in Industrie 4.0 is the exploitation of these data
to extract valuable business insights and knowledge from them [7]. Sample fields
of application for the exploitation of big industrial data are product design op-
timization, manufacturing execution and quality management.

The predominant manufacturing IT architecture in practice is the informa-
tion pyramid of manufacturing [8] (see Figure 1). It fails to enable comprehensive
data exploitation because it has several limitations, as reported in [9]: (1) com-
plex point-to-point integration of heterogeneous IT systems limits a flexible inte-
gration of new data sources; (2) strictly hierarchical aggregation of information
prevents a holistic view for knowledge extraction; (3) isolated information pro-
visioning for the manufacturing control level and the enterprise control level
impedes employee integration on the factory shop floor.

This work is an extension of [9]. We build on the concept of the data-driven
factory developed therein, which is recapitulated in Section 2. In this work, we
put a stronger focus on the industry-near, use-case-driven IT architecture for the
data-driven factory, the Stuttgart IT Architecture for Manufacturing (SITAM)
which overcomes the insufficiencies of the traditional information pyramid of
manufacturing, presented in Section 4. The SITAM enables service-oriented in-
tegration, advanced analytics as well as mobile information provisioning, which
are central requirements of the data-driven factory in order to exploit big indus-
trial data for competitive advantages. The general introduction of the architec-
ture (Section 4) and the description of the prototype and application scenario
(Section 6) are presented as in [9].

In extension of [9], we have added the following new contributions:

1. A detailed analysis of existing reference IT architectures for smart manufac-
turing and Industrie 4.0 in Section 3.

2. An analysis of existing technologies for the core layers and components of
SITAM in Section 5.

3. A more elaborate evaluation of the SITAM architecture in comparison with
existing reference architectures and with respect to available technologies as
well as the use case in Section 7.
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Fig. 1. Information pyramid of manufacturing [9]

2 Motivation: a Data-Driven Factory for Leveraging Big
Industrial Data

In this section, we first analyze the limitations of the traditional information
pyramid of manufacturing with respect to big industrial data in Section 2.1,
then present the concept of the data-driven factory [9] in Section 2.2. Further
details on the data-driven factory can be found in [9].

2.1 Limitations of the Information Pyramid of Manufacturing

The information pyramid of manufacturing, also called the hierarchy model of
manufacturing, represents the prevailing manufacturing IT architecture in prac-
tice [10]. It is used to structure data processing and IT systems in manufacturing
companies and it is standardized in ISA 95 [8]. In a simplified version, the in-
formation pyramid is comprised of three hierarchical levels (see Figure 1): the
enterprise control level refers to all business-related activities and IT systems,
such as enterprise resource planning (ERP) systems, the manufacturing control
level focuses on manufacturing operations management especially with manu-
facturing execution systems (MES) and the manufacturing level refers to the
machines and automation systems on the factory shop floor.

Data processing in the information pyramid is based on three fundamental
principles [10]:

– Central automation to control all activities top-down starting from the enter-
prise control level

– Information aggregation to condense all data bottom-up starting from the
manufacturing level

– System separation to allow only IT systems at adjacent levels to directly com-
municate with each other
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The digitalization of manufacturing operations as well as the massive use of
CPS lead to big industrial data, i.e., enormous amounts of heterogeneous indus-
trial data at all levels of the information pyramid and across the entire product
life cycle [6]. For instance, besides huge amounts of structured machine data and
sensor data resulting from the shop floor, there are unstructured data on service
reports and customer opinions in social networks. Exploiting these data, that
is, extracting valuable business insights and knowledge, enables comprehensive
optimization of products and processes [7]. For instance, customer satisfaction
can be correlated with product design parameters using CAD data and CRM
data or root causes of process quality issues can be analyzed using machine data
and ERP data.

However, data processing according to the information pyramid of manu-
facturing prevents comprehensive data exploitation due to the following major
technical limitations (Li):

– L1: Central automation and system separation lead to a complex and pro-
prietary point-to-point integration of IT systems, which significantly limits a
flexible integration of new data sources across all hierarchy levels [11].

– L2: Strictly hierarchical information aggregation leads to separated data is-
lands preventing a holistic view and strong analytics for knowledge extraction
[6].

– L3: Central control and information aggregation lead to isolated information
provisioning focusing on the manufacturing control level and the enterprise
control level and thus impede employee integration through information pro-
visioning on the manufacturing level [12].

To conclude, the function-oriented and strictly hierarchical levels of the infor-
mation pyramid of manufacturing support a clear separation of concerns for the
development and management of IT systems. However, the information pyramid
lacks flexibility, holistic data integration and cross-hierarchical information pro-
visioning. These factors significantly limit the exploitation of big industrial data
and necessitate new manufacturing IT architectures, which are discussed in the
following section.

2.2 The Data-driven Factory

The data-driven factory [9] is a holistic concept to exploit big industrial data
for competitive advantages of manufacturing companies. For this purpose, the
data-driven factory addresses central economic challenges of today’s manufac-
turing (Westkämper, 2014), particularly agility, learning ability and employee
orientation.

The data-driven factory takes a holistic view on all data generated across
the entire product life cycle, including both structured data and unstructured
data, i.e. data with a relational schema as well as text, audio, video and image
data without such a schema. In contrast to earlier integration approaches, es-
pecially Computer Integrated Manufacturing [13], the data-driven factory does
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Fig. 2. Characteristics and technical requirements of the data-driven factory [9]

not aim at totally automating all operations and decision processes but explic-
itly integrates employees in order to benefit from their knowledge, creativity and
problem-solving skills.

From a manufacturing point of view, the data-driven factory is defined by
the following core characteristics (see Figure 2):

– The data-driven factory enables agile manufacturing (Westkämper, 2014) by
exploiting big industrial data for proactive optimization and agile adaption of
activities.

– The data driven factory enables learning manufacturing [14] by exploiting big
industrial data for continuous knowledge extraction.

– The data driven factory enables human-centric manufacturing [15] by exploit-
ing big industrial data for context-aware information provisioning as well as
knowledge integration of employees to keep the human in the loop.

Based on the above characteristics and taking into account the limitations of
the information pyramid of manufacturing (see Section 2.1), we have derived the
following technical core requirements (Ri) for the realization of the data-driven
factory (see Figure 2):

– R1: Flexible integration of heterogeneous IT systems to rapidly include new
data sources for agile manufacturing, e.g., when setting up a new machine

– R2: Holistic data basis and advanced analytics for knowledge extraction in
learning manufacturing, e.g., to prescriptively extract action recommendation
from both structured and unstructured data

– R3: Mobile information provisioning to ubiquitously integrate employees
across all hierarchy levels for human-centric manufacturing, e.g., including
service technicians in the field as well as product designers

In order to realize these requirements, a variety of IT concepts and tech-
nologies has to be systematically combined in an overall IT architecture. Since
the information pyramid of manufacturing lacks flexibility, holistic data integra-
tion and cross-hierarchical information provisioning (R1-R3), we develop a novel
manufacturing IT architecture that enables the data-driven factory.

The data-driven factory leverages big industrial data for agile, learning and
human-centric manufacturing. In this way, it creates new potentials for competi-
tive advantages for manufacturing companies, especially with respect to efficient
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and simultaneously agile processes, continuous and proactive improvement as
well as the integration of knowledge and creativity of employees across the en-
tire product life cycle.

3 Reference Architectures for Smart Manufacturing and
Industrie 4.0

We did a comprehensive literature analysis on recent architectural approaches
for IT-based manufacturing. An overview of recent reference architectures can
be found in [16] and [17]. As result, we have identified three major groups of
work:

– Abstract frameworks for Industrie 4.0 and Smart Manufacturing, which repre-
sent meta models and roadmaps for standardization issues, especially the Ref-
erence Architectural Model Industrie 4.0 (RAMI, [18]) as well as the SMLC
framework for Smart Manufacturing [3].

– Cross-domain-spanning reference architectures, which also target the manu-
facturing industry, e.g. the Industrial Internet Reference Architecture (IIRA)
[19] and the Industrial Data Space (IDS) [20].

– Concrete manufacturing IT architectures, which structure IT components and
their relations in and across manufacturing companies on a conceptual level,
especially Vogel-Heuser et al. [10], Minguez et al. [11], Holtewert et al. [21],
Papazoglou et al. [22].

In the following we discuss the identified types of reference architectures and
analyze them with respect to the technical core requirements identified in Section
2.2.

R1: Flexible integration of heterogeneous IT systems
The above frameworks are defined on a significantly higher abstraction level
than the information pyramid of manufacturing. Decomposed to its full struc-
ture, the pyramid contains a lot of additional hierarchical layers condensed to
a reasonable minimum in the examined reference architectures [8]. The RAMI
includes just a few layers of the equipment hierarchy model as dimensional per-
spective, which are extended by the layers product and connected world [18]. In
[19], the IIC defines an Industrial Internet System by its technologies like manu-
facturing execution systems and programmable logical controllers which in turn
are functionally related to the layers of the information pyramid of manufactur-
ing. To solve data integration issues, they suggest a service-oriented architecture
which includes a flexible method to combine services via metadata references
at run-time to allow for dynamical composition in order to provide a real-time
response to changes in the environment [19]. The ZVEI [18] defines the concept
of an administrative shell for I4.0 components, which contains a resource man-
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ager to expose services like OPC-UA1 to other components. This administrative
shell serves as digital representation for real-world assets on the shopfloor and
allows integration with other administrative shells through a service-oriented
architecture. To conclude, the common core of the above IT architectures is a
service-oriented architecture (SOA) [23] in order to enable a flexible integration
of IT systems – i.e. IT services – across all hierarchy levels [11, 21].

R2: Holistic data basis and advanced analytics
In [10], the need for a common data model standardizing the interfaces and the
data of the IT services is underlined. In [22], a knowledge repository is part of
the architecture. In contrast, the IIC defines complex event processing and ad-
vanced analytics as part of multiple hierachical layers of the industrial internet
system to meet different processing requirements, e.g. edge analytics in close
proximity to the place where the data is required for realtime processing. In-
tegration techniques like syntactical and domain transformation are addressed,
but not discussed in detail. [20] propose an industrial data space for the industry
to exchange and integrate data across enterprise borders in a secure manner. For
the integration, vocabulary and schema matching are used, as well as knowledge
database management. However, the integration concepts of these reference ar-
chitectures are very abstract and don’t provide further details. A holistic data
model or technique to integrate data is still missing.

R3: Mobile information provisioning
In [21, 22, 20], a marketplace with IT services is proposed in addition. These
services are offered via apps in [21, 20]. However, concrete approaches for dis-
playing tailored information from integrated data sources on mobile devices to
support the information needs of workers are not discussed, nor are the particular
challenges of mobile data provisioning addressed.

Table 1. Evaluation of IT architectures for Smart Manufacturing and Industrie 4.0
against the requirements of the data-driven factory. ( fulfilled; G# partly fulfilled;
# not fulfilled)

R1 Integration R2 Analytics R3 Mobile

RAMI [18]  # #
SMLC [3]  # #
IIRA [19]   #
IDS [20] G# G# G#
Vogel-Heuser et al. [10]  G# #
Minguez et al. [11]  # #
Holtewert et al. [21]  # G#
Papazoglou et al. [22]  G# #

1 https://opcfoundation.org/about/opc-technologies/opc-ua/



8 Kassner et al.

Table 1 shows an overview of the existing IT architectures for Smart Manu-
facturing and Industrie 4.0 evaluated against the requirements of the data-driven
factory. All in all, these existing manufacturing IT architectures mainly address
the limitation of a complex and proprietary point-to-point integration of IT
systems in the information pyramid of manufacturing and enable the flexible
integration of heterogeneous IT sytems (R1) by defining a service-oriented ar-
chitecture. At the moment, only the IIRA includes a holistic data basis and
advanced analytics (R2) to allow for knowledge extraction in learning manufac-
turing. However, they still lack mobile information provisioning (R3) to address
isolated information provisioning. Our concept of the data-driven factory and
the SITAM architecture address all three limitations. The SITAM provides a
detailed structure in order to serve as an implementation guideline and describes
a holistic approach as detailed in the following sections.

4 SITAM: Stuttgart IT Architecture for Manufacturing

The SITAM architecture [9] is a conceptual IT architecture enabling manufac-
turing companies to realize and implement the data-driven factory. The archi-
tecture is based on the results and insights of several research projects we have
undertaken in cooperation with various industry partners, particularly from the
automotive and the machine construction industry.

In the following, we present an overview of the SITAM architecture in Sec-
tion 4.1 and detail its components in Sections 4.2 - 4.6.

4.1 Overview

The SITAM architecture (see Figure 3) encompasses the entire product life cycle:
Processes, physical resources, e.g., CPS and machines, IT systems as well as web
data sources provide the foundation for several layers of abstracting and value-
adding IT.

The integration middleware (see Section 4.2) encapsulates these foundations
into services and provides corresponding data exchange formats as well as me-
diation and orchestration functionalities.

The analytics middleware (see Section 4.3) and the mobile middleware (see
Section 4.4) build upon the integration middleware to provide predictive and
prescriptive analytics for structured and unstructured data around the product
life cycle and mobile interfaces for information provisioning.

Together, the three middlewares enable the composition of value-added ser-
vices for both human users and machines (see Section 4.5). In particular, services
can be composed ad-hoc and offered as mobile or desktop apps on an app mar-
ketplace to integrate human users, e.g., by a mobile manufacturing dashboard
with prescriptive analytics for workers. The added value from these services
feeds back into the product life cycle for continuous proactive improvement and
adaptation.
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Cross-architectural topics (see Section 4.6) represent overarching issues rele-
vant for all components and comprise data quality, governance as well as security
and privacy.

In the following, the components of the SITAM architecture are described in
greater detail.

4.2 Integration Middleware: Service-oriented Integration

The SITAM’s integration middleware represents a changeable and adaptable in-
tegration approach which is based on the SOA paradigm [23]. The integration
middleware is specifically tailored to manufacturing companies, providing the
much needed flexibility and adaptability required in today’s turbulent environ-
ment with a permanent need of change.

To enable those benefits, it builds on a concept of hierarchically arranged
Enterprise Service Buses (ESBs) following [24]. Each one of these ESBs is re-
sponsible for the integration of all applications and services of a specific phase
of the product life cycle.

All phase-specific ESBs are connected via a superordinate Product-Lifecycle-
Management-Bus (PLM Bus). The PLM Bus is responsible for communication
and mediation between phase-specific busses as well as for the orchestration of
services.

This concept enables, for example, the easier integration of external suppliers
without opening up too much of a company’s internal IT systems to them by
just ”plugging” their own ESB into the PLM Bus. Besides, it also reduces the
complexity by abstraction over the introduced integration hierarchy.

A dedicated sub-component providing real-time capabilities is used in the
manufacturing phase to connect CPS and other real-time machine interfaces to
the overall ESB compound.

The ESB hierarchy effectively abstracts and decouples technical systems and
their services into a more business-oriented view, which we call value-added ser-
vices. Value-added services use the basic services providing access to application
data, orchestrate and combine them.

This decoupling also evens out different speeds in the development and
change of applications or services. Companies often face the problem of having to
integrate, e.g., legacy mainframe applications with modern mobile apps, which
inherently have very different development speeds. By decoupling business-
oriented services from the technical systems/services, each application can be
developed separately and at its own pace, while the integration middleware han-
dles all transformations and mediations that might be necessary to maintain
compatibility.

Each phase-specific ESB also utilizes its own phase-specific data exchange
format to handle the different requirements of each phase. For example, engi-
neering has to be able to exchange large amounts of data, e.g., CAD models,
whereas manufacturing requires the quick exchange of a large amount of smaller
data chunks, e.g., MES production data. Aftersales on the other hand needs to
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handle both large CAD data as well as small, lightweight data structures, e.g.,
live car data.

The separation into different phase-specific ESBs allows each department
or business unit to make use of specialized data exchange formats tailored to
phase-specific needs.

To sum up, the hierarchical composition of phase-specific ESBs across the
entire product life cycle and the changeable service-oriented abstraction of IT
systems address requirement R1 (flexible integration of heterogeneous IT sys-
tems) of the data-driven factory.

4.3 Analytics Middleware: Advanced Analytics

The analytics middleware is service-oriented and comprises several manufactu-
ring-specific analytics components which are crucial for a data-driven factory:
The manufacturing knowledge repository for storing source data and analytics-
derived insights, information mining on structured and unstructured data, man-
agement of key performance indicators (KPIs), and visual analytics. The analyt-
ics middleware includes functionalities for descriptive, predictive and prescriptive
analytics, with prescriptive analytics being a novel introduction which provides
actionable problem solutions or preventative measures before critical conditions
lead to losses [25]. In providing integrative, holistic and near-real time analyt-
ics on big industrial data of all data types, the SITAM analytics middleware
transcends the analytics capabilities of existing approaches (see Section 2). This
significantly contributes to the learning and agile characteristics of the data-
driven factory.

Source data are extracted using predefined ETL functions from the inte-
gration middleware. Integrated data of structured and unstructured type from
around the product life cycle are stored in the manufacturing knowledge reposi-
tory along the lines of [26] for maximum integration, minimum information loss
and flexible access. Over the course of the product life cycle, this repository is en-
riched with various knowledge artefacts, e.g., analytics results like data mining
models, business rules and free-form documents such as improvement sugges-
tions. To store structured and unstructured source data in a scalable manner,
the repository combines SQL and NoSQL storage concepts. It also includes the
functionality for flexibly creating semantic links between source data and knowl-
edge artefacts to support reasoning and knowledge management (see [26]).

The information mining component can be subdivided into classical data
mining and machine learning tools for structured data on the one hand, and
tools for various types of unstructured data – text, audio, video – on the other
hand.

We will discuss text analytics [27] in more detail since its use in a framework
for integrative data analytics is novel and since text data harbor a wealth of
hitherto untapped knowledge. Typically, text analytics applications have been
focused on one isolated unstructured data source and one analytical purpose,
without integrating the results with analytics on structured data and with the
disadvantage of information loss along the processing chain [28].
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To secure flexibility of analytics and easy integration of data from different
sources, we propose a set of basic and custom text analytics toolboxes, including
domain-specific resources for the manufacturing and engineering domains and
on an individual product domain level. This type of toolbox is similar to the
generic and specific text analytics concepts proposed in [28]. Value-added appli-
cations of these text analytics tools fall into two main categories: (1) information
extraction tasks and (2) direct support of human labor through partial automa-
tion. For example, presenting the top ten errors for a specific time span based on
text in shop floor documentation is an information extraction task which helps
workers gain insights into weaknesses of the production setup. Using features of
text reports, for example occurrences of particular domain-specific keywords, to
predict the likelihood of certain error codes which a human expert must man-
ually assign to these text reports, constitutes an example of a direct support
analytics task (see [29] for an implementation and proof of concept of this use
case within the SITAM architecture).

Information mining can then be applied to discover knowledge, which is cur-
rently hidden in a combination of structured data and extracts from unstructured
data. For example, process and machine data from the shop floor can be matched
up with timestamps and extracted topics or relations from unstructured error
reports to discover root causes for problems which have occurred. Real-time
process data from the shop floor can be compared to historical data to discover
indicators for problematic situations and prescribe measures for handling them,
for example speeding up a machine when a delayed process has been discovered.

In order to constitute the backbone of a truly data-driven factory, information
mining has to be conducted near real-time, on a variety of data sources as-needed,
and manufacturing processes, sales, delivery, logistics and marketing campaigns
have to adjust to meet the prescriptions derived from analytics results.

The management of key performance indicators is another important com-
ponent and can be greatly improved by readily available and flexible analytics
on a multitude of data sources. Instead of being an off-line process conducted by
the executive layer based on aggregated reporting data, KPI management can
become a continuous and pervasive process, as data analytics feedback loops are
in place for all processes around the product life cycle and at any level of the
process hierarchy.

Finally, the analytics middleware also includes visual analytics for data ex-
ploration through human analysts: This type of analytics mainly combines infor-
mation mining and visualization techniques to present large data sets to human
observers in an intuitive way, allowing them to make sense of the data beyond the
capabilities of analytics algorithms. Thereby, visual analytics keep the human in
the loop according to human-centric manufacturing.

Thus, the analytics capabilities of our reference architecture for the data-
driven factory transcend those of related conceptual work in several aspects:
(1) They include prescriptive, not just predictive or descriptive analytics, (2) they
fully integrate structured and unstructured data beyond the manufacturing pro-
cess, (3) they stretch across the entire product life cycle and provide a holistic
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view as well as holistic data storage, and (4) they are decentralized yet inte-
grative, since analytics services are combined as needed to answer questions or
supervise processes and keep the human in the loop. Advanced analytics mostly
contribute to the fulfillment of requirement R2, but also R3 and R1 of the data-
driven factory.

4.4 Mobile Middleware: Mobile Information Provisioning

The mobile middleware enables mobile information provisioning and mobile data
acquisition by facilitating the development and integration of manufacturing-
specific mobile apps. Mobile apps [30] are running on smart mobile devices, such
as smartphones, tablets, and wearables, and integrate humans into the data-
driven factory. Due to their high mobility, workers on the shop floor have to
have access to the services of the factory anywhere and anytime, e.g., viewing
near real-time information or creating failure reports on-the-go, supported by
the mobile devices’ cameras and sensors. Workers can also actively participate
in the manufacturing process, e.g., they can control the order in which products
are produced. Furthermore, mobile apps offer an intuitive task-oriented touch-
based design and enable users to consume only relevant data. Mobile devices also
allow for the collection of new kinds of data, e.g., position data or photos. This
enables new kinds of services such as context-aware apps and augmented-reality
apps [31].

However, the development of mobile apps differs from the development of
stationary applications due to screen sizes, varying mobile platforms, unstable
network connections and other factors. In addition, manufacturing-specific chal-
lenges arise [31], e.g., due to the complex data structures as well as the high
volume of data. In contrast to existing approaches (see Section 3), the mobile
middleware addresses these manufacturing-specific needs.

The mobile middleware comprises three components: (1) mobile context-
aware data handling, (2) mobile synchronization and caching as well as (3) mobile
visualization.

The mobile context-aware data handling component provides manufacturing-
specific context models describing context elements and relations, e.g., on the
shop floor, as well as efficient data transfer mechanism so that only relevant data
in the current context is transmitted to the mobile device. For instance, a shop
floor worker specifically needs information on the current machine he is working
at.

The mobile synchronization and caching component supports offline usage
of mobile apps. This is important because a network connection cannot always
be guaranteed, particularly on the factory shop floor. The component offers
mechanisms to determine which data should be cached using context information
provided by the context models.

The mobile visualization component provides tailored visualization schemas
for manufacturing data, e.g., for CAD product models. For example, it provides a
visualization schema to represent a hierarchical product structure and to browse
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it via touch gestures. Various screen sizes and touch-based interaction styles are
considered.

To sum up, the mobile middleware enables the integration of the human by
supporting the development and integration of mobile apps. This is done by offer-
ing manufacturing-specific services for data handling and visualization. Thus, by
addressing requirement R3 (mobile information provisioning), the mobile middle-
ware contributes to the human-centric characteristic of the data-driven factory,
i.e., keeping the human in the loop.

4.5 Service Composition and Value-Added Services

The service-based and integrative nature of the SITAM architecture allows it
to provide value-added services in several ways. We define value-added services
as services which provide novel uses and thus create value by transcending the
limitations of the information pyramid of manufacturing (see Section 2.1): By
providing flexible interfaces for data and service provisioning (addressing lim-
itation L1), by integrating, analyzing and presenting data from several phases
around the product life cycle (addressing limitation L2) and by providing ac-
cess to information in all the contexts in which it is needed and in which the
traditional model may fail to do so (addressing limitation L3). The value-added
services offered in the SITAM architecture cut across the architectural layers,
packaging and combining functionalities of the integration middleware, the ana-
lytics middleware and the mobile middleware.

In the SITAM architecture, services are composed and adapted on the basis
of user roles and the information needs and permissions associated with them.
For example, a shop floor worker receives detailed alerts related to the process
step he is responsible for, whereas his production supervisor is concerned with
the aggregated state of the entire manufacturing process across all process steps.

Ad-hoc service composition is enabled by the app composer. The app com-
poser offers this functionality for users in all roles, regardless of their educational
background or their ability to code. For example, data sources and analytics
services can be mashed up and composed via drag-and-drop in a graphic user
interface. Atomic or composed services can then be offered and distributed as
apps in the app marketplace for all types of devices, both stationary and mobile.

Since there is very little in the way of dedicated service composition frame-
works to build on, we are in the process of developing an implementation for
clean and easy service composition, including a graphic user interface for non-
technical users. We take inspiration from mashup platforms, such as [32], and
app generator tools, such as [33].

To sum up, flexible service composition contributes to the fulfillment of re-
quirement R1 (flexible integration of heterogeneous IT systems) and the pro-
visioning of composed services as mobile apps helps to fulfill requirement R3

(mobile information provisioning) of the data-driven factory.
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4.6 Cross-Architectural Topics

Security and privacy, governance and data quality are overarching topics which
must be considered at all layers of the architecture: at the data sources, in ana-
lytics and mobile middleware as well as in the applications. In the following, we
focus on SOA governance and data quality as they require specific concepts for
the data-driven factory. For general security and privacy issues in data manage-
ment, we refer the reader to [34].

The governance of complex service-oriented architectures is often neglected
in existing manufacturing IT architectures, such as [22], even though a lack of
governance is one of the main reasons for failing SOA initiatives [35].

SOA governance covers a wide range of aspects (a list of key aspects can be
found in [36]). With more and more systems being integrated – especially CPS,
but also for example social media services – it is becoming difficult to keep track
of planned changes to those systems and services. For this reason, service change
management and service life cycle management governance processes track and
report those changes to service consumers and providers, governed for example
via consumer and stakeholder management processes.

When setting up those governance processes, it is important to keep them
as lightweight and unobtrusive as possible in order to minimize complexity and
managerial effort. To support this, the SITAM architecture contains a central
SOA Governance Repository, which is built on a specific SOA governance meta
model described in [36]. The SOA Governance Repository contains service data
as well as operations data, spanning and providing support during all phases of
the service life cycle, and therefore also supporting novel software development
concepts like DevOps.

Apart from SOA governance, the need for high quality data is a direct conse-
quence of the concept of the data-driven factory. A data quality framework for
the data-driven factory needs to enable data quality measurement and improve-
ment (1) near-real-time (2) at all analysis steps from data source to user (3) for
all types of data accumulating in the product life cycle, especially structured
data as well as unstructured textual, video, audio and image data.

Existing data quality frameworks, e.g., [37] [38], fail to satisfy these require-
ments. Hence, we translate these requirements into an extended data quality
framework, which allows a flexible composition of data quality dimensions (e.g.,
timeliness, accuracy, relevance and interpretability) at all levels of the SITAM
architecture (see [38] for an example list of data quality dimensions). Further-
more, we define sets of concrete indicators considering data consumers at all
levels, from data source to user, and we allow for near real-time calculation of
data quality (e.g., the confidence or accuracy of machine learning algorithms,
language of text and speech, author of data sources and the distribution of data
points on a timeline). This makes the quality of data and of resulting analyt-
ics results transparent at all levels and therefore enables holistic data quality
improvement.

To sum up, we have seen that SOA governance and data quality are crucial
factors across all layers of the SITAM architecture. A flexible composition of
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IT systems and services can be offered using service-oriented architectures. But
complex service-oriented architectures are prone to fail without systematic SOA
governance. Besides, a holistic data quality framework forms the basis to measure
and improve data quality from data source to user, including the generated
analytics results.

5 Technologies for SITAM

In the following, we review technologies suited for the implementation of the
SITAM architecture. We focus on the middleware components which provide
the core functionalities of the SITAM and on data quality controls as an impor-
tant prerequisite for data-driven manufacturing with strong analytics. We first
address technologies for each of the middlewares in Sections 5.1 for integration,
5.2 for analytics and 5.3 for mobile. We then discuss technologies for assessing
data quality as a central cross-architectural topic in Section 5.4.

5.1 Integration

The integration middleware layer of the SITAM consists of several components:
(1) The service bus hierarchy, (2) mediation components for communication
between the different life cycle phases, (3) an orchestration component and (4)
the SOA Governance Repository. This chapter presents possible technologies to
implement these components.

The goal of the service bus hierarchy is to structure the services into multiple,
phase-specific integration environments, tailored to the respective needs of the
phase (cf. 4.2). To realize this, basically any off-the-shelf Enterprise Service Bus
can be used as they all provide the necessary functionalities. Options range from
proprietary products such as IBM’s Integration Bus2 or the Oracle Service Bus3

to open source alternatives such as the WSO2 Service Bus4).
Communication between the services as well as the different phases can be re-

alized with a number of standardized technologies and protocols like SOAP over
HTTP, SOAP over Message Queue or REST. For machine-to-machine communi-
cation, protocols like OPC-UA5 and MQTT6 exist, which also support real-time
data exchange.

The phase-specific data exchange formats introduced in Chapter 4.2 can be
defined in a protocol-independent format which then can be translated into dif-
ferent representations, e.g. XML Schema7 or JSON Schema8. These exchange

2 http://www-03.ibm.com/software/products/en/ibm-integration-bus
3 http://www.oracle.com/technetwork/middleware/service-bus/overview/index.html
4 http://wso2.com/products/enterprise-service-bus/
5 https://opcfoundation.org/developer-tools/specifications-unified-architecture
6 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
7 https://www.w3.org/TR/xmlschema11-1/
8 http://tools.ietf.org/html/draft-zyp-json-schema-04
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formats can also rely on existing definition formats like STEP [39] or JT Open
[40], which are both used for the exchange of CAD data. The mediation com-
ponent guaranteeing the communication between different life cycle phases can
be realized programmatically as deployable Java artifacts or, in case XML-based
formats are used, via Extensible Stylesheet Language Transformations (XSLT9).

To orchestrate atomic services into value-added services, workflows described
using the Business Process Execution Language (BPEL10) can be used. If the
composite service requires advanced logic, a workflow can be combined with
additional program logic.

The SOA repository helps to manage all services and SOA artifacts across
the complete product life cycle. There are several products available, among oth-
ers IBM’s WebSphere Service Registry and Repository11 or WSO2’s Governance
Registry12. Unfortunately, existing products don’t fulfill the requirements for a
comprehensive SOA governance approach [36], which necessitates the develop-
ment of a custom-tailored solution. As database backend a traditional relational
database system can be used as well as a NewSQL database [41] or a triple store.
The repository could be implemented either as a client/server or as a web-based
system.

5.2 Analytics

The analytics layer of the SITAM requires a number of technical components.
These components are typically organized in an integrated analytical tool stack.
For such stacks, the Lambda Architecture [42] is becoming the de-facto standard
in industry practice for scalable and robust analytical tool stacks and therefore
represents the basis for an implementation of the analytics layer of SITAM. The
Lambda Architecture mainly differentiates between components for batch data
processing to store and analyze historic data in-depth with rather high latency
and components for stream data processing for near-real-time data analysis of
current data. In the following, we briefly describe the application of the Lambda
Architecture to realize SITAMs analytics layer and highlight major tools.

With respect to batch data processing, the basis is a data lake approach on
top of Hadoop13 to implement the manufacturing knowledge repository, with
structured, unstructured and semi-structured portions and semantic linking be-
tween related data. An alternative option would be a combination of a relational
database and a NoSQL system, e.g. a content management system, for scenarios
which do not need a massive scale-out. In both cases, semantic relations can be
implemented either as relational or as NoSQL links, e.g., using a graph-based
approach (see [26]).

Considering the SITAM’s components for information mining, KPI man-
agement and visual analytics, the Apache data processing family also provides

9 https://www.w3.org/TR/xslt
10 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
11 http://www-03.ibm.com/software/products/en/wsrr
12 http://wso2.com/products/governance-registry/
13 https://hadoop.apache.org/
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libraries for scalable batch machine learning and data mining, e.g., with Apache
Mahout14 and SparkR15. Further, there are a number of free and commercial
data mining toolkits and libraries for structured data analytics and reporting,
some of which also include libraries for preprocessing unstructured text data.
Toolkits such as WEKA16, KNIME17 or RapidMiner18 offer graphical interfaces
for rapid data exploration and prototypical analytics design. Only some of them
also allow integration into custom applications.

Apart from various linguistic preprocessing tasks which are already inte-
grated into structured data mining libraries, there exist several dedicated frame-
works for text analytics. GATE, the General Architecture for Text Engineering19,
and Apache UIMA20, the Unstructured Information Management Architecture
are both widely used in research and industry projects and provide capabilities
for building full text processing pipelines with all processing steps, from reading
in data sources, through standard preprocessing steps and custom-built analytics
components, to outputting results in various data formats.

These batch components are complemented by stream processing compo-
nents for near-real-time analytics. Tools for this include various options from
the open source world focusing on massively scalable processing of data streams,
e.g., Apache Spark Streaming21 or Apache Storm22. In addition, there are classi-
cal commercial stream data processing platforms, e.g. IBM InfoSphere Streams23

or Oracle Streams24, which typically provide more enhanced functions for an-
alyzing data streams but lack scalability in comparison with their open source
counterparts.

5.3 Mobile

Different technologies are available for mobile visualization, context-aware data
provisioning and mobile synchronization.

With respect to mobile visualization, we distinguish between native and web
app development of mobile apps. Native apps are developed for a specific mobile
platform such as iOS25 or Android26. There are libraries and frameworks for na-
tive apps to support and facilitate the development of user interfaces. The main

14 http://mahout.apache.org/
15 https://spark.apache.org/docs/latest/sparkr.html
16 http://www.cs.waikato.ac.nz/ml/weka/
17 https://www.knime.org/
18 http://rapidminer.com/
19 https://gate.ac.uk/
20 http://uima.apache.org/
21 https://spark.apache.org/streaming/
22 https://storm.apache.org/
23 http://www-03.ibm.com/software/products/en/ibm-streams
24 http://www.oracle.com/technetwork/testcontent/streams-oracle-streams-twp-

128298.pdf
25 https://developer.apple.com/
26 https://developer.android.com/index.html
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purpose is to provide uniform user interface and interaction design according
to their style guide. However, they are often limited to standard visualization
such as lists and menu bars. More complex visualizations have to be devel-
oped individually for the respective use cases. There are also lots of frameworks
supporting the development of web apps. They are not restricted to any style
guide and can be used to develop responsive design which fits multiple devices.
Popular frameworks, especially for mobile usage, are angular.js27 and jQuery28.
Complex visualization for web apps can be supported by dedicated frameworks
for complex visualization such as d3.js29 or rappid.js30.

Context-aware data provisioning requires the management of context data
and store them into a context model. There are several different approaches to
model context based on key-value, logic-based, ontology, rule-based, or graphical
model [43]. A review of context models to support context-aware provisioning
can be found in [44].

Mobile synchronization requires local storage on the mobile devices. For na-
tive apps, light-weight databases such as SQLITE31 can be used. For web apps,
HTML5 provides local storage in key-value format32. For example, the chrome
browser provides the IndexedDB API to manage local offline storage33.

5.4 Data Quality

For the implementation of the data quality layer, technologies which allow the
measurement and improvement of structured as well as unstructured data are
needed. Many commercial toolkits dedicated to the quality of structured data
exist, but open source toolkits are rare (e.g. the DuDe tool34 for duplicate detec-
tion and OpenRefine35, a tool for cleaning and transforming structured data).
Neither open source nor commercial toolkits are available for unstructured data.
In section 4.6 we mentioned concrete indicators for the quality of structured and
unstructured data, such as the confidence of machine learning algorithms, lan-
guage of text and speech and the distribution of data points on a timeline. Here,
we provide concrete technologies which can be used to measure data quality
based on these indicators. The confidence of the tools in the natural language
processing library OpenNLP36 can be retrieved for each classification decision.
For automatic detection of the language of texts, e.g., LibTextCat37, which is

27 https://angularjs.org/
28 https://jquery.com/
29 https://d3js.org/
30 http://jointjs.com/
31 https://www.sqlite.org/
32 http://www.w3schools.com/html/html5 webstorage.asp
33 https://developer.chrome.com/apps/offline storage
34 http://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-

detection.html
35 http://openrefine.org/
36 https://opennlp.apache.org/
37 http://software.wise-guys.nl/libtextcat/
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a C library, or the associated versions in other programming languages such as
Java or Python can be used. Outliers are a well-studied task in the field of data
quality and can be detected for example using the programming language R and
the Rlof package38.

6 Prototype and Application

In the following, we present current work on the realization of the SITAM archi-
tecture in a prototypical implementation in Section 6.1. Moreover, we introduce a
real-world application scenario from the automotive industry using the SITAM
architecture in Section 6.2 in order to illustrate its benefits for a number of
value-added services.

6.1 Prototypical Implementation

Our current prototype covers core components in every layer of the SITAM ar-
chitecture, in particular with respect to analytics, governance, mobile and repos-
itory aspects. In the following, we sketch major solution details and technologies
we utilized. The latter were chosen from the large available pool of free and open
source software to underline the broad applicability of the SITAM architecture
and make the implementation easily adaptable to various industrial real-world
settings.

The integration middleware relies on WSO2’s Enterprise Service Bus, to re-
alize the hierarchical ESB structure as well as the orchestration of basic services
and mediation between phase-specific ESBs as described in [24]. As all interfaces
are based on standards, the ESB hierarchy can also be heterogeneous, allowing to
select different products from different vendors that might better support certain
phase-specific requirements. Services within the prototype are implemented as
either conventional SOAP web services or REST services. Data exchange formats
are described as XSD documents and stored in the SOA Governance Repository.
The repository itself relies on semantic web technologies, mainly the Resource
Description Framework (RDF39), and provides a web-accessible as well as a Web
Service interface as described in [45]. The use of those technologies allows for
example the use of semantic reasoning to detect new dependencies or missing
information within the repository.

In the analytics middleware, the manufacturing knowledge repository is im-
plemented as a federation of a relational database and a NoSQL system – we
used the content management system Alfresco CMS40 – to store structured and
unstructured data. These systems are integrated by a specific link store using
a graph database such as Neo4j41. The information mining component includes

38 https://cran.r-project.org/web/packages/Rlof/
39 https://www.w3.org/TR/rdf11-concepts/
40 https://www.alfresco.com/
41 https://neo4j.com/
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tools from the Apache UIMA framework42 for unstructured data analytics, with
the uimaFit extension43 for on-the-fly analytics service composition. Structured
data mining capabilities are taken from the WEKA data mining workbench44.
On this basis, manufacturing-specific predictive and prescriptive analytics are
realized using various data mining techniques, especially decision tree induction
and text categorization, as described in [46, 26] and [29], respectively.

Regarding the mobile middleware, we implemented several mobile apps, e.g.,
a mobile analytics dashboard for shop floor workers [26] and a mobile product
structure visualizer for engineers. We have implemented native apps for Android
and for Windows as well as platform independent web apps using standardized
web technology such as HTML5.

An app marketplace and a graphical interface for intuitive access to the app
composer are currently under development.

6.2 Use Case: Quality Management and Process Optimization in the
Automotive Industry

To demonstrate the concept of the data-driven factory as well as the SITAM ar-
chitecture, we have cooperated with an OEM to develop a real-world application
scenario for the automotive industry. The scenario focuses on quality manage-
ment and process optimization as critical success factors for OEMs especially in
the automotive premium segment. An overview of all involved components and
participants can be seen in Figure 4.

An automotive manufacturer collects big industrial data, including structured
sales and machine data, sensor and text data around the product life cycle.
These data originally reside in isolated databases; for instance, text reports about
product and part quality from development, production and aftersales are all
gathered via different IT systems. To ensure a realistic representation of source
data and processes, on the one hand, we take advantage of publicly available
data sources, such as the records of automotive complaints covering the US
market and maintained by the NHTSA45. On the other hand, we make use of
anonymized data and internal knowledge resources of our industry partner.

On this basis, the SITAM architecture is applied to exploit these data for
quality management and process optimization. In the following, we give an
overview of representative value-added services and role-based apps across the
product life cycle which are enabled by the SITAM architecture (see Figure 4).
We focus on car paint quality as a recurring example (all data samples in the
following are fictitious for reasons of confidentiality).

During product development and testing, quality data are collected through
the mobile dev Q app by engineers and test drivers on the go, including text
reports and image material. The aftersales Q app is used to collect aftersales

42 http://uima.apache.org/
43 https://code.google.com/archive/p/uimafit/
44 http://www.cs.waikato.ac.nz/ml/weka/
45 http://www.nhtsa.gov/NCSA
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Fig. 4. Value-added services and role-based apps in the application scenario [9]

quality data for the warranty and recovery process of damaged car parts in the
form of unstructured text reports (e.g., ”customer states that car paint is coming
off after washing”, ”flaking paint on fender during extreme summer heat”). It
has different profiles for quality engineers (whose primary task is the definition
of new error codes), for quality expert workers (whose task it is to assign error
codes to damaged parts) and for executives (who are interested in comparing
aggregated error code data over time). In addition, quality data come in the
form of customer complaints and via social media crawling services.

After aggregating these data into the manufacturing knowledge repository
via the integration middleware, topic recognition on the text data is performed
as an information mining step. The topics (e.g., ”paint flaking – heat”, ”paint
damage – washing”) are presented to a human analyst via visual clustering to
pick the most pressing ones or perform minor reclassification. This constitutes
a value-added service of recurring issue identification and is performed via the
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topic visualizer app, which makes use of the mobile graph visualizer from the
mobile middleware.

Next, the problem topics are combined with historical data from the produc-
tion phase, especially machine data, shop floor environment data, and structured
error counts for root cause identification (e.g., elevated humidity in the paint shop
leading to a lower quality of paint and a higher risk of flaking when exposed to
harsh environmental conditions). This analytics step is executed in an analytics
and data mashup dashboard app, where data sources and analytics algorithms
are combined ad-hoc, but can also be stored for recurring use.

Identified root causes and condition patterns serve as input for proactive pro-
cess optimization. It makes use of prescriptive analytics to automatically identify
potentially problematic situations (e.g., critical humidity in paint shops) during
process execution and recommend actions to on-duty workers through a shop
floor notifier app (e.g., to air the paint shops to decrease humidity) or trigger
automatic machine reconfiguration (e.g., increasing air conditioning and heating
to decrease humidity).

7 Evaluation and Benefits

This section evaluates the benefits of the SITAM architecture with respect to
the requirements of the data-driven factory as well as in contrast to the reference
architectures described in Section 3.

The application scenario from 6.2 allows us to analyze the fulfillment of
the technical requirements of the data-driven factory and contrast it with the
traditional information pyramid of manufacturing.

In the scenario, diverse systems across the product life cycle, such as ma-
chines, social media sources as well as sensors, are encapsulated as services and
are uniformly represented in the SOA governance repository to ease integra-
tion and access in the integration middleware. By this service-oriented abstrac-
tion, the SITAM architecture enables a flexible integration of heterogeneous data
sources as well as a flexible service composition fulfilling requirement R1. This
enables agile manufacturing, the first characteristic of the data-driven factory.
Accessible service-based and role-based information provisioning also works to-
wards keeping the human in the loop (human-centric manufacturing).

To merge structured and unstructured data from different life cycle phases,
e.g., aftersales quality data and machine data in the application scenario, all
data are integrated in the manufacturing knowledge repository of the analytics
middleware. Moreover, predictive and prescriptive analytics are used to derive
action recommendations for process optimization according to the application
scenario. Thus, the SITAM architecture provides a holistic data basis encompass-
ing the product life cycle as well as advanced analytics for knowledge extraction
fulfilling requirement R2. This analytics capability provides functionalities for
learning manufacturing, such as learned improvements for the quality-optimal
design of both processes and products. It also is a prerequisite for agile pro-
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cess adaptations (agile manufacturing), such as the near real-time adaptation of
production conditions to prevent known product quality issues.

In the application scenario, various mobile apps support seamless integra-
tion of employees, e.g., for data acquisition by test drivers using the dev Q app
or for notifications of shop floor workers using the shop floor notifier. The mo-
bile middleware facilitates the development of such manufacturing-specific apps
using predefined manufacturing context models as well as specific visualization
components, especially for product models. These apps can be easily deployed
on various devices using the app marketplace. In this way, the SITAM architec-
ture enables mobile information provisioning and fulfills requirement R3 of the
data-driven factory to ubiquitously integrate employees across all hierarchy lev-
els. Thus, it provides the framework for human-centric manufacturing in keeping
the human expert in the loop through data provisioning and data gathering.

The SITAM architecture thus enables flexible system and data integration,
advanced analytics and mobile information provisioning and thus fulfills all tech-
nical requirements (R1-R3) of the data-driven factory.

Table 2. Comparison of the SITAM to types of IT architectures for smart manufac-
turing and Industrie 4.0 ( fulfilled; G# partly fulfilled; # not fulfilled)

Abstract
frameworks
for Industrie
4.0 and Smart
Manufactur-
ing

Cross-
domain-
spanning
reference
architectures

Stuttgart
IT Archi-
tecture for
Manufac-
turing

Concrete
manufac-
turing IT
architectures

Integration (R1)  G#   
Analytics (R2) # G#  G#
Mobile (R3) # G#  G#
Granularity −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Reference Architecture    #
Concrete Implementation # #   

Table 2 shows the evaluation of the three groups of architectures described in
Section 3 and the SITAM against the three requirements of the data-driven fac-
tory as well as in terms of granularity and concreteness. We find that the SITAM
fills an important granularity gap: It provides both a full reference architecture
and concrete recommendations for implementation. We have also included a dis-
cussion of technologies suited for the realization of its individual components
in Section 5 where we point out which technologies already exist and which
need to be further developed before they can be used in an industry context. In
contrast, the abstract frameworks and the cross-domain-spanning reference ar-
chitecture provide only the reference architecture and the concrete architectures
provide only implementation details. None of the other architectures for smart
manufacturing fulfills all requirements of the data-driven factory or addresses
all the limitations of the information pyramid of manufacturing. Most notably,
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the SITAM excels over other architectures in its capability to keep the human
in the loop, particularly in three areas: (1) data integration, where the hierarchy
of ESBs provides maximum flexibility for including and accessing data sources
as needed; (2) analytics with its particular focus on including unstructured data
sources and visualizing intermediate results; and (3) mobile with its enormous
impact on tailored data provisioning and active human participation.

8 Conclusion and Future Work

In this article, we have presented in detail the Stuttgart IT Architecture for
Manufacturing (SITAM) [9] which (1) flexibly integrates heterogeneous IT sys-
tems, (2) provides holistic data storage and advanced analytics covering the
entire product life cycle, and (3) enables mobile information provisioning to em-
power human workers as active participants in manufacturing. We have given an
overview of technologies which are required for the implementation of the SITAM
and pointed out concrete examples of infrastructures and toolboxes which can
be used, as well as identified gaps in the technology landscape where more work
is needed. We have compared the SITAM against major reference architectures
for smart manufacturing and Industrie 4.0 and found that it surpasses them
in several points, the most important ones being the integration of the human
worker and the concrete technological recommendations.

We have prototypically implemented core components of the SITAM archi-
tecture in the context of a real-world application scenario concerned with quality
and process management in the automotive industry. Our conceptual evaluation
shows that the SITAM architecture enables the realization of the data-driven
factory and the exploitation of big industrial data across the entire product life
cycle.
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