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Abstract. Strong competition in the manufacturing industry makes efficient and 

effective manufacturing processes a critical success factor. However, existing 

warehousing and analytics approaches in manufacturing are coined by substan-

tial shortcomings, significantly preventing comprehensive process improve-

ment. Especially, they miss a holistic data base integrating operational and pro-

cess data, e. g., from Manufacturing Execution and Enterprise Resource Plan-

ning systems. To address this challenge, we introduce the Manufacturing Ware-

house, a concept for a holistic manufacturing-specific process warehouse as 

central part of the overall Advanced Manufacturing Analytics Platform. We de-

fine a manufacturing process meta model and deduce a universal warehouse 

model. In addition, we develop a procedure for its instantiation and the integra-

tion of concrete source data. Finally, we describe a first proof of concept based 

on a prototypical implementation. 

Keywords: Data Warehouse, Manufacturing, Process Optimization, Analytics, 

Business Intelligence, Data Integration 

1 Introduction 

1.1 Motivation 

The manufacturing industry is faced with strong global competition. Apart from 

product quality and pricing, flexibility, short lead times and a high adherence to deliv-

ery dates have become critical success factors [1]. Efficient, effective and continuous-

ly improved manufacturing processes thus play a central role in a comprehensive 

competitive strategy [2]. 

Both in research and in industry, Business Intelligence (BI) technology is recog-

nized as an enabler for analytics-based optimization of business activities as well as 

decision support. It has repeatedly proven its potential in the service industry for the 

improvement of workflow-based business processes [3], [4]. 

mailto:%7bauthors%7d@ipvs.uni-stuttgart.de
mailto:%7bauthors%7d@ipvs.uni-stuttgart.de


With respect to BI approaches in manufacturing, we currently know of essentially 

two types wide-spread in industry: Pre-packaged dashboard applications, typically 

part of Manufacturing Execution systems (MES), based on standardized metrics with 

simple reporting functions [5] as well as custom BI applications, partly built on data 

warehouses, mainly focusing on spreadsheet-based Online Analytical Processing 

(OLAP) and reporting functions [6]. 

Several decisive insufficiencies of these approaches significantly prevent compre-

hensive process optimization in manufacturing: Most importantly, they miss a holistic 

process view integrating operational data and process data, e. g., from MES and En-

terprise Resource Planning (ERP) systems, to find a broader range of optimization 

opportunities. Moreover, they do not make use of advanced analytics techniques, esp. 

data mining, to automatically identify hidden data patterns for process improvement. 

To overcome these deficiencies, in our overall work we develop the Advanced Manu-

facturing Analytics (AdMA) Platform as a novel approach for data-driven manufac-

turing process optimization. In this article, we focus on the central component of the 

AdMA Platform, the Manufacturing Warehouse, a manufacturing-specific holistic 

process warehouse. 

The remainder is organized as follows: First, we introduce the AdMA Platform and 

structure related work for process warehousing and data integration in Section 2. 

Next, we define analytic requirements and potential data sources for the Manufactur-

ing Warehouse in Section 3. Based on a manufacturing process meta model, described 

in Section 4, we develop a standardized warehouse model as well as a procedure for 

its instantiation and the integration of concrete data in Section 5. Our prototypical 

implementation and a first proof of concept are presented in Section 6. We conclude 

in Section 7 and highlight future work. 

1.2 The Advanced Manufacturing Analytics Platform 

The Advanced Manufacturing Analytics Platform, introduced in [7], is an integrated 

BI platform for manufacturing process optimization. It is based on a transfer of con-

cepts of the Deep Business Optimization Platform [3], [8-10] to manufacturing with 

its conceptual architecture comprising the following components (see Fig. 1). 

The manufacturing process is typically deployed on an MES and corresponding 

execution data is generated during process execution. Process data and additional 

operational data are integrated in the Manufacturing Warehouse, the focal point of 

this article. It is provisioned by the Manufacturing Data Integrator, which matches 

process and operational data. In general, operational data is subject-oriented and rep-

resents data of traditional data warehouses, e. g., financial data. Process data is flow-

oriented and comprises execution data, i. e., events recorded during process execu-

tion, and process model data [9]. 

Process Analytics comprises different analysis methods, esp. data mining tech-

niques and metrics calculation, to generate insights with the Manufacturing Insight 

Repository serving as a central component for the sharing of analysis results. 

Indication-based Manufacturing Optimization uses pre-configured data mining 

models to explain and predict process characteristics. 



Pattern-based Manufacturing Optimization goes beyond that and proposes con-

crete process modifications using optimization patterns. Both focus on the overall 

manufacturing process from the creation of the production order until the finishing of 

the product including all process steps and resources. They are further detailed and 

differentiated from existing data mining approaches in manufacturing in [11]. 

 

Fig. 1. Conceptual architecture of the Advanced Manufacturing Analytics Platform 

with the focus of this article marked in grey 

The AdMA Platform can be seen as an application of process mining [12] to manu-

facturing whereas it focuses on the enhancement of process models, not on the classic 

process mining disciplines, i. e., discovery and conformance of process models. In 

contrast to traditional enhancement concepts, we use not only process data but also 

operational data in combination with novel analytical approaches, esp. indication-

based and pattern-based optimization. 

2 Related Work 

For the discussion of related work, we distinguish between work referring to ware-

housing and analysing business processes as well as work related to data integration 

aspects. 

Concepts and techniques for warehousing and analysing business processes are 

discussed in the area of Business Process Intelligence (BPI) [13]. BPI primarily fo-

cuses on workflow-based business processes and related process modelling and pro-

cess execution concepts. Thus, traditional process warehouse concepts like [14], [15] 

are based on audit trail data of Workflow Management systems and corresponding 

meta models like [16]. Next-generation process warehouse approaches – we call them 

holistic process warehouses – try to enrich process data with additional operational 

data to realize corresponding holistic BI applications. Initial holistic process ware-

Data Integration

Manufacturing

Data Integrator

Process Analytics

Process Optimization

Manufacturing

Process

Process Model

Manufacturing 

Execution System

(MES) Manufacturing Warehouse

Operational DataProcess Data

Execution

Data
CAxERP

 Indication-based Manufacturing Optimization

 Pattern-based Manufacturing Optimization

 Manufacturing Pattern Catalogue

 Manufacturing Insight Repository

 Manufacturing Mining

 Manufacturing Graph Analysis

 Manufacturing Metrics Management

Manufacturing

Pattern 

Catalogue

Manufacturing

Insight

Repository



house concepts are proposed in [17], [18]. The only fully developed holistic process 

warehouse, we know of, is the integrated data warehouse of the Deep Business Opti-

mization Platform (dBOP) [8], [19] focusing on workflows. 

Yet, workflow-oriented approaches cannot simply be applied to manufacturing for 

several reasons. First, manufacturing processes are significantly more complex than 

workflow-based business processes, involving a variety of heterogeneous resources 

and activities [20]. In addition, process planning and process execution systems in 

manufacturing use proprietary event models and process data formats. Moreover, 

processes optimization requires specific metrics and suitable optimization patterns. 

Based on these constitutive differences, we take the dBOP process warehouse as a 

starting point to develop a manufacturing-specific holistic process warehouse.  

Considering existing manufacturing-specific process warehousing approaches, an 

initial traditional process warehouse for manufacturing is modelled in [21]. It defines 

five rudimentary dimensions and a few basic metrics to analyse processes at the level 

of the whole process. With respect to standardized data warehouse implementations in 

industry practice, the SAP Business Content as part of the SAP NetWeaver Business 

Intelligence Platform [22] provides a variety of manufacturing-specific metrics and 

multi-dimensional data models, called InfoCubes. Yet, it misses a consequent integra-

tion of process and operational data in a holistic approach. 

Regarding data integration aspects, traditional warehousing concepts are based on 

Extraction, Transformation and Load (ETL) processes for materialized data integra-

tion [23], [24]. A holistic process warehouse requires an extended ETL approach 

based on the matching of operational and process data [25]. The foundations are gen-

eral concepts for schema matching and integration [26], [27] that have to be adapted 

to the specific semantics of process data. [28], [19] present a framework and a tool for 

matching process and operational data based on workflow standards, esp. BPEL. Tak-

ing these concepts as a basis, we develop a procedure for manufacturing-specific 

matching and ETL that is able to cope with heterogeneous event models and source 

formats of various data acquisition systems. 

3 Requirements and Data Sources 

3.1 Analytic Requirements 

From a business perspective, there are two central preconditions for efficient and 

effective manufacturing processes, namely process transparency and process respon-

siveness [5]. The former alludes to the availability of integrated up-to-date infor-

mation about currently running processes and their status as well as details about the 

performance and weaknesses of completed processes, always with respect to the 

whole process and all participating resources. Transparency is necessary for respon-

siveness, referring to the ability to quickly realize potentials for improvement and 

react to changing environmental conditions. The analytic requirements for the Manu-

facturing Warehouse and the corresponding data integration concepts have to imple-

ment these preconditions and realize the vision of the AdMA Platform to provide a 



standardized integrated BI platform for the holistic data-driven optimization of manu-

facturing processes. Hence, the following analytic core requirements result: 

 Holistic data base: Holistic process optimization requires the integration of all data 

pertaining to process performance, i. e., operational and process data related to a 

manufacturing process have to be consolidated and integrated. 

 Standardization and Flexibility: To realize pre-defined optimization services a 

standardized and generalized data model is necessary. As manufacturing processes 

and data sources are extremely heterogeneous in industry practice, both the data 

model and the integration concepts should be flexible enough to be adapted to con-

ditions of different manufacturing companies. 

 Real-time capability: Both data integration and analytics have to work (near-) real-

time to provide the user with up-to-date information about processes in progress. 

 Historization: All integrated data have to be historized to analyse process perfor-

mance over time. 

3.2 Data Sources in Manufacturing 

To structure potential data sources for the Manufacturing Warehouse we refer to a 

simplified version of the ISA hierarchy model of manufacturing [29]. We distinguish 

the following three levels on top of the actual manufacturing process: 

The Business Planning and Logistics level comprises business-related activities, 

esp. product and process planning using Computer Aided Design (CAD) and Com-

puter Aided Planning (CAP) systems. Moreover, production planning and scheduling 

typically supported by ERP systems is carried out on this level as well as Customer 

Relationship Management (CRM). 

The level for Manufacturing Operations Management contains all activities to co-

ordinate the execution of manufacturing processes and related resources. Typical IT 

systems are Production Data Acquisition (PDA) systems for the recording of process 

execution data as well as Computer Aided Quality (CAQ) systems. MES are the cen-

tral IT systems for Manufacturing Operations Management integrating and extending 

PDA and CAQ functionalities. They connect the business level with the actual pro-

cess by transforming production plans into concrete process executions and reporting 

results [5]. 

The Automation level comprises all activities for the direct technical monitoring 

and control of the actual process. At this level, Computer Aided Manufacturing 

(CAM) systems are used. 

On this basis, the central data sources for the Manufacturing Warehouse can be de-

fined: Process execution data is provided by MES, PDA and CAQ systems whereat 

process model data is supposed to be contained in MES, ERP as well as CAP systems. 

Operational data, esp. master data concerning product and customer information as 

well as production plans, is provided by ERP, CRM and CAD systems. 



4 Manufacturing Meta Models 

4.1 Motivation 

To specify a standardized and universal data model, we follow a top-down develop-

ment approach independent of syntax and semantics of concrete data sources. In order 

to define generalized information needs for the analysis of manufacturing processes, 

we develop both conceptual manufacturing meta models and a catalogue of basic 

manufacturing-specific metrics. In this section, we focus on the meta models, esp. the 

manufacturing process meta model (MPMM). 

The MPMM provides a unified and technology-independent definition of essential 

concepts and their relationships relevant to the execution of manufacturing processes, 

e. g., process steps and different types of resources. It is based on a holistic view inte-

grating process and operational aspects independent of the actual data source. Hence, 

the MPMM represents the basis for the selection of central analysis objects and relat-

ed entities, i. e., facts and dimensions in the multi-dimensional warehouse scheme. 

We complement the MPMM with a conceptual manufacturing event meta model 

(MEMM) in terms of a state machine with the main states and state transitions of a 

manufacturing process step, e. g., start, pause and completion of a step. Thus, the 

MEMM defines requirements for necessary process execution data, i. e., events that 

have to be provided by corresponding process data sources, e. g., MES. Moreover, it 

supports the definition of event-based facts in the Manufacturing Warehouse. Due to 

space restrictions, we do not go into detail on the MEMM in this article.  

Both the MPMM and the MEMM abstract proprietary meta models used in data 

sources, esp. PDA systems and MES, to establish a common and consistent under-

standing of manufacturing processes and related events for data integration and ana-

lytics. 

4.2 Manufacturing Process Meta Model 

We conducted literature analyses to define a comprehensive meta model for manufac-

turing processes esp. adapted to the needs of serial and mass manufacturers. It takes a 

static perspective and models concepts relevant for the execution of a single process 

instance, i. e., it adopts a run-time not a built-time point of view and doesn’t differen-

tiate between process model and process instance. We took generic manufacturing 

meta models, esp. [21], [29], [30], as a starting point to concretize and extend them 

with respect to factors influencing the four basic target and analysis dimensions of 

manufacturing, i. e., time, cost, quality and flexibility [31]. Moreover, for an initial 

evaluation and refinement of the model, we did industry interviews with manufactur-

ing consultants. 

Fig. 2 shows a simplified excerpt of the MPMM as a UML class diagram. A manu-

facturing process consists of production steps and is linked with a production order 

defining, e. g., the batch size to be produced. A production order is associated with a 

customer, who can be internal or external, as well as with the product that is going to 

be produced as an output of the process. There are different types of production steps, 



esp. the actual manufacturing steps as well as transportation steps. Manufacturing 

steps refer to the manufacturing and assembly of parts, whereat transportation steps 

comprise the transportation of parts between different manufacturing steps, e. g., by 

pallet transporters. In each manufacturing step scrap quantity and yield of parts can be 

measured. 

 

Fig. 2. Excerpt of the Manufacturing Process Meta Model (MPMM) 

Regarding spatial aspects, a work unit and a corresponding hierarchy of areas and 

sites can be assigned to a production step. Moreover, a production step can have sev-

eral successors and predecessors in a process execution. Resources used and pro-

cessed in production steps are employees, i. e., production workers, operating re-

sources, i. e., machines and production aids, like tools, as well as material. All re-

sources can be described by various additional information like vendors of material or 

manufacturers of machines. For the sake of simplicity, we omit many details of the 

MPMM full version, esp. the modelling of operating supply items, environmental 

emissions or failures of production steps. 

5 Manufacturing Warehouse 

5.1 Conceptual Warehouse Model 

To define a standardized conceptual warehouse model, i. e., a multi-dimensional 

scheme of the Manufacturing Warehouse, we first describe the generic structure of 

facts and dimensions of a holistic process warehouse. Next, we develop the actual 

warehouse model based on the above MPMM.  
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The generic structure represents a framework for the instantiation of the standard-

ized model in individual cases based on available source data. This is necessary as 

concrete process and operational data sources vary significantly in existing manufac-

turing environments. For example, in an energy-intensive manufacturing process 

power consumption is relevant and recorded. In contrast, in another case CO2 emis-

sions are logged. Hence, different warehouse models result which mainly differ by the 

dimensions describing the process. 

In general, a limited number of process-oriented information is obligatory to define 

an activity-centric model for a holistic process warehouse. According to [32] we as-

sume that each event during process execution occurs in a certain point of time, is 

associated with the instance of a single process step, thus is related to a single process 

instance, and provides a description about itself. Moreover, it provides various infor-

mation about its context, i. e., links to objects relevant for the corresponding event. 

E. g., the start event provides information about machines used in the step. Hence, 

facts at lowest level of granularity are events with the obligatory dimensions “Time”, 

“Process” and “Event”. These dimensions are called flow dimensions as they describe 

the process flow over time. Context information provided by events, e. g., identifiers 

for material or machines, is the basis for additional dimensions, so called context 

dimensions. Flow and context dimensions result from process data and are enriched 

with supplementary operational data forming additional hierarchy levels, so called 

operational sub dimensions. It has to be remarked that events as central facts have no 

quantitative characteristics like metrics in traditional data warehouses. Hence, to ease 

analytics, so called derived, i. e., aggregated, facts are defined at the level of process 

steps and whole processes comprising basic process-oriented metrics, e. g., cycle 

time, which may already be computed during ETL. Although it extends the data vol-

ume of the warehouse, we decide to model event facts in addition to derived facts as 

they define the entire scope of process information available, thus enabling flexibility 

regarding previously unknown information needs. Finally, a fact constellation scheme 

with shared dimensions results as a generic structure for a holistic process warehouse. 

 

Fig. 3. Conceptual Model of the Manufacturing Warehouse 
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On the basis of this generic structure we define the standardized model of the Manu-

facturing Warehouse (see Fig. 3) using the MPMM as well as a set of basic manufac-

turing metrics related to process steps and whole processes operationalising the four 

manufacturing target dimensions cost, quality, time and flexibility. We defined ten 

standardized context dimensions in addition to the obligatory flow dimensions 

“Time”, “Process” and “Event”. 

Fig. 3 shows a simplified version of the model in a multi-dimensional UML [33] 

package diagram. The source dimension refers to the technical source of an event, 

e. g., a certain machine. Emissions comprise environmental pollution like the genera-

tion of CO2 or waste. Material refers to input that becomes part of the product to be 

manufactured, whereat operating supply items like oil or electricity are consumed 

during manufacturing. The output dimension refers to yield and scrap quantity and the 

failure dimension comprises failures occurred during process execution.  

 

Fig. 4. Excerpt of the detailed Manufacturing Warehouse model 

For illustrative purposes, an excerpt of a detailed model of the machine, employee and 

process dimension is shown in Fig. 4. According to the MPMM, a process comprises 

steps, whereat steps and processes are instantiated for process execution. Events pro-

vide context information about employees and machines and refer to a specified step 

instance. Derived facts are defined at process step level, e. g., duration for setup or 

costs of a step, with machines and employees taking part in a step. 

5.2 Warehouse Instantiation and Data Integration 

As mentioned in Section 2, we need an extended ETL approach for the integration of 

concrete source data in the Manufacturing Warehouse. Moreover, our standardized 

warehouse model has to be instantiated in each individual case as mentioned in Sec-

tion 5.1. Hence, in the following, we provide a coarse-grained overview about the 

major steps of our integrated procedure for both warehouse instantiation and the inte-

gration of source data (see Fig. 5). 

Instantiation focuses on the tailoring of the standardized warehouse model to avail-

able data sources in an individual case. Integration aims at determining matches be-

tween source data and warehouse model to define necessary ETL processes. Our con-

cept relies on the ontology-based annotation [34] of both available process source 

data, i. e., concrete event logs esp. from PDA systems and MES, and standardized 
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dimensions of the warehouse model. Therefore, we refer to an adapted version of the 

manufacturing-specific domain ontology in [35]. To enrich process data with opera-

tional data, we first match process data with the standardized warehouse model and 

then match operational data with the resulting selected warehouse dimensions. 

 

Fig. 5. Procedure for warehouse instantiation and data integration 

The essential steps of our procedure are sketched in Fig. 5. First, all attributes of a 

given event log are annotated using the ontology to infer corresponding standardized 

context and process dimensions. For example, an event log containing the attributes 

“TimeStamp”, “EventName”, “MachineNumber” and “EmployeeNumber” is annotat-

ed. Thus, the process dimensions “Event” and “Time” as well as the two context di-

mensions “Machine” and “Employee”, resp. the corresponding dimensional attributes, 

result. Next, the selected dimensions are enriched with available operational data, e. g. 

from ERP or CRM systems, defining operational sub dimensions. Hence, matching 

mechanisms are employed to map given operational attributes to dimensional attrib-

utes of the standardized warehouse model. In this context, various traditional schema 

matching techniques [26] or ontology-based methods may be used. E. g., master data 

of machines and employees, like names and cost rates, are matched. Thus, the com-

plete instantiated model of the Manufacturing Warehouse is based on concrete source 

data. 

Finally, transformation rules are defined to realize all identified mappings. For ex-

ample, transformations to convert proprietary event names or adjust different curren-

cies are created. These transformation rules are the basis for the development of the 

corresponding ETL processes populating the warehouse and calculating standardized 

facts, i. e., metrics. 

6 Prototypical Implementation and First Proof of Concept 

Our current prototypical implementation comprises a first relational version of the 

Manufacturing Warehouse, basic data transformation and data mining functionalities 

as well as a dashboard-oriented GUI and is described in [7]. In addition, we devel-

oped universal process-centric data mining use cases for Indication-based Manufac-

turing Optimization (IbMO) presented in [11]. We are currently realizing the above 
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instantiation and integration procedure in the Manufacturing Data Integrator, too. In 

the following, we demonstrate that the Manufacturing Warehouse in combination 

with IbMO enables the generation of novel insights for process improvement beyond 

traditional process warehousing approaches. 

In a first proof of concept we implemented the so called metric-oriented root cause 

analysis as an IbMO explication use case designed for production managers [11]. It 

aims at explaining categorized metrics of process instances, e. g., lead time, by 

providing comprehensible explication models, namely decision trees. E. g., reasons 

for excessive lead times can be identified. Moreover, we developed a sample scenario 

for a manufacturing process, the production of steel springs for the automotive indus-

try, and generated corresponding data to load the Manufacturing Warehouse. On this 

basis, we conducted metric-oriented root cause analyses on lead times. The latter are 

categorized as “OK” or “too high” in our proof of concept. Two exemplary decision 

rules, that are based on the decision tree depicted in Fig. 6, are: 

 If the first machine in production step 1 was maintained more than 15 days ago 

and vendor V7 delivered the material processed in step 3, then lead time is typical-

ly too high. 

 If the former isn’t the case but the skill level of the first employee in step 2 is lower 

than level 4 and machine M2 is used, then lead time is typically too high. 

 

 

Fig. 6. Functional components of the prototype 
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These decision rules represent valid indications for concrete process improvements, 

e. g., to enhance training for employees engaged in step 2 or improve maintenance 

schedules for machines used in step 1. They demonstrate the fundamental feasibility 

and usefulness of the Manufacturing Warehouse in combination with suitable analyt-

ics. Based on the integration of operational and process data, the Manufacturing 

Warehouse enables the cross-correlation of all relevant aspects pertaining to process 

performance, e. g., machine- product-, material-, and employee-oriented aspects, in 

order to generate novel insights for process optimization. In contrast, typical tradi-

tional process warehouses are not aware of operational aspects like additional infor-

mation on vendors of input material or employee training. In general, the universal 

holistic data model of the Manufacturing Warehouse can be used as a basis for vari-

ous holistic analytics, ranging from holistic OLAP and reporting concepts to data 

mining-driven approaches like IbMO and pattern-based optimization. 

Fig. 6 shows the exemplary decision tree from which the above listed decision 

rules were deduced from as well as the necessary functional components of our proto-

type for metric-oriented root cause analyses. On top of the Manufacturing Warehouse, 

data transformation is concerned with data denormalization and data filtering which 

prepare data for pattern detection, i. e., decision tree induction. The relational struc-

ture of the warehouse is deduced from the above conceptual model. Further technical 

details about the prototype are given in [7], [11]. 

7 Conclusion and Future Work 

In this article we presented the Manufacturing Warehouse, a concept for a holistic 

manufacturing-specific process warehouse as central part of the overall Advanced 

Manufacturing Analytics Platform. It integrates operational and process data in a 

standardized multidimensional warehouse and is based on a generalized manufactur-

ing process meta model. In addition, we introduced a procedure for warehouse instan-

tiation and the integration of concrete source data. 

To demonstrate the usefulness and feasibility of the Manufacturing Warehouse, we 

described a first proof of concept comprising a process-centric data mining use case 

for Indication-based Manufacturing Optimization on top of the warehouse. 

In our future work, we plan to investigate application scenarios in discussion with 

industry partners comprising typical MES and ERP systems to further validate and 

extend the Manufacturing Warehouse. Moreover, we are going to refine it with re-

spect to the implementation of pattern-based optimization in manufacturing. 
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