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Abstract—The manufacturing industry is faced with global com-

petition making efficient, effective and continuously improved 

manufacturing processes a critical success factor. Yet, media 

discontinuities, the use of isolated analysis methods on local data 

sets as well as missing means for sharing analysis results cause a 

collaborative gap in Manufacturing Process Management that 

prohibits continuous process improvement. To address this chal-

lenge, this paper proposes the Advanced Manufacturing  

Analytics (AdMA) Platform that bridges the gap by integrating 

operational and process manufacturing data, defining a reposito-

ry for analysis results and providing indication-based and pat-

tern-based optimization techniques. Both the conceptual architec-

ture underlying the platform as well as its current implementa-

tion are presented in this paper. 

Keywords: Analytics, Data Mining, Process Management, 

Manufacturing, Process Optimization 

I. INTRODUCTION 

A. Motivation 

Globalization confronts manufacturers with steadily in-
creasing competition. Not only product quality and variety, but 
flexibility, short lead times and a high adherence to delivery 
dates have become critical success factors [1]. Efficient, effec-
tive and continuously improved manufacturing processes are 
therefore a key source of competitive advantage [2]. 

Business Intelligence (BI) technology and its application in 
the service industry clearly shows the benefit of applying de-
tailed analytics to improve workflow-based business processes 
[3], [4]. The gained insights support the participating process 
engineers to cooperatively optimize the existing process land-
scape. 

In general, we can observe various levels of analytics: 

 Traditional BI applications [5] based on operational  
data, in particular on financial metrics, 

 Business Process Intelligence (BPI) applications [6] 
focusing on process data, especially on workflow audit 
data, and 

 Holistic BI applications that integrate both process data 
and operational data to generate deep insights. 

On any of these levels, the focus of previous work was on 
the service industry and the analysis of workflow-based busi-
ness processes. Other important business areas, e. g., the manu-
facturing industry, have not been addressed so far. The latter is 
characterized by a comparably low degree of standardisation 
regarding process modelling and process execution techniques. 
In addition, manufacturing processes are significantly more 
complex than workflow-based business processes, involving a 
variety of heterogeneous resources and activities and requiring 
elaborate planning methods [7]. Hence, existing workflow-
oriented BI approaches cannot simply be applied to manufac-
turing. 

The field of Manufacturing Process Management seems to 
be a beneficial area for applying a manufacturing-specific ho-
listic BI approach: The high volume of process data recorded 
by Manufacturing Execution Systems (MES) [8] favours the 
integration with operational data, e. g., from Enterprise  
Resource Planning (ERP) and Computer Aided Planning 
(CAP) systems [9]. This enables continuous collaborative pro-
cess improvement. 

B. The Gap in Manufacturing Process Management 

Manufacturing Process Management comprises the design, 
implementation, execution and analysis of manufacturing pro-
cesses as shown in Fig. 1. 

Roughly speaking, product planning and design focuses on 
what product to manufacture, production planning and schedul-
ing decides when to manufacture it, and Manufacturing Process 
Management defines how to manufacture the product [10]. 
Typically, the different sub processes are supported by hetero-
geneous IT systems and conducted by teams of various disci-
plines [11], [7]. 

 Computer Aided Design (CAD) systems are used by 
product developers for product planning and design. 

 ERP systems are at the core of production planning and 
scheduling. They are used by production schedulers. 

 Production engineers use CAP systems for process 
planning, design and implementation. 
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Figure 1.  Classical view of Manufacturing Process Management and corresponding sub processes 
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Figure 2.  The collaborative gap in Manufacturing Process Management 

 MES are used for process execution and control by 
production supervisors. 

 Process analysis is done ex-post with various BI appli-
cations by managerial process controllers. 

This brings about media discontinuities and the use of iso-
lated analysis methods and terminologies on local data sets in 
each sub process. Furthermore, the sharing and combination of 
analysis results is significantly limited. Consequently, industry 
practice shows scarce information flow esp. between process 
analysis and process redesign, leading to a collaborative gap 
that prohibits continuous process improvement (see Fig. 2).  

In this paper, we present the Advanced Manufacturing 
Analytics (AdMA) Platform as an enabler for continuous 
collaborative process improvement based on advanced 
analytics. The remainder is organized as follows: In Section II, 
we structure previous work in the BI context and present the 
Deep Business Optimization Platform as the central conceptual 
starting point. Moreover, we examine existing approaches of 
analytics in manufacturing practice. In Section III, we present 
the AdMA Platform as a transfer of the Deep Business 
Optimization Platform framework to the context of 
manufacturing and depict its architecture. In addition, we point 
out details about the development. We conclude in Section IV 
and highlight future work. 

II. PREVIOUS WORK 

A. Levels of Analytics 

Fig. 3 structures the various levels of analytics according to 
their data basis and the time horizon of their application. 

Analytics can be based on operational data or process data [12]. 
Operational data is subject-oriented and represents data of 
traditional data warehouses, e. g., sales data. Process data is 
flow-oriented and comprises execution data and process model 
data. Moreover, analytics can be applied after the execution of 
the activity that has to be analyzed (ex-post), during its execu-
tion (real-time) and before its execution (ex-ante). 

Traditional BI applications are solely based on operational 
data and perform ex-post analysis. BPI applications use process 
data, whereat ex-post, real-time and ex-ante applications exist. 
Business Activity Monitoring (BAM) [13] is an example for a 
real-time BPI application, process simulation is applied ex-ante 
[3] and process mining comprises concepts for all time hori-
zons [14]. Finally, holistic BI applications like the Deep Busi-
ness Optimization Platform [15] integrate both operational and 
process data in all time horizons to find a broader range of 
optimization opportunities. 

B. The Deep Business Optimization Platform 

The Deep Business Optimization Platform (dBOP) [15] is a 
framework and a platform for the optimization of workflow-
based processes. As a holistic BI application it constitutes the 
conceptual starting point for the AdMA Platform. The dBOP 
enables ex-post, real-time and ex-ante process optimization 
based on a data warehouse integrating operational and process 
data. Optimization is conducted using optimization patterns, 
i. e., formalized best practice techniques for the optimization of 
processes. Fig. 4 shows dBOP’s conceptual high level architec-
ture consisting of three integrated layers. 



Ex-Post Real-Time Ex-Ante

P
ro

c
e

s
s
 D

a
ta

O
p

e
ra

ti
o

n
a

l 
D

a
ta

Traditional BI

Process Mining

Business 

Activity

Monitoring 

(BAM)

Time Horizon

D
a

ta
 B

a
s

is

Process 

Simu-

lation

BPI

Holistic BI

 

Figure 3.  Classification of analytics 
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Figure 4.  Conceptual architecture of the Deep Business Optimization Platform 

The Data Integration layer matches process and operational 
data to store it in an integrated process-centric data warehouse. 
Process data originates from Business Process  
Management System (BPMS) systems, esp. audit trails, [16] 
and operational data is taken from sources like ERP systems. 
To link operational data and process events a framework for 
automatic, semi-automatic and manual matching is provided. 
The aim is to integrate all data pertaining to process perfor-
mance by abstracting from various heterogeneous source sys-
tems. 

The Process Analytics layer extracts insights from the Inte-
grated Data Warehouse, i. e., analysis results that can be trans-
formed into concrete process optimizations. Predefined data 
mining models complemented by metric calculation and graph 
analysis are used on this layer. Data mining models comprise, 
e. g., association rules and decision trees [17]. Metric calcula-

tion focuses on the computation of metrics for process control-
ling, e. g., process costs or resource utilization. Graph analysis 
is based on an analysis of the process model itself. The Process 
Insight Repository [18] stores all process insights to enable 
their reuse, sharing and combination playing the role of a 
knowledge management component [19]. 

The Process Optimization layer conducts the actual process 
optimization using insights from the Process Insight Repository 
encapsulated in optimization patterns [20]. Optimization pat-
terns are based on analytics, esp. data mining techniques. One 
pattern for example describes the optimal selection of resources 
for a process step using multiple regression. In a regression 
model, resource attributes like the experience of an employee 
are linked with performance indicators, e. g., the duration of an 
activity, to predict the likely performance and select the best 
resource available. Patterns can be applied ex-ante in the a 
priori design, real-time during the execution and ex-post in the 
a posteriori analysis of the process. The optimized process 
model is then deployed to the BPMS to close the optimization 
cycle. 

The dBOP focuses on workflow-based business processes 
and makes use of standardized workflow-specific process mod-
elling and process execution techniques, esp. the Business 
Process Model and Notation (BPMN) [21] and the Business 
Process Execution Language (BPEL) [22]. However, manufac-
turing processes are significantly more complex than work-
flow-based business processes, involving a variety of heteroge-
neous resources and activities [7]. In addition, there is no  
industry-wide standard for modelling and specifying manufac-
turing processes. Thus, process planning and process execution 
systems use proprietary event models and process data formats. 
Moreover, analysis and optimization of manufacturing process-
es require specific metrics, e. g Overall Equipment Efficiency 
(OEE), and suitable optimization patterns. These factors pre-
vent a direct application of the dBOP in manufacturing and 
necessitate the modification and extension of the dBOP con-
cepts. 
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Figure 5.  The Advanced Manufacturing Analytics approach 

C. Analytics in Manufacturing 

Looking at the literature and conducting industry inter-
views, we currently know of essentially two types of wide-
spread manufacturing analytics in industry practice: 

 Pre-packaged dashboard applications, often called 
control panels, based on standardized metrics with 
simple reporting and statistics functions [23], [8]. 

 Custom traditional BI applications, partly built on 
data warehouses, mainly focusing on spreadsheet-
based OLAP and reporting functions [24]. 

Pre-packed dashboard applications are typically part of 
MES or supplementary products and employed real-time dur-
ing process execution and control. Custom manufacturing BI 
applications are usually used ex-post during process analysis. 
Both types miss a holistic view integrating operational and 
process data. Moreover, they do not make use of advanced 
analytics techniques, especially data mining to automatically 
extract valuable patterns from data. Most importantly, there is 
neither a concept for systematically storing and sharing analy-
sis results, nor a technique for transforming them into concrete 
process optimizations. These factors considerably limit a con-
tinuous collaborative process improvement. 

III. THE ADVANCED MANUFACTURING ANALYTICS 

PLATFORM 

A. Overview 

The AdMA platform is a holistic BI application for the 
analysis and optimization of manufacturing processes based on 
advanced analytics to enable a continuous collaborative process 
improvement. It transfers the dBOP framework to the context 
of manufacturing by adapting and extending its core concepts. 
Fig. 5 shows the AdMA-enabled manufacturing optimization 
cycle. The collaborative gap sketched in Section I.B is bridged 
by the following four means: 

 Integrating all data pertaining to the design, im-
plementation, execution and analysis of the manu-
facturing process to perform holistic analytics. 

 Systematically storing all analysis results in a cen-
tral repository to enable their sharing, combination 
and reuse. 

 Transforming analysis results into process im-
provements using indication-based and pattern-
based optimization. 

 Providing optimization functionality in all sub 
processes, i. e., during process design and imple-
mentation (ex-ante), process execution (real-time) 
as well as during process analysis and redesign 
(ex-post). 

B. Architecture 

Fig. 6 outlines the conceptual architecture of the AdMA 
Platform in analogy to the dBOP. It consists of three layers 
showing manufacturing-specific extensions and modifications. 

The Data Integration layer integrates process manufactur-
ing data and operational manufacturing data in a holistic pro-
cess-centric data warehouse, the Manufacturing Warehouse. 
Process data comprises execution data, i. e., events recorded by 
MES based on machine data collection and production data 
acquisition. Operational data mainly encompasses CAD, CAP 
and ERP data. The Manufacturing Warehouse, the Manufactur-
ing Data Integrator as well as the Process Insight Repository 
deal with steps and events in manufacturing processes. As a 
conceptual basis, we developed a generalized manufacturing 
process metamodel that defines essential concepts and their 
relationships relevant to the execution of manufacturing pro-
cesses, e. g., process steps and different types of resources. 
This metamodel is based on a holistic view integrating process 
and operational aspects independent of their actual data source. 
In addition, we defined a unified event model in terms of a 
state machine with the main states and transitions of a manu-
facturing process step to derive events relevant for data ware-
housing. 
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Figure 6.  Conceptual architecture of the Advanced Manufacturing Analytics Platform 

The Process Analytics layer combines three techniques to 
generate process insights and stores them in the Manufacturing 
Insight Repository. Manufacturing Graph Analysis conducts a 
static analysis of the manufacturing process model to identify 
process constructs relevant for optimization. The analysis of 
dependencies between process steps may for instance reveal 
options for parallelisation. The graph analysis is based on the 
manufacturing process metamodel and takes into account  
manufacturing-specific process characteristics, e. g., spatial 
attributes. Manufacturing Metrics Management comprises the 
definition, calculation and administration of manufacturing-
specific metrics, e. g., First Pass Yield. Most importantly, the 
Manufacturing Mining component conducts adjusted data 
mining tasks, i. e., data preparation and pattern detection. It 
takes into account the Manufacturing Warehouse schema and 
transforms the data as needed by the selected data mining tech-
nique, for instance the generation of decision trees. The Manu-
facturing Insight Repository systematically stores all analysis 
results, e. g., data mining models and calculated metrics, to 
enable their reuse, combination and sharing. For that purpose it 
links them with the corresponding process constructs. Hence, 
analysis results are treated as supplements of a process model 
stored in the Manufacturing Insight Repository. An example is 
a decision tree, which is generated for a root cause analysis of 
metric deviations of a selected process. Thus, the Manufactur-
ing Insight Repository has to be based on the manufacturing 
process metamodel as well. 

The Process Optimization layer comprises components that 
use and combine insights from the Manufacturing Insight Re-
pository to support the actual process improvement. Indication-
based Manufacturing Optimization uses preconfigured data 
mining models supplemented by metrics to explain and predict 
certain process attributes. Consequently, hints respectively 
indications are presented to the user that enable him to infer 
corresponding process improvements. An example is the root 
cause analysis of metric deviations using decision trees. It 
allows to identify circumstances under which a selected process 
exceeds, e g., its cycle time. Possible reasons could be the use 

of special machines or manufacturing aids. Pattern-based Man-
ufacturing Optimization goes beyond that and proposes con-
crete process modifications that are applicable for a given pro-
cess to achieve a defined goal, e. g., to speed up the process. It 
uses specific optimization patterns stored in the Manufacturing 
Pattern Catalogue. These patterns describe optimization options 
like the parallelization of sequential activities. 

C. Development 

As the dBOP has successfully been developed and is cur-
rently used, both the implementation as well as the gained 
experiences define the starting point for the realization of the 
AdMA Platform. To specify the initial scope of development, 
we talked to manufacturing companies on their MES execution 
data and possible analytics. Based on these discussions, we 
decided to set two foci: 

 Considering the data integration layer, we came up 
with a standardized process-oriented data warehouse 
model for the Manufacturing Warehouse integrating 
operational and process data. 

 For analytics and optimization we agreed on investigat-
ing classical data mining techniques for Indication-
based Manufacturing Optimization. 

The resulting technical architecture of the current prototype 
consists of three layers shown in Fig. 7. The Data Integration 
layer comprises the Manufacturing Warehouse. It is built on 
IBM DB2 and contains a relational implementation of the mul-
tidimensional Manufacturing Warehouse schema. The multi-
dimensional schema is deduced from the process metamodel 
and the event model to cover all aspects of a manufacturing 
process. It takes an activity-centric perspective on manufactur-
ing processes with process step executions being the central 
facts. Dimensions are, amongst others, machines and manufac-
turing aids used in process steps, processed material and  
participating employees.  
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Figure 7.  Technical architecture of the current prototype 

Process_

Instance_

ID

Step_1_

Machine_1_

ID

Step_1_

Machine_1_

Age

Step_1_

Empl_1_

ID

Step_1_

Empl_1_

Group

Step_2_

Machine_1_

ID

… LeadTime

P1 M1 1 E10 G1 M34 OK

P2 M2 6 E10 G1 M34 TooHigh

P3 M7 5 E10 G1 M34 TooHigh

P4 M3 3 E10 G1 M34 OK

P5 M4 8 E10 G1 M34 TooHigh

…
 

Figure 8.   Exemplary denormalized input data for root cause analysis 

Furthermore, we identified elementary manufacturing met-
rics related to process steps, e. g., the number of rejects, as the 
basis for calculating typical aggregated metrics, like First Pass 
Yield, used in industry practice [25]. For test purposes, we used 
synthetic data to populate the warehouse. 

The Analytics layer focuses on data mining. Based on liter-
ature analysis [26] and industry interviews, we developed con-
crete data mining use cases for Indication-based Manufacturing 
Optimization and implemented the following two functionali-
ties on top of the data warehouse. 

 The so called metric-oriented root cause analysis iden-
tifies circumstances under which a certain metric of a 
selected process falls into a defined range. It uses deci-
sion trees and user-defined categorized metrics. 

 The structure analysis is based on clustering and lets 
the user cluster instances of a selected process to iden-
tify exceptional or typical process executions.  

The necessary data mining techniques are implemented in 
Java using the WEKA data mining framework [27]. As Fig. 7 
shows, Data Transformation comprises the denormalization 
and filtering of data to prepare it for clustering and decision 
tree induction. The whole data pertaining to a process instance, 
e. g., all employed machines and participating employees, have 

to be denormalized to get one tuple per process instance as 
input for the data mining algorithms. Filtering alludes to the 
filtering of relevant attributes using standard WEKA filters. 
Pattern Detection is based on standard data mining algorithms 
for decision tree induction and clustering. The former uses 
WEKA’s implementation of the C4.5 algorithm and the latter is 
based on WEKA’s k-means clustering.  

Fig. 8 shows an exemplary excerpt of denormalized input 
data for decision tree induction, i. e., training data for a metric-
oriented root cause analysis of lead times. Every row comprises 
denormalized data concerning one process instance with the 
attribute “LeadTime” as class label. Amongst others, machines 
and employees taking part in production steps as well as corre-
sponding additional information like machine age and employ-
ee group are used for decision tree induction. An exemplary 
resulting decision rule presenting an indication for process 
improvement could be: when the first machine employed in 
production step 1 is older than 3 years, lead times are typically 
too high. 

The Presentation layer implements the GUI. It is shaped as 
a simple cockpit with graphical indicators for metric represen-
tation using JFreeChart. Users can select a metric for a specific 
process and start the corresponding root cause analysis or struc-
ture analysis. Decision tree visualization is done with the 
WEKA-provided tree visualizer. 

IV. CONCLUSION AND FUTURE WORK 

This paper has demonstrated that media discontinuities, the 
use of isolated analysis methods on local data sets as well as 
missing means for sharing and reuse of analysis results cause a 
collaborative gap in Manufacturing Process Management that 
prohibits continuous process improvement. To address this 
challenge, we have introduced our Advanced Manufacturing 
Analytics (AdMA) Platform as a transfer of the workflow-
oriented Deep Business Process Optimization Platform (dBOP) 
to the context of manufacturing.  

The AdMA Platform is a holistic BI application and bridges 
the collaborative gap by four means: 

 Integrating operational and process manufacturing data 
in a process-oriented data warehouse. 

 Storing analysis results in a repository for reuse and 
sharing. 



 Transforming analysis results into process improve-
ments using indication-based and pattern-based opti-
mization. 

 Providing optimization functionality in all sub process-
es of Manufacturing Process Management, i. e., during 
the design, implementation, execution and analysis of 
manufacturing processes. 

We have sketched the conceptual architecture and the cur-
rent prototypical implementation of the AdMA Platform. The 
latter focuses on the Manufacturing Warehouse and indication-
based optimization using classical data mining techniques, in 
particular decision tree induction and clustering. 

In our future work, we plan to develop a detailed schema 
for the Manufacturing Insight Repository as an extension of 
dBOP’s Process Insight Repository. Furthermore, we are going 
to design manufacturing-specific optimization patterns to ena-
ble pattern-based optimization - a completely new approach in 
manufacturing. Besides, we are currently extending our plat-
form implementation, e.g., by realizing the Manufacturing Data 
Integrator in order to use authentic manufacturing data. 
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