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Abstract. Continuously improved business processes are a central success fac-

tor for companies. Yet, existing data analytics do not fully exploit the data gen-

erated during process execution. Particularly, they miss prescriptive techniques 

to transform analysis results into improvement actions. In this paper, we present 

the data-mining-driven concept of recommendation-based business process op-

timization on top of a holistic process warehouse. It prescriptively generates ac-

tion recommendations during process execution to avoid a predicted metric de-

viation. We discuss data mining techniques and data structures for real-time 

prediction and recommendation generation and present a proof of concept based 

on a prototypical implementation in manufacturing. 

Keywords: Prescriptive Analytics, Process Optimization, Process Warehouse, 
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1 Introduction 

Today, adaptive and continuously improved business processes play a key role for 

companies to stay competitive. At this, the digitalization of process execution activi-

ties as well as the increasing use of sensor technologies lead to enormous amounts of 

data, from workflow execution data and machine data to quality data, posing a great 

potential for analytics-driven process improvement [1, 2]. 

Yet, existing process analytics in industry practice, e.g., as part of business activity 

monitoring approaches [3], do not fully exploit the valuable knowledge hidden in 

these huge amounts of data due to the following limitations: (1) they do not make use 

of prescriptive techniques to transform analysis results into concrete improvement 

actions leaving this step completely up to the subjective judgment of the user; (2) they 

do not integrate process data and operational data, e.g., from workflow management 

systems and enterprise resource planning systems, to take a holistic view on all pro-

cess aspects; (3) the actual optimization is conducted ex-post after the completion of 

the process in contrast to a proactive improvement during process execution. 

To address these issues, we present the data-mining-driven concept of recommen-

dation-based business process optimization (rBPO) supporting adaptive and continu-



 

 

ously optimized business processes (see Fig. 1). rBPO exploits prescriptive analytics 

and proactively generates action recommendations during process execution in order 

to avoid a predicted metric deviation. It is based on a holistic process warehouse and 

employs classification techniques for real-time prediction and recommendation gen-

eration. For example, a worker is warned during process execution that the entire 

process is likely to run out of time, even if the current lead time meets the require-

ments. Then, a corresponding hint, e.g., to adjust a resource setting, is generated using 

data on past process executions in order to speed up processing and avoid the metric 

overrun. Thus, rBPO focuses on data-driven process optimization at runtime, not on 

classical process model improvement during design-time or ex-post analysis. 

  

Fig. 1. Recommendation-based Business Process Optimization (rBPO) 

The remainder of this paper is organized as follows: In Sec. 2, we define general 

requirements and present the basic approach of rBPO. Its two major components, 

real-time prediction and recommendation generation, are detailed in Sec. 3 and 4. Our 

proof of concept based on a prototypical implementation in the manufacturing indus-

try is described in Sec. 5. Related work and a comparative evaluation of rBPO are 

discussed in Sec. 6. Finally, we conclude in Sec. 7 and highlight future work. 

2 Requirements and Basic Approach 

From a process management perspective, metrics are the basis for process optimiza-

tion. The earlier potential metric deviations, e.g., excessive lead times, are detected 

during process execution, the more likely they can be avoided [4]. On this basis, we 

define the following core requirements (Ri) for rBPO. 

The approach has to support a metrics-based goal definition (R1) and facilitate 

metric prediction and recommendation generation proactively during process execu-

tion (R2). It should make use of all data generated across the entire business process 

in a holistic data basis. That is, it has to integrate process data and operational data 

(R3). Process data is flow-oriented and comprises process execution data, i.e., process 

events, and process model data. Operational data is subject-oriented and provides 

additional information on process subjects like employees or machines [5]. Thereby, 

recommendation generation should be adaptive (R4) by exploiting the continuously 

growing data on completed process executions. Besides, recommendations should 
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comprise multiple actions (R5) in order to achieve the goal, e.g., by recommending 

both the specific resource to use and the corresponding resource settings. 

To realize these requirements, rBPO comprises two major components, namely re-

al-time prediction and recommendation generation, on top of a holistic process ware-

house (PWH) (see Fig. 1). The PWH integrates process data and operational data 

across the entire process and additionally stores analysis results, e.g., data mining 

models, to enable their reuse. 

It has to be remarked that rBPO is a universal concept which can be applied to dif-

ferent process domains like workflow-based processes or manufacturing processes as 

long as there exists a suitable PWH. In this paper, we focus on manufacturing pro-

cesses because we developed a holistic process warehouse for manufacturing in our 

previous work [6]. As a running example throughout the paper, we refer to the manu-

facturing of steel springs in the automotive industry as described in [7]. It comprises 

amongst others steps for winding, tempering and shot peening of springs. Besides, an 

approach towards a holistic process warehouse for workflows can be found in [5] and 

may be used for rBPO, too. 

To keep our approach generic, we only assume that a process P consists of n steps 

Si with 𝑃 = {𝑆1, … , 𝑆𝑛}  ∧  1 ≤ 𝑖 ≤  𝑛. These steps may be executed not only in se-

quential but also in parallel and branched structures. Generally, rBPO can be applied 

to arbitrary process structures. For the sake of understandability, we refer to a sequen-

tial process in our examples where step Si+1 is executed directly after Si. 

Table 1. Data basis with process instance data including the running instance i400 

 

The starting point of rBPO is a holistic data basis with instance data about a process 

provided by the PWH in a denormalized structure (see Table 1). Each row comprises 

all data about all process steps of one instance of the process, e.g., details about ma-

chines settings. Moreover, the categorized value of the metric representing the opti-

mization goal is added for completed process instances. For this purpose, the metric is 

selected in a preliminary step by an analyst who defines value ranges for undesired 

metric deviations. For example, lead times for the process of steel spring manufactur-

ing which are higher than 27 minutes may be too high. This leads to a categorization 

of the metric with two values “OK” and “NotOK”. It is important to remark that the 

metric refers to the entire process, not to a single process step. 

For rBPO, a single instance of a process is analyzed during its execution according 

to the following two-step procedure, which is initiated every time a process step Sj 

with 𝑗 ∈ {1, . . ., 𝑛 − 1} completes. Note that there is no need to run this procedure 

for the last step Sn in a sequential process. 
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(1) After the completion of step Sj, real-time prediction is run to forecast whether 

the entire process instance is likely to run into a metric deviation at the end, that is, 

whether the prediction reveals that the value for the metric will be “NotOK”. 

(2) If the latter is the case, there is a need for optimization to avoid the predicted 

metric deviation. Thus, recommendation generation is executed to deduce an action 

recommendation for the following process step Sm with 𝑚 = (𝑗 + 1) ≤ 𝑛. 

In the following, we present an overview of real-time prediction in Sec. 3 and dis-

cuss recommendation generation as the central rBPO component in Sec. 4. 

3 Real-time Prediction 

Real-time prediction comprises three steps, namely definition of the data basis, min-

ing model generation and mining model application (see Fig. 1). In this section, we 

only highlight major technical aspects due to space limitations. A manufacturing-

oriented discussion of real-time prediction issues can be found in our previous 

work [8]. With respect to the definition of the data basis, we refer to data about com-

pleted process instances in the PWH. From these process instances, we need (1) the 

attributes related to the already completed process steps of the running process in-

stance for which we want to predict the metric value (i400 in our example) and (2) the 

categorized metric value. In Table 1, this comprises the metric attribute and all attrib-

utes of steps one and two for process instances i100 to i300. 

For mining model generation, a suitable data mining technique has to be defined 

which uses the tailored data basis as training data. As we have to predict nominal 

values, classification techniques are employed [9]. Moreover, the generated mining 

model should be optionally presented to an expert user to enable him to comprehend 

the prediction and fine-tune parameters. Thus, the interpretability of the generated 

model should be comparatively high. In our previous work [8], we did a qualitative 

evaluation of major classification techniques with respect to their interpretability. To 

summarize, decision trees are comparably easy to understand and intuitively inter-

pretable due to their graphical representation. Thus, we use decision tree induction as 

classification technique and focus on binary trees for the sake of enhanced under-

standability. The metric attribute represents the dependent attribute and the attributes 

of the set of completed steps 𝐶𝑗 = {𝑆1, . . ., 𝑆𝑗}   with  𝑗 ∈ {1, . . ., 𝑛 − 1} are used as 

independent attributes for decision tree induction. 

Finally, mining model application uses the decision tree to generate the prediction 

for the metric value. To this end, the data of the currently running process instance is 

used to traverse the decision tree and recommendation generation is started if the 

prediction reveals “NotOK”. 

4 Recommendation Generation 

Recommendation generation deduces an action recommendation for the next process 

step in a running process instance. An action recommendation comprises several 

action items consisting of process attributes and a target value for each of them, e.g., 



 

 

“Winding_Speed > 120”. Thus, we base our concept on decision rules combining 

target values of process attributes. For this purpose, we generate decision trees which 

correlate the categorized metric value as a class label with selected attributes of se-

lected process instances. Then, each path from the root node to a leaf node of the tree 

with the label “OK” represents a potential decision rule for a recommendation. We 

use decision trees to generate decision rules for the sake of comprehensibility for an 

expert user as described in Sec. 3. Another option could be to use association rule 

mining to deduce decision rules. Yet, this option lacks comprehensibility for the user. 

In addition, from a more technical point of view, since only association rules related 

to the metric attribute are relevant, computing all frequent item sets as commonly 

done in association rule discovery seems to be superfluous. 

Recommendation generation encompasses the four sequential steps described in 

the following, namely definition of the data basis, mining model generation, mining 

model analysis and recommendation processing (see Fig. 1).  

4.1 Definition of the Data Basis 

The starting point for recommendation generation is the data basis provided by the 

PWH (see Table 1). In the following, restrictions on attributes and process instances 

used for recommendation generation for a process step Sm are discussed. 

Regarding the selection of attributes, we generally assume that only attributes rep-

resenting influencable factors like machine settings are considered, e. g., using a pre-

defined filter. Thus, it is assured that recommendations only comprise directly appli-

cable actions. Besides, attributes referring to completed process steps 

 𝐶𝑗 = {𝑆1, . . ., 𝑆𝑗}, are out of scope as they cannot be changed anymore. Moreover, 

attributes of all remaining process steps 𝑅𝑚 = {𝑆𝑚, . . ., 𝑆𝑛}   with 𝑚 = 𝑗 + 1 ≤ 𝑛  
could be used to compare different recommendations for process step Sm with regard 

to their effects on later recommendations. Yet, this makes the evaluation of decision 

rules for the recommendation significantly more complex. Hence, we only use attrib-

utes of step Sm for recommendation generation for step Sm. In our example (see Ta-

ble 1), these are amongst others “Machine_ID” and “Peening_Duration” for step S3. 

Table 2. Data basis and restrictions for recommendation generation for process step S3 

 

With respect to the selection of process instances, recommendations are derived using 

data about completed process instances because other running instances miss the final 

metric value necessary for decision tree induction. Thereby, a decisive point is wheth-
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er (1) all completed process instances are incorporated or whether (2) only completed 

instances which have the same attribute values as the currently running process in-

stance are selected. To illustrate this point, Table 2 shows an exemplary data basis for 

recommendation generation for process step 3 in instance i400. Completed instances 

that have the same attribute value as the running instance are marked in blue (i100-

i105). In general, there can be various implicit dependencies between process attrib-

utes due to process restrictions, which are not represented explicitly. For instance, 

certain materials used in step 2 may require specific machines in step 3. 

In variant (1), one resulting recommendation based on the decision tree in Fig. 2 

would be to use machine M33 in step 3. Yet, this conflicts with the process re-

strictions because machine M33 cannot be used with material MA44. In contrast, the 

decision tree in variant (2) reveals the one and only valid recommendation in this 

example, i.e., to use tool T17. This is because the dependency between material and 

machines can only be recognized by decision tree induction when solely instances 

i103-i105 are used. Hence, we opt for variant (2), but we have to remark that a mini-

mum amount of data about completed process instances with the same attribute values 

has to be available in order to recognize the dependencies. 

 

Fig. 2. Exemplary decision trees with different data bases 

4.2 Mining Model Generation 

Mining model generation comprises the generation of the decision tree on the data 

basis defined in Sec. 4.1. Below, we discuss the structure of the tree and its height. 

With respect to the structure of the decision tree, we differentiate binary trees and 

n-ary trees, whereas the former has exactly two child nodes per node and the latter 

has arbitrarily many [9]. On the one hand, an n-ary tree reveals a higher number of 

rules due to the n-ary split, if we assume that a typical process attribute has more than 

two values. This increases the complexity of mining model analysis (see Sec. 4.3). On 

the other hand, the rules are supposed to be more trustworthy as they have a potential-

ly lower misclassification rate compared to binary trees, when the maximum height of 

the trees is fixed. Yet, each decision rule in an n-ary tree is potentially backed up by 

less underlying process instances than a rule of a binary tree, if the maximum height 

is fixed. That is, the rules are derived from less process instances and thus are sup-

posed to be less significant. Hence, for our approach, we opt for binary trees to gener-

ate more significant recommendations and reduce the complexity of mining model 

analysis due to a smaller number of rules. Moreover, we decide to further restrict the 
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trees by using only equal and not-equal relations for branches in order to speed up tree 

induction and simplify recommendations. That is, there are no subset restrictions on 

the branches. This makes recommendations more general and flexible. For instance, a 

recommendation may suggest employing all tools except tool 18. 

With respect to the height of the decision tree, we define a maximum height de-

pending on the concrete process and the number of process attributes in order to re-

strict the number of action items of a recommendation. Corresponding algorithms for 

decision tree induction and pruning to achieve the desired height are presented in 

Sec. 5.1. 

4.3 Mining Model Analysis and Recommendation Processing 

Based on the generated decision tree, mining model analysis comprises two steps, the 

derivation of decision rules and their evaluation in order to select the rule for the 

recommendation. For rule derivation, the tree is traversed from the root node to each 

leaf and each path which ends in a leaf node with the label “OK” results in a decision 

rule (see Fig. 3). 

 

Fig. 3. Decision tree and resulting decision rules 

Then, rule evaluation analyzes each rule according to the following four criteria: 

The misclassification rate q is the percentage of process instances a rule does not 

classify correctly with respect to all instances covered by a rule, irrespective of their 

class label. The lower the misclassification rate, the higher is the trustworthiness of 

the rule. In general, rules are excluded that excess a threshold with, e.g., 𝑞 > 0.2, 

depending on the concrete process. 

The percentage of underlying instances r refers to the number of process instances 

a rule was derived from in relation to the total number of instances underlying the 

entire tree as training data. It represents the significance of the rule. Rules are exclud-

ed which do not apply to a minimum percentage of instances with, e.g., 𝑟 < 0.1, de-

pending on the concrete process. 

The length of the rule l refers to the number of action items, that is, attribute-value-

combinations of a rule. The shorter a rule, the easier it may be applied. 

The compliance with planned values c refers to the correspondence of the action 

items of a rule with values defined during process planning, e.g., whether the recom-
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mended machine matches the planned one. Compliance c is defined as the percentage 

of matching attribute-value-combinations of a rule. The higher the compliance, the 

easier and faster a rule may be applied. Yet, it has to be remarked that there are attrib-

utes for which no production planning specifications are made and thus we do not 

define thresholds for c. 

Table 3. Evaluation of decision rules 

 

For the final selection of a rule, we first filter all rules according to the defined 

thresholds for r and q in order to ensure a minimum quality of all rules. Then, we 

calculate a total score t with 0 ≤ 𝑡 ≤ 100 for each remaining rule and select the rule 

with the highest total score. To this end, a sub score is calculated for each criterion 

ranging from 0 to 25. These sub scores are summed up to the total score as follows: 

𝑡 = ((1 − 𝑞) × 25) + (𝑟 × 25) + ((
1

𝑙
) × 25) + (𝑐 × 25). 

We equally weight all criteria but individual weights can be assigned depending on 

the concrete process. If there is more than one rule with the highest total score, they 

may be used alternatively or presented to the user. In the example (see Table 3), rule 

no 3 is excluded due to its excessive misclassification. Finally, total scores for rules 

no 1 and 2 are calculated and rule no 1 is selected for recommendation processing. 

As the last step after mining model analysis, recommendation processing gets the 

selected decision rule as input and may either present it to the user in text form or feed 

it back in an operational system, e.g., a workflow management system, for further 

processing. For the sake of simplicity, we present the decision rule in human readable 

text to the user. In our example with rule no 1, a shop floor worker in manufacturing 

may receive the recommendation “Use machine M33 and do a reset before peening”. 

5 Proof of Concept: Application in Manufacturing 

Below, we provide a first technical proof of concept of rBPO based on a prototypical 

implementation for the manufacturing industry. Our prototype is based on the work 

of [10] and makes use of a relational implementation of the Manufacturing Ware-

house [6] as a PWH in IBM DB2. We use RapidMiner as a data mining tool and store 

decision trees in XML format. For decision tree induction, there is no generally valid 

algorithm as it heavily depends on the available data. For our prototype, we choose 

the C4.5 algorithm [11]. Alternatively, incremental decision tree algorithms [9] could 

be used to facilitate incremental model updating on the basis of new process instanc-

es. Real-time prediction and recommendation generation are implemented in Java. 

No Rule Missclassification (q) Instances (r) Length (l) Compliance (c) Score (t)

1
Step3_Machine_ID = M33 ∧

  Step3_Peening_Reset = 1
11% 41% 2 50% 58

2
Step3_Machine_ID != M33 ∧

  Step3_Peening_Speed < 37
9% 25% 2 0% 42

3

Step3_Machine_ID != M33 ∧

  Step3_Peening_Speed >= 37 ∧ 

  Step3_Peening_Duration <= 25 

26% 16% 3 33% -



 

 

For the proof of concept, we focus on the technical feasibility of rBPO and apply 

our prototype in an exemplary case, i.e., the manufacturing of steels springs for car 

motors as described in [7]. The process comprises sequential steps for winding, tem-

pering, shot peening and testing of springs and employs different machines, e.g., 

winding automates and tempering furnaces. Based on a process study, we identified 

attributes of process steps and resources, e.g., winding speed and peening duration, as 

well as influence factors for metric deviations, e.g., machine settings. Then, we gen-

erated corresponding data on up to 100,000 process instances to populate the PWH. 

On this basis, we investigated recommendation generation with respect to the re-

quirements defined in Sec. 2. rBPO proved to proactively generate meaningful rec-

ommendations at process runtime (R2) focusing on metrics such as lead time and 

quality rate (R1). Thereby, it made use of operational and process manufacturing data 

(R3), e.g., from manufacturing execution systems and enterprise resource planning 

systems, integrated in the Manufacturing Warehouse. Decision trees were always 

generated on the entire data set to exploit the complete process history and realize 

adaptive recommendations (R4). The generated recommendations combined multiple 

action items (R5), e.g., on resources like machines, across different process steps. 

In addition, we did measurements for multiple settings varying the number of pro-

cess instances up to 100.000 instances on our test system (Windows Server 2008 R2, 

Core i7-2620M@2,7 GHz, 8 GB RAM). Each setting comprised 65 attributes across 

the process and was measured 5 times. For a setting with 100.000 process instances, 

our measurements reveal that data basis definition and mining model generation for 

real-time prediction take about 11 seconds on average. This is not critical as it can be 

done offline in advance. Mining model application takes less than one second which 

is suitable for online use at process runtime. For recommendation generation, data 

basis definition and mining model generation take less than 2 seconds on average. 

They have to be done online as the number of possible decision trees prevents an 

offline preparation. This is acceptable in typical manufacturing environments as there 

often is a delay between two manufacturing steps, e.g., due to transportation. Moreo-

ver, there is a significant potential for performance optimization, as the focus of our 

first proof of concept was on feasibility issues instead of pure response time. Finally, 

mining model analysis and textual presentation are done in less than 100 milliseconds. 

To sum up, our first proof of concept demonstrates the technical feasibility and 

performance of rBPO. It proves that action recommendations can be proactively de-

duced at process runtime on the basis of a holistic process warehouse and that they 

can be generated quickly enough for an exemplary process environment. This pro-

vides the basis for an application in a real-world case in order to further evaluate the 

recommendations, e.g., comparing their effectiveness and comprehensibility. 

6 Related Work and Evaluation 

To structure related work, we differentiate three types of data analytics for process 

optimization [12]: Descriptive analytics focus on the manual and metrics-based anal-

ysis of completed processes as done in online analytical processing and reporting 



 

 

systems [13]. As opposed to that, predictive analytics forecast future process events. 

Recent approaches in process mining and business process intelligence [1, 14-17], 

e.g., for the prediction of metric values of running processes, belong to this category. 

Yet, all these approaches do not suggest concrete decisions but rather rely on the 

subjective judgment and analytical skills of the user to deduce improvement actions. 

In contrast, prescriptive analytics generate specific action recommendations to 

achieve a goal. That is, they build a bridge between pure analysis and actual optimiza-

tion. In general, we observe two types of systems for prescriptive analytics: (1) rec-

ommender systems [18] using data mining techniques [9] and (2) expert systems [19] 

typically using rule-based, case-based and model-based reasoning techniques. We 

focus on data-mining-based concepts because expert systems require additional 

knowledge formalization and modeling and thus prevent a truly data-driven approach. 

An initial approach towards prescriptive analytics for process optimization using 

decision trees is presented in [20]. It exploits a holistic process warehouse to generate 

decision trees predicting the performance of a new process instance. In case of a nega-

tive prediction, the instance is reconfigured before its execution. For the reconfigura-

tion, the authors suggest to analyze the decision trees in order to deduce action rec-

ommendations. Yet, they do not provide any technical details on recommendation 

generation or decision tree evaluation and primarily focus on prediction issues. 

Table 4. Comparative evaluation of rBPO 

  

To evaluate rBPO with respect to existing data-driven approaches, we did a qualita-

tive comparison against the requirements defined in Sec. 2. For the comparison (see 

Table 4), we focus on the approaches of pattern-based optimization (PatOpt) [21], 

recommendation generation using process mining techniques (RPM) [22, 23] as well 

as the approach of risk-based decision support (RDS) [24] as these are the data-driven 

approaches most closely related to rBPO. PatOpt comprises a predefined catalogue of 

so called optimization patterns which encapsulate data mining techniques and gener-

ate improvement recommendations, e.g., automating a certain decision activity to 

speed up the process. RPM focuses on operational decision support by recommending 

an action in order to optimize a metric, e.g., recommending the best resource for an 

activity. RDS predicts risks in terms of metrics deviations during process execution to 

provide decision support for certain actions, e.g., choosing the next process activity 

which minimizes process risks. 

rBPO

Pattern-based 

Optimization 

(PatOpt)

Recommendation-

based Process 

Mining (RPM)

Risk-based 

Decision Support 

(RDS)

R1 Metrics-based Goal Definition ○ + ○ ○

R2
Proactive Optimization

during Process Execution
+ - + +

R3
Integration of Process Data 

and Operational Data
+ + - -

R4
Adaptive Recommendation 

Generation
+ - + +

R5
Multiple Action 

Recommendations
+ + - -

+ /  / - Approach fully/partially/does not meet(s) requirement



 

 

All four approaches support a metrics-based goal definition (R1). Thereby, rBPO 

and RPM require the definition of one, possibly aggregated, target metric to be opti-

mized, e.g., lead time. RDS focuses on risks in terms of metric deviations aggregated 

to a mathematical function. In contrast, PatOpt is based on the four target dimensions 

of process improvements, namely time, cost, quality and flexibility, and enables a 

multi-goal optimization. As opposed to the other approaches, PatOpt does not provide 

proactive optimization (R2) as optimization patterns are applied ex-post after process 

execution. With respect to the data basis (R3), both rBPO and PatOpt are based on a 

holistic process warehouse integrating operational data and process data. RPM and 

RDS mainly focus on process data in an event log without explicitly integrating oper-

ational data on process subjects, e.g., machine data or master data on employees. Yet, 

we assume the integration of operational data to improve recommendation quality due 

to the augmented data basis. rBPO, RPM and RDS adaptively generate recommenda-

tions (R4) using data on past process executions. At this, rBPO employs classification 

techniques on warehouse data and RPM statistically evaluates the event log with 

traces of completed process instances. RDS employs decision tree induction on the 

event log to generate risk predictions. By contrast, the pattern catalogue of PatOpt 

constitutes a static collection of optimization best practices preventing adaptive rec-

ommendation generation. With respect to the generated recommendations, rBPO 

dynamically combines multiple action items (R5) of various types and PatOpt aggre-

gates several optimization patterns. As opposed to that, RPM and RDS are less flexi-

ble and focus on a predefined type of action, e.g., to suggest the next activity to per-

form. At this, RDS provides only rudimentary decision support by predicting the 

potential risk for all possible actions without further concrete recommendations. All 

in all, rBPO goes beyond existing approaches by using a holistic data basis for adap-

tive recommendation generation in a fully data-driven manner. 

7 Conclusion and Future Work 

In this paper, we presented prescriptive analytics for recommendation-based business 

process optimization at process runtime. Our proof of concept underpins the technical 

feasibility and performance of our approach and emphasizes the importance of com-

prehensive data acquisition infrastructures, especially in manufacturing processes, to 

enable real-time process optimization. Moreover, it motivates the application in a 

real-world case to analyze recommendation quality and further refine decision rule 

evaluation. The realization of a closed loop feeding the recommendations back into a 

process control system is another aspect of future work. 
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