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Abstract: Today’s turbulent global environment requires agility and flexibility of manufacturing compa-

nies to stay competitive. Thus, employees have to monitor their performance continuously and react 

quickly to turbulences which demands real-time information provisioning across all hierarchy levels. 

However, existing manufacturing IT systems, e.g., Manufacturing Execution Systems (MES), do hardly 

address information needs of individual employees on the shop floor. Besides, they do not exploit ad-

vanced analytics to generate novel insights for process optimization. To address these issues, the Opera-

tional Process Dashboard for Manufacturing (OPDM) is presented, a mobile data-mining-based dash-

board for workers and supervisors on the shop floor. It enables proactive optimization by providing ana-

lytical information anywhere and anytime in the factory. In this paper, first, user groups and conceptual 

dashboard services are defined. Then, IT design issues of a mobile shop floor application on top of the 

Advanced Manufacturing Analytics Platform are investigated in order to realize the OPDM. This com-

prises the evaluation of different types of mobile devices, the development of an appropriate context 

model and the investigation of security issues. Finally, an evaluation in an automotive industry case is 

presented using a prototype in order to demonstrate the benefits of the OPDM for data-driven process 

improvement and agility in manufacturing. 
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1 Introduction 

Nowadays, manufacturing companies have to face intense competition in a globalized and high-

ly turbulent environment. Ever shorter product lifecycles, rapidly changing customer needs and 

erupting market structures necessitate agile and flexible as well as continuously optimized com-

pany structures and processes (Westkämper 2009). The successful realization of agility-oriented 

management concepts such as the Stuttgart Enterprise Model (Westkämper, Hummel, and 

Rönnecke 2005) require comprehensive real-time information provisioning and transparency 

across all hierarchy levels, from the shop floor level to the enterprise control level. Workers 

have to be able to monitor their current performance, recognize problems quickly and react im-

mediately to turbulent situations in order to avoid uncoordinated waiting times and costly com-

munication (Bracht, Hackenberg, and Bierwirth 2011). For this purpose, data on the current 

status of manufacturing operations on the shop floor has to be aggregated, enriched and ana-

lysed in order to generate insights for process optimization and feed them back to the different 

Recommended citation and copyright 

Gröger, C.; Stach, C.; Mitschang, B.; Westkämper, E.: A Mobile Dashboard for Analytics-Based 

Information Provisioning on the Shop Floor. In: International Journal of Computer Integrated  

Manufacturing, 29 (12), pp. 1335-1354, 2016. © Taylor & Francis 2016. 

The Version of Record of this manuscript has been published and is available in the International 

Journal of Computer Integrated Manufacturing, 27 May 2016, under 

http://www.tandfonline.com/10.1080/0951192X.2016.1187292 



hierarchy levels in a data-driven improvement cycle.  

For example, if a certain combination of machine settings and input materials in a manu-

facturing step leads to quality problems in subsequent steps very likely, workers and supervisors 

should be warned proactively during process execution and action recommendations should be 

provided on how to avoid the problem. For this purpose, not only metrics-based performance 

data about the manufacturing process is necessary but advanced data analytics are needed ena-

bling predictive optimization. In addition, employees have to be able to access information on 

the process status, on work instructions and on improvement suggestions anytime and anywhere 

on the factory shop floor in order to flexibly react to such changes. 

However, existing manufacturing IT systems, e.g., Enterprise Resource Planning (ERP) or 

Manufacturing Execution Systems (MES) (Kletti 2007), are coined by the following three major 

insufficiencies which considerably limit flexibility and data-driven process optimization on the 

shop floor: 

1. They are primarily designed for the enterprise control level and the manufacturing con-

trol level and do not address information needs of individual employees on the shop 

floor. 

2. They do not exploit advanced data analytics, e.g., data mining techniques, to extract 

knowledge from the huge amounts of data generated during process execution and con-

trol. 

3. They do hardly provide mobile and situation-aware information, e.g., by using mobile 

devices such as smartphones and tablet PCs. 

To address these issues, the Operational Process Dashboard for Manufacturing (OPDM) is pre-

sented in this paper, a mobile and analytics-based dashboard for workers and supervisors on the 

shop floor in discrete manufacturing. It enables proactive process optimization and responsive-

ness on the shop floor by providing analytical process information and services, e.g., current 

metric values and data-mining-based root cause analyses, ubiquitously and near-real-time across 

the entire factory. Thereby, the OPDM holistically addresses the whole range of process-

oriented information needs, namely process context, process performance, process knowledge 

and process communication, in a situation-aware manner. 

The remainder of this paper is organized as follows: In Section 2, the most significant re-

lated work with respect to dashboards in manufacturing is categorized. Next, user groups of the 

OPDM as well as conceptual dashboard services are defined in Section 3. In Section 4, the re-

quirements of the OPDM are investigated from the point of view of a Business Intelligence 

application and the Advanced Manufacturing Analytics (AdMA) Platform (Gröger et al. 2012) 

is presented as a technical basis for the OPDM. Section 5 focuses on general design issues of a 

mobile shop floor application for smartphones and tablet PCs on top of the AdMA platform in 

order to realize the OPDM. To this end, different types of mobiles devices, context management 

issues as well as security issues are investigated. The application of the OPDM in an automotive 

industry case as well as evaluation issues are comprehensively covered by Section 7. This in-

cludes real-world application scenarios and details on data mining techniques and data struc-

tures. Finally, Section 8 concludes the paper and highlights future work. 



 

Figure 1: Building blocks of the OPDM. 

This paper results from the research project Advanced Manufacturing Analytics (Gröger 2015) 

and specifically builds on the authors’ previous work (Gröger et al. 2013a) which provides the 

basic concept and the requirements of the OPDM covered by the Sections 2, 3 and 4.1. Taking 

this as a starting point, the paper at hand addresses the realization challenge of the OPDM and 

focuses on the development of a mobile shop floor application and the evaluation of the entire 

OPDM (see Figure 1). The main contributions can be summarized as follows: 

• A conceptual analysis of the OPDM from the point of view of a Business Intelligence 

application is conducted and the AdMA platform is investigated as a technical basis for 

the realization of the OPDM. This reveals the need for a mobile shop floor application 

on top of the AdMA platform as shown in Figure 1 (see Sections 4.2-4.4). 

• General IT design issues of a mobile shop floor application are investigated to enable 

mobile, easy-to-use and situation-aware access to analytical optimization services on 

the shop floor. This comprises the evaluation of different types of mobile devices, espe-

cially tablet PCs (see Section 5.1), the development of an appropriate context model and 

the investigation of localization techniques suited for the shop floor (see Section 5.2). 

Besides, to address security issues, concepts for data security in mobile applications are 

studied (see Section 5.3). 

• A comprehensive evaluation of the entire OPDM is conducted. It comprises both a 

case-based evaluation of the OPDM in an automotive industry case (see Sections 6.1-

6.4) and a comparative evaluation with existing approaches (see Section 6.5). The eval-

uation highlights the technical feasibility and applicability of the OPDM and demon-

strates the benefits of mobile and analytics-based information provisioning for continu-

ous data-driven process improvement and agility in manufacturing (see Section 6.6). 

2 Information Provisioning and Dashboards in Manufacturing 

In this section, existing manufacturing dashboard concepts in terms of IT tools for information 

provisioning in manufacturing are structured. Thereby both, stationary and mobile dashboard 

realizations with a focus on mobile apps are taken into account. The latter refer to applications 

on touchscreen-based consumer devices, especially smartphones and tablet PCs, as defined in 

(Gröger et al. 2013b). First, the term ‘dashboard’ is defined, then existing dashboard approaches 

are categorised, and finally, the concept of the OPDM is differentiated. 

In general, the term dashboard is inspired by dashboards in automobiles and aircrafts. Digi-

tal dashboards refer to dashboards in the area of Business Intelligence whereas no common, 
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exact definition of the term exists (Adam and Pomerol 2008). In literature two types of defini-

tions can be found: In a stricter sense, the term refers to tools for the graphical visualization of 

key performance indicators (KPIs) complemented by reporting functions for top managers, syn-

onymously often called management cockpits (Rainer and Cegielski 2011). In a broader sense, 

digital dashboards are intuitive and easy-to-use front ends for monitoring, analysing and opti-

mizing critical business activities by enabling users on all hierarchy levels to improve their de-

cisions (Eckerson 2011; Malik 2005). In this paper, the term dashboard always denotes a digital 

dashboard in a broader sense focusing services and contents provided by the dashboard to the 

user. 

 

Figure 2. Classification of dashboard concepts (Gröger et al. 2013a). 

Based on a literature review, major existing dashboard concepts in the context of manufacturing 

were identified. As shown in Figure 2, these dashboards can be classified according to the or-

ganizational level, that is, the hierarchy level the dashboard’s services are designed for. It is 

based on a simplified version of the hierarchy model of manufacturing (International Society of 

Automation 2000) with the enterprise control level, comprising business-related activities such 

as production planning, the manufacturing control level, comprising the management of single 

manufacturing process executions, as well as the manufacturing process level, comprising the 

physical process on the shop floor. In this paper, the term ‘manufacturing process’ refers to all 

steps and resources from the creation of the production order until the finishing of a part or 

product as defined in the work plan. Moreover, the term ‘business process’ is used in the con-

text of this work in order to refer to all other types of processes in a company, e.g., procurement 

processes or after sales processes. 

Business Activity Monitoring (BAM) (McCoy 2002) and related dashboards focus on the 

real-time monitoring and analysis of critical business processes to identify irregularities during 

process execution and react promptly (Muehlen and Shapiro 2010). These dashboards are used 

on the enterprise control level and provide KPI monitoring and alerting. They are typically im-

plemented in company-specific variants on top of ERP or workflow management systems using 

business intelligence and data warehousing platforms (Kemper, Baars, and Mehanna 2010). 

Traditional BAM realizations focus on stationary access, e.g., using browser-based frontends, 

whereas recently mobile apps are becoming more and more popular to provide current KPI in-

formation on-the-go (Airinei and Homocianu 2010). 

MES cockpits are dashboards for manufacturing operations management used by produc-

tion supervisors on the manufacturing control level (Kletti 2007). They are part of MES and 

support detailed scheduling, process monitoring as well as resource management. Regarding 
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analytics, control panels are mainly based on simple statistics and reporting with basic alerting 

services. Control panels are typically realized on fixed work stations whereas recently MES 

vendors begin to port selected functions to mobile apps for the shop floor, e.g., OpsTrakker 

Mobile App (Enhanced Information Solutions 2014) and HYDRA Smart MES Apps (MPDV 

2014). 

Regarding dashboards for the shop floor, an initial approach named ‘Visualization System 

for Operational Logistics’ is presented in (Bracht, Hackenberg, and Bierwirth 2011). It includes 

a dashboard for the real-time visualization of process performance information, mainly KPIs, 

for shop floor workers in logistics and is implemented as a mobile app on a tablet PC. With 

respect to standard software solutions, SAP provides the Production Operator Dashboard (SAP 

2012) as a dashboard for workers. It provides a web-browser-based frontend and mainly focuses 

on data acquisition as well as presentation of work instructions at stationary work places. 

With respect to mobile apps for the shop floor in general, a comprehensive analysis is pre-

sented in (Gröger et al. 2013a). According to that, there are currently only rudimentary ap-

proaches focusing on isolated process aspects, e.g., apps for quality management such as SAP 

Quality Issue Mobile (SAP 2014) to track quality problems. 

The OPDM significantly differs from these existing approaches, since a holistic mobile 

dashboard for shop floor workers and supervisors is provided. It goes beyond simple metrics-

based performance information by providing data-mining-driven services and holistically ad-

dresses the whole range of process-oriented information needs. 

3 User Groups and Dashboard Services 

In this section, the user groups of the OPDM are described and corresponding conceptual dash-

board services provided for these user groups are defined. The OPDM is designed for two major 

user groups, namely workers and supervisors on the shop floor. In the following, the term ‘em-

ployee’ is used to refer to both user groups. Workers comprise all employees who are directly 

involved in the execution of a manufacturing process, e.g., by controlling machines. Supervisors 

are responsible for the execution and control of a certain manufacturing process (or selected 

parts) and the corresponding group of workers and thus have a more aggregated view on manu-

facturing operations. 

The dashboard services are grouped by the four process-oriented information needs for 

employees on the shop floor, namely process context, process performance, process knowledge 

and process communication. The following gives an overview of the dashboard services on a 

conceptual level. Special emphasis is put on services for process performance as these services 

are concerned with data analytics. To illustrate the concepts, a screenshot-based impression for 

an example OPDM for the mass manufacturing of steel springs in the automotive industry is 

given (see case example in Section 6). A further discussion of information needs and corre-

sponding dashboard services can be found in the authors’ previous work (Gröger et al. 2013a). 

3.1 Process Context 

Process context refers to information about both the context of the overall process, e.g., infor-

mation about the goods to be produced, and the context of the particular process step a worker 

participates in, e.g., information about subsequent steps. On this basis, the worker grasps at a 

glance the current situation beyond his local work place. For supervisors, an overview of the 

whole process with all process steps is provided, which highlights currently failures and prob-



lems. In this way, the supervisor gets a quick impression about the overall state of the process. 

3.2 Process Performance 

In general, process performance refers to information about the technical and managerial per-

formance of the process. It is based on set of business-critical metrics, that is, KPIs such as cy-

cle time, to operationalize the effectiveness and efficiency of manufacturing operations, both on 

a process-wide and an employee-specific level (see Figure 3). 

 

Figure 3. Screenshot of OPDM’s process performance component (Gröger et al. 2013a; adapted 

from Procedia CIRP Vol. 7, © 2013 with permission from Elsevier). 

In addition to descriptive KPI visualizations and statistics, predictive and prescriptive capabili-

ties are provided by the OPDM to enable proactive and anticipatory acting of employees. This 

feature goes significantly beyond traditional BAM and control panel approaches. Metric-

oriented predictions as presented in (Gröger, Niedermann, and Mitschang 2012) enable the 

forecasting of KPI values across the overall process based on data mining techniques If a pro-

cess-wide KPI such as cycle time or quality rate is likely to exceed or fall below a certain 

threshold, all employees are warned during process execution and can take necessary measures. 

Moreover, a prescriptive analytics approach as described in (Gröger, Schwarz, and Mitschang 

2014a) is provided, which proactively generates action recommendations on how to avoid the 

predicted KPI deviation, e.g., resetting a machine to avoid quality problems. This is based on 

data mining techniques to automatically identify improvement patterns in data on past process 

executions which prevented the metric deviation. In the same way, metric-oriented root cause 

analysis (Gröger, Niedermann, and Mitschang 2012) facilitates the identification of influence 

factors of KPI deviations across the entire manufacturing process, e.g., to identify reasons for 

high reject levels. It is particularly tailored for supervisors and exploits data mining techniques 

(see Section 6.3.2 for details on data mining techniques and data structures). These advanced 



analytics concepts leverage the huge amounts of data generated during process execution and 

control by extracting valuable knowledge for continuous process improvement. 

3.3 Process Knowledge 

Process knowledge comprises information on process instructions and process improvement to 

support organizational learning (see Figure 4). 

 

Figure 4. Screenshot of OPDM’s process knowledge component (Gröger et al. 2013a; adapted 

from Procedia CIRP Vol. 7, © 2013 with permission from Elsevier). 

Regarding interactive process instructions, there are not only traditional textual work instruc-

tions but additional photos and videos to enable fast introduction of new workers. In addition, 

there is a knowledge management component for process improvement. It represents a system-

atic solution for the creation, evaluation, sharing and application of suggestions for continuous 

improvements and problem tickets. These suggestions respectively tickets are created by work-

ers and supervisors using text memos, photos, audio recordings or videos. This enables a com-

munity-driven improvement process integrating the valuable shop floor knowledge and hands-

on experience of all employees on the shop floor. 

3.4 Process Communication 

Process communication refers to the exchange of information between different process partici-

pants to supports seamless interaction of employees, e.g., in case of exceptional situations. For 

this purpose, a component for asynchronous message exchange using text and audio messages 

as well as a real-time video conference component are provided. In contrast to process 

knowledge information, exchanged messages are only temporarily relevant and expire at some 

point in time, e.g., at the end of the current work shift. Process communication is designed to be 



simple and easy-to-use to encourage and foster information exchange on the shop floor. 

4 Requirements and Technical Basis 

From an IT point of view, the OPDM constitutes a Business Intelligence application (Kemper, 

Baars, and Mehanna 2010) as it requires components for data provisioning, data analytics as 

well as presentation. Section 4.1 defines the technical requirements of the OPDM and Section 

4.2 presents the AdMA platform as a Business Intelligence platform and a technical basis for 

the realization of the OPDM. Finally, the AdMA platform is evaluated with respect to the re-

quirements of the OPDM and necessary extensions, especially a mobile shop floor application, 

are identified in a gap analysis in Section 4.3. 

4.1 Requirements Analysis 

In the following, technical requirements of the OPDM are analysed considering each architec-

tural layer of a Business Intelligence application, i.e., considering data provisioning, data ana-

lytics and result sharing as well as presentation. 

Regarding the data provisioning layer, the OPDM requires not only data about the manu-

facturing process itself, e.g., the current cycle time, but additional operational data describing 

the subjects in the process, e. g., details about participating employees or machines. Thus, a 

holistic data warehouse integrating process manufacturing data and operational manufacturing 

data is a core requirement. In order to feed the OPDM with up-to-date information, data provi-

sioning has to be done in near-real-time. That is, data changes in the source systems have to be 

immediately propagated to the holistic warehouse. 

With respect to the data analytics and result sharing layer the OPDM requires both statis-

tics and reporting concepts and data mining techniques for predictive and prescriptive issues. 

Moreover, a component for storing and sharing of content items is necessary to realize the 

OPDM areas process knowledge and process communication. In addition, a component for au-

dio- and video-based communication is required to realize the conference system for process 

communication. 

In view of the presentation layer, the user interface of the OPDM has to be intuitive and 

easy-to-use. Moreover, the services have to be presented in a situation-aware manner to realize 

a personalized and individualized information provisioning based on the current context of the 

user. Finally, a flexible mobile usage of the OPDM is necessary, as individual employees may 

change locations and walk through the factory, especially supervisors. 

4.2 The Advanced Manufacturing Analytics Platform  

as a Business Intelligence Platform for Manufacturing 

The AdMA platform (Gröger et al. 2012) is a Business Intelligence platform for data-mining-

driven manufacturing process optimization. The conceptual architecture of the AdMA platform 

comprises three integrated layers as shown in Figure 5, namely the data integration layer, the 

process analytics layer and the process optimization layer, which are shortly presented in the 

following. 



 

Figure 5. Conceptual architecture of the Advanced Manufacturing Analytics Platform. 

On the data integration layer, the Manufacturing Data Integrator consolidates process manu-

facturing data and operational manufacturing data in a holistic process warehouse, the Manufac-

turing Warehouse (Gröger, Schwarz, and Mitschang 2014b). 

The process analytics layer comprises various analytic techniques, especially process mod-

el analysis, metrics calculation and data mining, on top of the Manufacturing Warehouse in 

order to generate insights for process optimization and stores them in the Manufacturing 

Knowledge Repository (Gröger, Schwarz, and Mitschang 2014b). Details on the data model of 

the Manufacturing Knowledge Repository are presented in Section 6.2.2. 

The Manufacturing Knowledge Repository and the Manufacturing Warehouse are based on 

a generic manufacturing process meta model (Gröger, Schwarz, and Mitschang 2014b). The 

meta model defines general constructs of discrete manufacturing processes, e.g., process steps 

and resources, and ensures the universal applicability of the AdMA platform independent of 

individual manufacturing processes. 

The process optimization layer comprises optimization services that use and combine in-

sights provided by the Manufacturing Knowledge Repository. Indication-based optimization 

(Gröger, Niedermann, and Mitschang 2012) uses preconfigured data mining models for root 

cause analyses and predictions. Recommendation-based optimization (Gröger, Schwarz, and 

Mitschang 2014a) generates concrete action recommendations for process improvement. Details 

on the data structures and the employed data mining techniques for the optimization services are 

provided in Section 6.3.2. 

4.3 Gap Analysis 

In the following, a gap analysis is presented analysing how the requirements of the OPDM are 

met by the AdMA platform (see Table 1). 
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Table 1. Gap analysis: OPDM requirements met by the AdMA platform. 

 

With respect to data provisioning, the AdMA platform fully meets the requirements of the 

OPDM. The Manufacturing Warehouse provides a holistic data basis integrating operational 

data and process data and the Manufacturing Data Integrator facilitates rapid data provisioning 

by exploiting near-real-time ETL concepts. 

Regarding data analytics and result sharing, metrics calculation and data mining tech-

niques constitute the core of the AdMA platform. Both are provided as generic components on 

the process analytics layer and used by predefined optimization services on the process optimi-

zation layer. The Manufacturing Knowledge Repository facilitates the storing of content, e.g., 

text messages, videos and documents, and integrates them with structured data from the Manu-

facturing Warehouse. However, components for audio- and video-based communication are not 

included in the AdMA platform as it does not focus on synchronous communication issues. This 

gap of a communication middleware can be addressed by the integration of existing conference 

systems in the AdMA platform, e.g., Microsoft Skype1 , which are provided for a wide range of 

mobile and stationary devices. Hence, it does not constitute a major obstacle for the realization 

of the OPDM and is therefore not further addressed in this paper. 

Presentation issues are not addressed in the architecture of the AdMA platform as the fo-

cus is on generic middleware functions for data analytics. Thus, there is a significant gap in 

order to realize the OPDM using the AdMA platform. To fill this gap, a mobile shop floor ap-

plication is required which facilitates mobile, easy-to-use and situation-aware access to the 

AdMA platform. 

4.4 Conclusion 

All in all, the AdMA platform represents a suitable technical basis for the OPDM as it consti-

tutes a generic Business Intelligence platform for manufacturing. To bridge the gap between the 
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user and the AdMA platform, a mobile shop floor application is needed. That is, the AdMA 

layers for data integration, process analytics and process optimization constitute the backend 

which is accessed by a mobile frontend (see Figure 6), whose conceptual design is in the focus 

of the following section. 

 

Figure 6. AdMA platform as technical basis for the OPDM. 

5 Design Issues of a Mobile Shop Floor Application 

In this section, the conceptual IT design issues of a mobile shop floor application are discussed 

enabling mobile, easy-to-use and situation-aware access to analytical optimization services on 

the shop floor. First, types of mobile devices are investigated in order to provide easy-to-use and 

mobile user access (see Section 5.1). On this basis, context and location aspects are analysed in 

Section 5.2 in order to realize situation-aware information provisioning based on the context of 

the user. Finally, the use of mobile devices for the access of business critical data rise security 

issues, which are discussed in Section 5.3. 

5.1 Types of Mobile Devices 

In general, there are two major types of mobile devices to support mobility in business process-

es as discussed in (Hoos et al. 2014), namely notebooks as well as mobile touch-based devices. 

Notebooks refer to laptops and netbooks with operating systems of stationary PCs, e.g., Mi-

crosoft Windows. Mobile touch-based devices, especially smartphones and tablet PCs, employ a 

touchscreen-based user interface and are based on specific mobile operating systems, e.g., 

Google Android or Apple iOS. In this work, applications on mobile touch-based devices are 

called ‘mobile apps’. 
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Table 2. Evaluation of mobile device types for the OPDM. 

 

As shown in Table 2, the mobile device types are evaluated with respect to computing power, 

mobility and handling, input and output capabilities as well as provided sensor technologies 

(Gröger 2015). 

Notebooks provide computing power almost comparable to PCs as they are based on simi-

lar CPUs. In contrast, mobile touch-based devices are coined by reduced computing power be-

cause they employ low-energy CPUs. However, they are significantly more handy and mobile. 

They are specifically designed for an always-on usage, e.g., there is no time-consuming boot 

procedure, and they can be used anywhere, even on the go (Gröger et al. 2013b). With respect to 

input and output capabilities, notebooks provide both more powerful output capabilities due to 

larger screens and multimodal input capabilities. In contrast, mobile touch-based devices focus 

on the displaying of contents with comparably smaller screens and only limited data input using 

touchscreen keypads. In contrast to notebooks, mobile touch-based devices are equipped with a 

huge variety of sensor technologies, especially Global Positioning System (GPS), digital com-

pass, acceleration sensors and gyroscope. 

All in all, this work focuses on mobile touch-based devices, especially smartphones and 

tablet PCs, to realize the OPDM as they are significantly more handy and mobile than note-

books and thus enable information provisioning anywhere and anytime on the factory shop floor 

as required by the OPDM. Moreover, the wide range of sensor technologies facilitates the cap-

turing of the environmental conditions and context information of the user in order to realize a 

situation-aware information presentation. The reduced computing power does not constitute an 

obstacle as computing-intensive tasks, e.g., data mining calculations, can be processed in a per-

formant backend system. To cope with the reduced input and output facilities, the corresponding 

mobile app has to be consequently tailored towards the screen size and touchscreen-based us-

age. 

5.2 Context and Location 

In order to provide the dashboard services of the OPDM in a situation-aware manner, context 

information is necessary (Tarasewich 2003). That is, a context model defining relevant context 

categories is needed to make the AdMA platform a context-aware information system. The con-

text information is then used in two general ways for the OPDM (Cheverst et al. 2001): 

• Simplifying the user interface by presenting only information relevant to the current 

context of the user, e.g., to present current warnings only for the machine the supervi-

sors stands in front of. 

• Reducing data input efforts of the user by prepopulating input fields with context in-

formation, e.g., current noise level and location. 

In the following, a high level context model for the AdMA platform is introduced in Section 
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5.2.1 comprising five context categories. A description of how context data is provided for each 

category is given in Section 5.2.2. Subsequently, several localization issues to provide location 

context data are discussed. It is important to remark that – to ease the definition and implemen-

tation of the context model – complex existing factory data models like (Lucke, Constantinescu, 

and Westkämper 2008) are not adapted but an AdMA-specific model is desigend which lever-

ages the huge amounts of context-related information already provided by the Manufacturing 

Warehouse and the Manufacturing Knowledge Repository. 

5.2.1 Context Model 

The starting point for the AdMA context model constitutes the model described in (Schmidt et 

al. 1999) as it takes a generic and user-driven view on context. It comprises three context cate-

gories, namely self, activity and environment. Self refers to the user, activity to the user’s task 

and environment to social or physical aspects of the environment. These three context categories 

provide a general structure for context and have to be adapted and detailed for a concrete appli-

cation domain, in this case the OPDM, as follows. 

With respect to the OPDM (see Figure 7), the user category refers to the individual worker 

or supervisor using the dashboard including details on his role and organizational assignment in 

the company. The process category refers to the process step respectively the manufacturing 

process the worker or the supervisor is responsible for including all process-related information, 

e.g., the current state of the entire process. This represents the process context as defined in 

Section 3.1. The environment is decomposed into two context categories as described in 

(Schmidt, Beigl, and Gellersen 1999), namely the location of the user and physical conditions at 

the location such as temperature or brightness. Besides, time is considered as additional context 

category to represent temporal issues as explained in (Tarasewich 2003). 

 

Figure 7. AdMA context model. 

Thus, the AdMA context model comprises five context categories as shown in Figure 7, namely 

time, user, process, location and physical conditions. The following provides a description 

which context features in terms of attributes make up each context category and how concrete 

context data for these attributes is provided. 

• The time category is modelled according to the time dimension of the Manufacturing 

Warehouse data model (see [Gröger, Schwarz, and Mitschang 2014b]). It comprises not 

only the current point in time but additional information on shifts, day time, season etc. 

The concrete time is then provided by the mobile device and constitutes a fact in the 

multidimensional data model. On this basis, the corresponding values for the related at-

tributes, e.g., shifts, are derived from instance data in the time dimension of the Manu-

facturing Warehouse. 
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• The user category is made up of personal and organizational employee attributes as de-

fined in the employee dimension of the Manufacturing Warehouse data model, e.g., de-

partment, skill level and user group. The individual user is then determined by his 

OPDM login at the mobile device and the related user attributes are given by warehouse 

instance data. 

• The process category refers to a holistic view on the manufacturing process, its steps 

and underlying resources from a design-time and a run-time point of view as represent-

ed in the process meta model of the Manufacturing Knowledge Repository (see 

[Gröger, Schwarz, and Mitschang 2014b]). Hence, the structure and the current state of 

the process are represented. Corresponding context data is then provided by instance da-

ta in the repository. 

• The location of the user refers to his position on the shop floor. Thereby, there is no 

need for an absolute position down to the last meter but for the position of the user with 

respect to the manufacturing process, e.g., the workplace he works at or the machine he 

stands in front of. The position has to be determined by a suitable localization technique 

using the mobile device (see Section 5.2.2). 

• Physical conditions comprise the whole range of sensor data attributes provided by the 

mobile device (see Section 5.1), e.g., noise level or temperature. 

All in all, the context model combines context-related information from the Manufacturing 

Warehouse and the Manufacturing Knowledge Repository with sensor data from the mobile 

device to realize situation-aware information provisioning. At this, the reuse of model data and 

instance data from the Manufacturing Warehouse and the Manufacturing Knowledge Reposito-

ry significantly eases the implementation of the context model. 

5.2.2 Localization Concept 

To provide location data for the context model, a suitable localization technique has to be se-

lected. Its conceptual design is discussed in the following. 

With respect to localization on the factory shop floor, traditional GPS concepts cannot be 

employed due to missing satellite reception (Renso et al. 2008). Meanwhile, two major concepts 

for localization on the shop floor have been established and are investigated in the following, 

namely Wi-Fi positioning and tag-based positioning (Renso et al. 2008; Lucke et al. 2008; 

Gröger 2015). 

• Wi-Fi positioning makes use of a network of wireless access points installed on the 

shop floor. Localization is done by measuring the distance of a mobile device as a Wi-

Fi client to at least three access point using trilateration. The resulting position values 

are then to be mapped to positions on the shop floor. This enables accurate positioning 

on up to a few meters (Renso et al. 2008). 

• Tag-based positioning exploits tags and sensors of mobile touch-based devices, that is, 

scanners such as cameras and corresponding tags such as Quick Response (QR) codes. 

These tags are linked with predefined locations on the shop floor, e.g., machines, fol-

lowing (Lucke et al. 2008). 

Regarding Wi-Fi positioning, no additional hardware installation has to be done on the shop 

floor as the OPDM requires wireless access per se. In contrast, all relevant locations have to be 

equipped with tags in advance to make use of them for tag-based positioning. Besides, the tag-



based approach does not provide accurate positioning in the stricter sense but rather the record-

ing of the last location whose tag was scanned. Yet, factory layout modifications, e.g., rearrang-

ing machines, require a recalibration of wireless signals and a remapping of locations whereas 

tags remain untouched. With respect to the privacy of the user, Wi-Fi positioning poses the risk 

of continuously tracking the user’s location on the shop floor without his knowledge (Lucke et 

al. 2008). In contrast, tag-based positioning hampers employee tracking since the user has to 

actively scan tags, at least when using QR codes. 

For the OPDM, no accurate positioning down to the last meter is needed, that is, recording 

the location by scanning tags is sufficient. Hence, tag-based positioning is the best approach to 

realize the OPDM because it enables a flexible handling of factory layout changes and supports 

employee privacy control. To realize the tag-based approach in the AdMA platform, a central 

issue is the linking of tags and locations. 

 

Figure 8. Tag-based positioning approach for the OPDM. 

For this purpose, the factory layout which is already partly represented in the Manufacturing 

Knowledge Repository is used (see Figure 8). Each process step is associated with the spatial 

hierarchy of workplaces, areas and sites it belongs to. In addition, resources like machines and 

production aids are associated with process steps, as well. Consequently, physical workplaces 

and resources are equipped with tags that comprise a unique localization identifier in terms of a 

surrogate key for their logical representative in the Manufacturing Knowledge Repository. On 

this basis, the surrogate keys of the tags are linked with the identifiers of the logical objects in 

the repository. In this way, factory layout changes, which are reproduced in the Manufacturing 

Knowledge Repository, do not lead to changes of existing tags as their surrogate keys stay the 

same. 

5.3 Security 

The OPDM is based on business-critical data, especially manufacturing performance data in the 

Manufacturing Warehouse and the Manufacturing Knowledge Repository, which is of vital 

importance for the competitiveness of the company. This sensitive data has to be secured even 

in cases of loss or theft of mobile devices. Thus, security issues play an important role for the 

realization of the OPDM in a real-world case. Thereby, a wide range of topics has to be consid-

ered, from concepts for the remote wipe of data on mobile devices to enhanced wireless securi-

ty. In the following, a coarse-grained overview of major data security issues related to mobile 

data access is given. 
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Regarding data security in mobile environments, there are three major components that 

have to be secured to prevent unauthorized data access as analysed in (Gröger et al. 2013b), 

namely the backend system comprising the AdMA layers described in Section 4.2, the mobile 

device itself, and the wireless communication channel between the backend and the mobile de-

vice (see Figure 9). In the following, major security concepts for these components are high-

lighted. 

 

Figure 9. Overview of data security concepts for the OPDM. 

Considering the backend, mobile access to the optimization services and the underlying data of 

the Manufacturing Warehouse and the Manufacturing Knowledge Repository has to be restrict-

ed according to the user group as well as the process responsibilities of the OPDM user. For 

instance, a worker is only allowed to access data on process steps, he participates in, and super-

visors are only provided with data on the manufacturing process they are responsible for. For 

this purpose, role-based access control (Ahn and Sandhu 2000) concepts provide a suitable 

approach to restrict data access according to the user’s role. With respect to context data, these 

concepts can be extended to include location data in order to grant access according to the role 

and the location of the user. In addition, the data in the backend has to be secured to prevent 

physical data access, e.g., using disk encryption. 

The wireless communication channel connects the mobile devices with the backend sys-

tem. Regarding data security, data encryption and identification of backend and mobile device 

are major issues which have to be addressed on the level of the network and the level of the 

mobile application. At this, Wi-Fi technologies are typically used for wireless communication. 

On the network level, traditional Wi-Fi encryption standards such as WPA2 have to be extended 

with concepts such as SecureArray (Xiong and Jamieson 2013) to protect them against spoofing 

attacks. On the level of the mobile application, established concepts for network traffic encryp-

tion, especially Transportation Layer Security, have to be applied. Thereby, client certificates 

and server certificates have to be employed consequently to identify backend and mobile device 

and avoid man-in-the-middle attacks. 

Considering the mobile device, there are two major data security aspects, user authentica-

tion and data protection in case of loss or theft of the device. For user authentication, multi-

factor authentication concepts have to be applied (Mansoor 2013). That is, additional credentials 

beyond username and password are used to strengthen authentication. Regarding data protection 

on the mobile device, in general, data storage on the device itself should be minimized to reduce 

the amount data that may ‘get lost’ in case of a loss of the device. In addition, the data which is 

stored on the device has to be encrypted. Moreover, remote wipe technologies have to be em-

ployed to facilitate the deletion of critical data over the air in case of a loss of a device (Mansoor 

2013). 
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6 Application in the Automotive Industry and Evaluation 

This section focuses on evaluation issues and provides (1) a case-based evaluation of the OPDM 

in an automotive industry case using a prototypical implementation and (2) a comparative eval-

uation of the OPDM with existing approaches. The prototype is presented in Section 6.1 and the 

case example is detailed in Section 6.2 including the concrete manufacturing process and the 

data model of the Manufacturing Knowledge Repository. The case-based evaluation comprises 

both carrying out typical real-world application scenarios in the case example (see Section 6.3) 

as well as evaluating the technical feasibility of the OPDM based on performance measurements 

(see Section 6.4). The goal of the case-based evaluation is to show that the OPDM is able to 

realize analytics-based and situation-aware information provisioning for a concrete manufactur-

ing process. In addition, the qualitative comparison in Section 6.5 evaluates the OPDM with 

respect to existing approaches. Finally, Section 6.6 sums up the evaluation results and highlights 

the benefits of the OPDM. 

6.1 Prototypical Implementation 

The prototype of the OPDM comprises the AdMA backend as well as the mobile shop floor 

application. Hence, the prototype extends existing implementations of the AdMA backend, es-

pecially (Gröger, Schwarz, and Mitschang 2014b, 2014a), and was used in (Gröger and Stach 

2014) as part of a demonstration track. 

 

Figure 10. Technical architecture of the prototype. 

The prototypical implementation is based on a client-server architecture with the server com-

prising the AdMA backend and the client implementing the mobile shop floor application using 

mobile touch-based devices, especially tablet PCs. The resulting technical architecture of the 

prototype is shown in Figure 10 and is made up of three integrated layers, the data layer, the 

analytics & optimization layer as well as the mobile application layer, which are detailed in the 

following. 
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The data layer comprises the Manufacturing Knowledge Repository and the Manufacturing 

Warehouse, which are implemented as one shared relational database using IBM DB22. To store 

unstructured data on insights, advanced features of relational database management systems are 

exploited, especially XML and large object processing facilities. Details on the data model of 

the Manufacturing Knowledge Repository are presented in Section 6.2.2. 

The analytics & optimization layer comprises generic analytics components for metrics 

calculation and data mining on top of the Manufacturing Knowledge Repository in order to 

realize the optimization services for exploration-based, indication-based and recommendation-

based optimization. Exploration-based optimization is implemented as a new AdMA component 

to enable both direct querying of repository contents, e.g., to view all KPIs associated with a 

process step, as well as uploading of new contents, e.g., photos or videos taken by the mobile 

device. The optimization services access data in the repository and feed analysis results, e.g., 

data mining models as XML files, back into the repository to enable their reuse. The entire layer 

is realized as a Java EE application running on an Apache Tomcat Application Server3 and ac-

cess the repository using SQL. For data mining tasks, RapidMiner4 is used as a prebuilt data 

mining tool. Details on the data structures and the employed data mining techniques for the 

optimization services are given in Section 6.3.2. 

For the mobile application layer, tablet PCs for workers and supervisors are favoured to 

enable clear visualization beyond small smartphones displays. Considering the selection of a 

mobile platform, the choice fell on Google Android5 because a wide range of devices from vari-

ous hardware vendors is provided and it constitutes the only open source platform among the 

market-leading mobile platforms (these are: Google Android, Apple iOS, Microsoft Windows 

and RIM Blackberry) according to (IDC 2013). This enables a more flexible development as 

details of the underlying operating system can be investigated and adapted if necessary. The 

OPDM app itself is implemented as a native app in order to exploit sensor data for situation-

aware information provisioning which is currently not fully supported by web apps (Clevenger 

2011). Thereby, the app acts as a frontend to the AdMA’s optimization services by triggering 

service executions, e.g., starting a root cause analysis. Regarding context and localization, QR 

codes are used for tagged-based positioning. The context model implemented in the app realizes 

all five context categories (see Section 5.2.1) whereas the focus is on noise level detection as a 

typical sensor for physical conditions. The implementation of security issues is only basically 

addressed in the current prototype. At the moment, a role-based access concept is used which 

separates access for workers and supervisors based on username-password combinations. 

6.2 Case Example in the Automotive Industry 

The case-based evaluation focuses on the application of the prototype in an example case in the 

automotive industry. As a concrete manufacturing process, the mass manufacturing of steel 

springs for car motors (Erlach 2011) is selected since it constitutes a highly automated and 

standardised process favouring comprehensive production data acquisitioning and manufactur-

ing IT support. These are core requirements for an application of the OPDM in order to ensure 

                                                 

2 http://www-01.ibm.com/software/data/db2/ 

3 http://tomcat.apache.org 

4 http://www.rapidminer.com 

5 http://www.android.com 



the availability of a critical amount of source data, especially from MES and ERP systems. In 

the following, the manufacturing process is analysed in Section 6.2.1 and the data model of the 

Manufacturing Knowledge Repository for the implementation of the manufacturing process is 

described in Section 6.2.2. 

6.2.1 Manufacturing Process 

For the application of the prototype, a simplified version of the process is used which comprises 

four sequential steps for a batch-oriented manufacturing of steel springs. These steps are wind-

ing, tempering, shot peening and testing of springs, including corresponding machines, especial-

ly winding automates, tempering furnaces and blasting systems (see Figure 11). Machines are 

controlled by workers which take part in each manufacturing step, too. For the sake of simplici-

ty, the focus of this paper is not on transportation steps and warehousing steps. The input mate-

rial for winding is steel wire and batches of steel springs are the final output after the testing 

step. 

 

Figure 11. Model of the steel spring manufacturing process. 

In order to implement the manufacturing process in the Manufacturing Knowledge Repository, 

the process is modelled according to the meta model of the AdMA platform (see Section 4.2). 

The manufacturing process is represented as a series of three manufacturing steps (winding, 

tempering, shot peening) and one testing step coupled by sequence gateways (see Figure 11). 

On the basis of this initial design-time model, the model is refined with respect to run-time as-

pects, especially data gathered during process execution. Therefore, typical process data attrib-

utes recorded in each process step, especially considering machine settings are investigated. For 

instance, winding speed and bending moment for winding or average temperature and duration 

of tempering. In addition, operational data attributes on process subjects are defined, e.g., mas-

ter data on machines and employees. This comprehensive process model is implemented in the 

Manufacturing Knowledge Repository as explained in the following. 

6.2.2 Data Model of the Manufacturing Knowledge Repository 

The data model of the Manufacturing Knowledge Repository comprises two parts, a multidi-

mensional warehouse model as well as an insight model (see Figure 12). In the following, an 

overview of the data model is given. Concrete data structures are presented as part of the appli-

cation scenarios in the following sections. More details on the data model can be found in 

(Gröger, Schwarz, and Mitschang 2014b). 
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Figure 12. Overview of the Data Model of the Manufacturing Knowledge Repository. 

The multidimensional warehouse model implements manufacturing processes according to the 

process meta model of the AdMA platform. It is comprised of thirteen generic dimensions and 

focuses on process events as central facts. In the case example, an event may refer to the start of 

a machine belonging to a certain process step. Dimensions represent analysis perspectives on 

these facts and encompass two types, flow dimensions as well as context dimensions. Flow 

dimensions describe the process flow over time and refer to the name of an event, the time it 

occurs and the process it belongs to. Context dimensions provide additional information on the 

context of an event and are based on identifiers included in the event, e.g., the machine used. 

Example context dimensions refer to machines, employees, production aids and materials used 

in a process step including details such as machine settings and material attributes. The ware-

house model enables the integrated storage of huge amounts of process execution data as a basis 

for insight generation, especially data mining. For this purpose, it is implemented as a relational 

snowflake schema. 

According to the insight model, insights refer to analysis results generated from warehouse 

data as well as content. Thus, insights represent knowledge items managed by the Manufactur-

ing Knowledge Repository. Content comprises text documents, audio and video recordings as 

well as images like in Content Management Systems. In the case example, content especially 

refers to digital machine manuals and failure reports as well as photos of quality issues on the 

shop floor. For instance, a machine manual may detail the procedure for resetting a certain type 

of machine. Analysis results comprise data mining models like decision trees as well as metrics 

like cycle time and quality rate. Moreover, there are formal rules in terms of if-then relations. 

For insight storage, analysis results are represented as XML objects. In particular, data mining 

models are stored using the XML-based Predictive Model Markup Language6. Content items 

are represented as binary large objects. In this way, insights can be stored in the relational data-

base and they can be linked with the relational warehouse schema, e.g., using foreign key rela-

tionships. 

                                                 

6 http://www.dmg.org/v4-1/GeneralStructure.html 
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This results in a link-based approach for the flexible ad-hoc integration of warehouse data 

and insights. At this, there is no need for the costly construction and maintenance of a global 

schema like an ontology which specifies the sub structure of content items or analysis results. 

Instead, insights can be flexibly stored and linked with process constructs in the warehouse 

model to enable a process-oriented browsing and management of insights, e.g., to access all 

metrics and text documents associated with a certain machine or a specific manufacturing pro-

cess. In other words, no knowledge formalization technique such as OWL is used since the fo-

cus is on a flexible and schema-less linking approach. 

In the case example, process execution data on up to 100,000 process executions is gener-

ated to populate the warehouse model with instance data and calculate corresponding metric 

values for KPIs like quality rate. Moreover, content items are generated, especially machine 

manuals and failure reports including photos as PDF and JPEG files. This data basis constitutes 

the foundation for the realization of application scenarios as described in the following section. 

6.3 Application Scenario in the Case Example 

In order to evaluate analytics-based and situation-aware information provisioning by the 

OPDM, typical real-world application scenarios for the case example are defined based on 

(Gröger and Stach 2014; Gröger, Schwarz, and Mitschang 2014a). The scenarios make use of 

various dashboard services and combine context-related data from the Manufacturing 

Knowledge Repository and the mobile device according to the context model designed in Sec-

tion 5.2.1. The scenarios put special emphasis on dashboard services for process performance to 

illustrate the usage of data mining techniques on top of the Manufacturing Knowledge Reposito-

ry. In the following, a scenario is presented which addresses shop floor workers and focuses on 

recommendation-based optimization. It specifically targets a worker who is responsible for shot 

peening of springs in the third step of the steel spring manufacturing process. First, interaction 

steps with the OPDM are described from a user point of view (see Section 7.3.1). Second, data 

structures and data mining techniques for the optimization services used in the scenario are de-

tailed (see Section 7.3.2). 

6.3.1 Interaction Steps 

1. Having logged in at the OPDM, the worker scans the QR code at the blasting system he 

works at. In this way, context-related information regarding the user, the process and 

the location is fused according to the context model in Section 5.2.1. Hence, the worker 

is registered for the corresponding manufacturing process step and the current state of 

the entire process is shown by OPDM’s process context component (see Section 3.1). 

Then, the worker begins with the processing of the first batch of steel springs. 

2. Using recommendation-based optimization, the worker is warned by OPDM’s process 

performance component (see Section 3.2), that the quality rate of the next batch of steel 

springs is predicted to fall below a threshold of 95% at the end of the process. Thus, the 

OPDM presents a recommendation on how to proactively avoid the metric deviation. 

That is, the worker is advised to do a reset of the machine before processing the next 

batch. 

3. The worker is unsure how to reconfigure the machine properly. Thus, he browses work 

instructions and machine manuals associated with his process step in the process 

knowledge component of the OPDM (see Section 3.3) in order to find additional infor-



mation on the machine settings. Finally, he succeeds in doing the reset and processes 

the following batch. 

4. Based on the microphone sensor of the OPDM’s tablet PC, the worker is warned that 

the current noise level at his workplace exceeds a certain threshold. Then, a correspond-

ing problem ticket is automatically created and augmented by context data on the cur-

rent process, the user and the noise level in OPDM’s process knowledge component 

(see Section 3.3). The ticket is stored in the Manufacturing Knowledge Repository and 

posted to all workers who participate in the process as well as to the supervisor. 

5. Another worker responds to the ticket on his OPDM and explains the reason for the ex-

cessive noise level by an unplanned machine maintenance. Moreover, he makes use of 

text messages to quickly inform his colleagues using OPDM’s process communication 

component (see Section 3.4). 

6.3.2 Data Structures and Data Mining Techniques  

for Recommendation-based Optimization 

In the above scenario, recommendation-based optimization is based on the prescriptive analytics 

approach described in (Gröger, Schwarz, and Mitschang 2014a). In the following, an overview 

of the underlying data structures and data mining techniques is given in view of the application 

scenario. 

Recommendation-based optimization is comprised of two major components, namely real-

time prediction and recommendation generation. Both components make use of data provided 

by the multidimensional warehouse model (see Section 6.2.2). This data is denormalized as 

input for data mining (see Table 3 which includes the running process instance i400). Each row 

comprises all data of one instance of the manufacturing process which corresponds to the execu-

tion of one production order. The data includes operational data and process data, for example, 

attributes on machine settings and employees. Moreover, the categorized metric value with the 

labels ‘OK’ and ‘NotOK’ is added for completed process instances. In the application scenario, 

the metric quality rate is categorized as ‘OK’ if its value is equal or larger than 95% otherwise it 

is categorized as ‘NotOK’. During the execution of a process instance, real-time prediction is 

executed after the completion of each process step to predict whether the metric value will be 

‘NotOK’ at the end of the process instance. In case of a negative prediction, recommendation 

generation is executed to proactively derive a recommendation on how to avoid the predicted 

metric overrun. 



Table 3. Denormalized data structure for recommendation-based optimization (Gröger, 

Schwarz, and Mitschang 2014a; adapted from Lecture Notes in Business Information Pro-

cessing Vol. 176, © 2014 with permission from Springer). 

 

Real-time prediction is based on decision tree induction as data mining technique to predict the 

nominal metric label because decision trees enable an intuitive interpretation of the prediction 

model due to their graphical representation. Training data for decision tree induction comprises 

all attributes of completed process steps of the running process instance as well as the metric 

label (in the scenario, steps one and two are completed in running instance i400, see Table 3). 

The data of the running process instance is then applied to the trained decision tree for predic-

tion (see Figure 13). In the case example, the robust C4.5 algorithm (Quinlan 1993) is used for 

decision tree induction and binary trees are generated to ease understandability. 

 

Figure 13. Decision tree for real-time prediction of process instance i400. 

Recommendation generation derives an action recommendation using decision tree induction 

and scoring of decision rules. That is, there is no predefined knowledge base with cases or for-

mal rules like in expert systems, which statically defines recommendations. Instead, recommen-

dations are generated in a fully data-driven manner analysing historic process execution data. 

First, decision rules are generated based on a decision tree. Second, the decision rules are scored 

to select the best rule for the final recommendation and present it to the user. 

Training data for decision tree induction comprises all attributes of the process step for 

which the recommendation is generated, e.g., step three in the scenario, including the metric 
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label (see Table 3). Again, the C4.5 algorithm is used for binary decision tree induction as ex-

plained above. On this basis, each path from the root node of the resulting decision tree to a leaf 

node with the label OK represents a rule for a potential recommendation because the corre-

sponding combination of attributes proved to avoid the metric deviation in past process execu-

tions. Each decision rule is then scored with a scoring function to select the rule with the highest 

score for the final recommendation (see Figure 14). The scoring function uses several metrics 

such as misclassification rate and length of a rule and is detailed in (Gröger, Schwarz, and 

Mitschang 2014a). 

 

Figure 14. Decision rules and scoring for recommendation generation for process step three 

(Gröger, Schwarz, and Mitschang 2014a; adapted from Lecture Notes in Business Information 

Processing Vol. 176, © 2014 with permission from Springer). 

In the application scenario, three decision rules are derived from the decision tree and scored 

according to Figure 14. The best scored rule results in the recommendation to do a reset of the 

machine before peening in order to avoid the metric deviation. 

6.4 Evaluation of Technical Feasibility 

To evaluate the technical feasibility of the prototype in the above case example, all major dash-

board services were executed repeatedly for both workers and supervisors (e.g., generation of 

improvement suggestions, execution of root cause analyses etc.) in the areas of process context, 

process performance and process knowledge as defined in Sections 3.1-3.3 (backend test sys-

tem: Microsoft Windows Server 2008 R2, Intel Core i7-2620M@2,7 GHz, 8 GB RAM, 512 GB 

HDD). Thereby, the dashboard services were used directly from the OPDM app on the tablet PC 

to take the perspective of a corresponding end user (tablet PC test system: Asus TF300T, An-

droid 4.2). Considering process context and process knowledge, browsing and uploading of 

arbitrary contents in the Manufacturing Knowledge Repository were done in an interactive 

manner because they are mainly based on SQL commands. For instance, improvement sugges-

tions were generated and metrics of single process steps were viewed. Regarding process per-

formance, indication-based optimization and recommendation-based optimization are perfor-

mance-critical tasks for the backend system as they involve decision tree induction on up to 

100,000 process instances comprising all attributes across the entire manufacturing process. 

Summing up the performance results, one can state that the actual decision tree induction for 

these analytics tasks was typically done in less than one minute on average taking the above 

data basis. However, it took several minutes to prepare data for decision tree induction due to a 

high number of complex joins for data denormalization. Yet, there is a comprehensive potential 
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for performance enhancements in the backend of the prototype, e.g., regarding the use of suita-

ble server hardware such as SSDs, as the focus of this first technical proof of concept was on 

feasibility not on pure performance. 

6.5 Comparative Evaluation 

To evaluate the OPDM with respect to existing dashboard concepts in manufacturing (see Sec-

tion 2), a qualitative comparison against defined criteria is presented in the following. For the 

comparison, the focus particularly lies on existing dashboards and mobile apps for workers on 

the shop floor. Hence, mobile MES apps for the shop floor  

– especially HYDRA Smart MES Apps (MPDV 2014) and OpsTrakker Mobile App (Enhanced 

Information Solutions 2014) – the Visualization System for Operational Logistics (ViSOL) 

(Bracht, Hackenberg, and Bierwirth 2011) as well as the SAP Production Operator Dashboard 

(SAPOD) (SAP 2012) are chosen because they are most closely related to the OPDM. 

These approaches are compared with respect to four criteria Ci (see Table 4): (C1) whether 

they address all major process-oriented information needs (see Section 3) to enable holistic in-

formation provisioning on the shop floor; (C2) whether they support manual shop floor data 

acquisitioning by workers; (C3) whether they provide advanced analytics beyond simple de-

scriptive metric visualizations and statistics; (C4) whether they combine context-related data to 

provide situation-aware information. 

Table 4. Comparative evaluation of the OPDM with related approaches. 

 

Regarding information provisioning (C1), mobile MES apps and SAPOD provide a variety of 

information for shop floor workers addressing process context, process performance and pro-

cess knowledge. For instance, the current state of the manufacturing process, basic KPIs as well 

as work instructions are available. However, process communication as well as management of 

improvement suggestions are missing in contrast to the OPDM. ViSOL mainly focuses on situa-

tion-aware KPI monitoring for workers in logistics and thus concentrates on process perfor-

mance. 

Shop floor data acquisitioning by workers (C2) is out of scope of the ViSOL. The OPDM 

provides only rudimentary means for manual data acquisitioning using improvement sugges-

tions and problem tickets (see Section 3.3) because comprehensive automatic machine data 

acquisitioning is assumed. In contrast, mobile MES apps as well as SAPOD support manual 

data acquisition by workers, e.g., to record quality test results. 

With respect to analytics (C3), mobile MES apps as well as SAPOD are based on classical 

descriptive KPI visualizations, statistics and reporting. ViSOL mainly focuses on KPIs, too, but 

OPDM
Mobile MES 

Apps
ViSOL SAPOD

C1
 Holistic Information

 Provisioning
+ ○ - ○

C2
 Shop Floor Data

 Aquisitioning
○ + - +

C3  Advanced Analytics + - ○ -

C4  Situation Awareness + ○ + ○

+/○/- Approach fully/partially/does not meet(s) criterion



presents an initial idea for forecasting KPIs such as inventory level using simulation techniques. 

In contrast, the OPDM provides advanced analytics for indication-based and recommendation-

based optimization using data mining techniques. These optimization services take a holistic 

view on the entire manufacturing process comprised of operational data and process data as 

provided by the Manufacturing Knowledge Repository and the Manufacturing Warehouse. That 

is, in contrast to existing data mining approaches in manufacturing such as (Harding et al. 2006; 

Polczynski and Kochanski 2010), data on all process steps and resources across the overall pro-

cess is exploited, e.g., taking into account machine settings, input material details and employee 

information. In addition, existing data mining approaches focus on prediction and root cause 

analysis whereas the OPDM prescriptively generates concrete action recommendations. A de-

tailed analysis of existing data mining approaches in manufacturing can be found in (Gröger, 

Niedermann, and Mitschang 2012; Gröger, Schwarz, and Mitschang 2014a). 

ViSOL and the OPDM exploit context data on all categories of the context model (see Sec-

tion 5.2.1) as they are natively designed as situation-aware applications (C4). For instance, Vi-

SOL presents current metric values for the worker according to the manufacturing process, his 

local position and his role. In contrast, mobile MES apps as well as SAPOD only rudimentarily 

make use of context data on the manufacturing process and the user without exploiting physical 

conditions or the local position of the user on the shop floor. 

6.6 Evaluation Results and Benefits 

The case-based evaluation highlights the technical feasibility and applicability of the OPDM in 

an example case, the manufacturing of steel springs in the automotive industry. Based on the 

AdMA backend – comprising the Manufacturing Warehouse, the Manufacturing Knowledge 

Repository and data-mining-based optimization services – it was demonstrated by a typical real-

world application scenario that the OPDM realizes mobile and situation-aware information pro-

visioning on the factory shop floor using tablet PCs. In particular, the scenario showed that the 

OPDM is able to combine dashboard services for the whole range of process-oriented infor-

mation needs, e.g., process performance and process knowledge, and enables proactive process 

optimization using data-mining-based recommendations. Regarding technical performance, 

especially performance of data preparation procedures for data mining, there is room for im-

provements using optimized server hardware for the backend beyond the test system presented 

in this paper. 

The comparative evaluation of the OPDM with existing approaches underlines that the 

OPDM goes significantly beyond typical mobile MES apps and operator dashboards. The 

OPDM exploits data mining techniques and addresses the whole range of information needs on 

the shop floor in a situation-aware manner. In particular, the data-mining-based generation of 

action recommendations during process execution represents a novelty in manufacturing. 

On the basis of these evaluation results, the key benefits of the OPDM for manufacturing 

can be summarized as follows: 

• The OPDM significantly enhances the transparency and agility of manufacturing oper-

ations by targeted, holistic and near-real-time information provisioning for both work-

ers and supervisors regarding process context, process performance, process knowledge 

and process communication. In this way, workers and supervisors are aware of the cur-

rent situation on the entire shop floor at any time and can immediately react to turbu-

lences, e.g. the sudden break down of machine, avoiding uncoordinated waiting times 

and costly communication. 



• The OPDM enables data-driven manufacturing process optimization using data-

mining-based optimization services. In particular, recommendation-based optimization 

enables proactive optimization by dynamically generating action recommendations on 

the basis of historic process execution data. That is, potential KPI deviations can be 

counteracted before they become reality by learning from past process executions. In 

contrast to model-driven process optimization, e.g. using simulation, there is no need 

for the costly and complex manual construction of formal models, such as simulation 

models or rule bases. In fact, analysis models, e.g., decision trees for recommendation 

generation, are dynamically derived from data providing novel insights for optimiza-

tion. 

• The OPDM stimulates knowledge management on the shop floor by reducing the barri-

ers for knowledge acquisition and knowledge sharing. New knowledge can be easily 

codified right on the shop floor by creating multimedia problem tickets and improve-

ment suggestions using the OPDM app on mobile touch-based devices, especially tablet 

PCs. Codified knowledge is then stored in the Manufacturing Knowledge Repository 

and can be easily viewed, edited and complemented by other users enabling shared us-

age. 

7 Conclusion and Future Work 

In this paper, the Operational Process Dashboard for Manufacturing (OPDM) was presented 

constituting a mobile and analytics-based dashboard for workers and supervisors on the shop 

floor in discrete manufacturing. In particular, conceptual IT design issues of a mobile shop floor 

application on top of the Advanced Manufacturing Analytics Platform were investigated includ-

ing the evaluation of different types of mobile devices, the development of an appropriate con-

text model and the study of security issues. Besides, a comprehensive evaluation of the entire 

OPDM in an automotive industry case was presented. 

The case-based evaluation of the OPDM underlines the feasibility and applicability of the 

OPDM in a real-world case and emphasizes the benefits of analytics-based and situation-aware 

information provisioning on the shop floor, that are (1) enhancing transparency and agility of 

manufacturing operations, (2) enabling data-driven manufacturing process optimization and 

(3) stimulating knowledge management on the shop floor. 

With respect to future work, there are two major aspects: First, a systematic selection pro-

cedure has to be developed to identify characteristics of manufacturing processes which favour 

a successful usage of the OPDM. This comprises organizational aspects, e.g., the type of pro-

duction, as well as technical aspects, especially characteristics of the underlying data acquisition 

infrastructure in the factory to provide source data for the OPDM. Second, privacy aspects have 

to be investigated. The storage and analysis of personal employee data in the backend as well as 

the use of context data on the mobile device rise privacy issues as they facilitate employee 

tracking and profiling. Thus, concepts such as privacy-aware context and location management 

(Stach and Mitschang 2013) have to be examined. 

All in all, the OPDM highlights the importance of comprehensive data management and 

data analytics on the shop floor as well as user-centric and situation-aware presentation of the 

resulting information which are both central aspects of the smart factory. The overall goal is to 

leverage the huge amounts of data to significantly enhance performance and agility of manufac-

turing operations. 
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