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Abstract: The manufacturing industry is faced with strong competition making the companies’ knowledge resources 

and their systematic management a critical success factor. Yet, existing concepts for the management of 

process knowledge in manufacturing are characterized by major shortcomings. Particularly, they are either 

exclusively based on structured knowledge, e. g., formal rules, or on unstructured knowledge, such as doc-

uments, and they focus on isolated aspects of manufacturing processes. To address these issues, we present 

the Manufacturing Knowledge Repository, a holistic repository that consolidates structured and unstruc-

tured process knowledge to facilitate knowledge management and process optimization in manufacturing. 

First, we define requirements, especially the types of knowledge to be handled, e. g., data mining models 

and text documents. On this basis, we develop a conceptual repository data model associating knowledge 

items and process components such as machines and process steps. Furthermore, we discuss implementation 

issues including storage architecture variants and finally present both an evaluation of the data model and a 

proof of concept based on a prototypical implementation in a case example. 

1 INTRODUCTION 

Today, manufacturing companies are exposed to 

intense competition due to globalization, high 

market volatility and rapid technological changes 

(Monauni and Foschiani, 2013). In addition, 

worldwide homogenization and dissemination of 

production technologies and materials diminish the 

competitive potential of tangible assets. Thus, 

knowledge, that is the intangible intellectual capital 

of a company, becomes a critical source for 

competitive advantages emphasizing the need for a 

systematic knowledge management (Goossenaerts et 

al., 2005). 

Existing knowledge management systems in 

manufacturing mainly focus on product knowledge 

and customer knowledge. For example, knowledge-

based engineering systems integrate computer aided 

design (CAD) data and additional product 

knowledge to enrich product models (Chapman and 

Pinfold, 2001). Yet, there are only rudimentary 

concepts for the management of process knowledge 

in manufacturing. 

Existing approaches are characterized by three major 

shortcomings limiting process knowledge 

management and continuous process improvement: 

(i) they are either exclusively based on structured 

knowledge, e. g., formal rules, or they only deal with 

unstructured knowledge like documents; (ii) they 

make use of tailored and application-specific 

databases to store knowledge items; (iii) they focus 

on isolated aspects of manufacturing processes, e. g., 

specific resources, or selected phases of the process 

lifecycle, e. g., process planning. This leads to an 

ineffective, costly and time consuming discovery, 

application and sharing of manufacturing knowledge 

(Economist Intelligence Unit, 2007). For example, 

production supervisors typically have to access 

different isolated IT systems and paper-based 

documents to find failure reports and improvement 

suggestions in order to manually correlate them with 

additional process information like metrics. 

To address these issues, we present the Manufac-

turing Knowledge Repository (MKR), a universal 

holistic repository that consolidates structured and 

unstructured process knowledge to facilitate 

knowledge discovery, knowledge management and 
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knowledge-based process optimization in manufac-

turing (see Figure 1). 

The remainder of this article is organized as fol-

lows: First, we structure related work with respect to 

process knowledge repositories in Section 2. Next, 

we define contents and requirements for the MKR in 

Section 3. This provides the basis for the conceptual 

repository data model presented in Section 4. In 

Section 5, we focus on implementation issues and 

present a prototypical implementation. A qualitative 

evaluation of the MKR and a technical proof of con-

cept based on a case example are described in Sec-

tion 6. Finally, we conclude in Section 7 and high-

light future work. 

2 RELATED WORK: PROCESS 

KNOWLEDGE REPOSITORIES 

Process Knowledge repositories are databases for 

integrating, structuring and storing process 

knowledge (Davenport and Prusak, 2000). The latter 

comprises all types of insights related to processes. 

In this work, we focus on explicit knowledge in the 

sense of contextualized data connected by patterns 

and relations (Ackoff, 1989). We further subdivide 

explicit knowledge in structured knowledge having a 

predefined technical data structure, e. g., formal 

rules and metrics, and unstructured knowledge, e. g., 

photos and documents. 

With respect to related work, we distinguish be-

tween manufacturing-specific repositories for pro-

cess knowledge and concepts from the business 

process and workflow context. Manufacturing-

specific approaches can be found as part of various 

expert systems for process planning (Kiritsis, 1995), 

(Giovannini et al., 2012). They make use of formal 

rules and logics to support the generation of work 

plans. These kinds of repositories are typically based 

on structured knowledge and focus on process plan-

ning aspects. Besides process planning, there are 

only rudimentary repository approaches focusing on 

the other lifecycle phases, that is, process execution 

and process analysis. The tools presented in (Fischer 

et al., 2000) share a common knowledge repository 

for process analysis in manufacturing. It integrates 

structured knowledge for rule-based, case-based and 

model-based reasoning to identify root causes of 

production failures. In (Mazumdar et al., 2012), a 

manufacturing knowledge repository is presented. It 

integrates and annotates process-related documents, 

e. g., failure and performance reports, using manu-

facturing-specific ontologies to support semantic 

search capabilities for process execution and analy-

sis. All these approaches make use of application-

specific databases and are either exclusively based 

on structured or on unstructured knowledge. 

Regarding process knowledge repositories in the 

business process context, process repositories with 

semantic search capabilities, e. g., (Ma et al., 2007), 

can be seen as initial approaches. Most similar to the 

concept presented in this article is the work in (Nie-

dermann et al., 2011). The authors present a univer-

sal process knowledge repository that stores results 

of workflow analyses, especially metrics and data 

mining models. Yet, it focuses on structured 

knowledge and cannot simply be applied to manu-

facturing as it is based on workflow standards, espe-

cially the Business Process Execution Language. 

The MKR goes significantly beyond existing ap-

proaches by integrating various types of structured 

and unstructured process knowledge in a universal 

database to support different analytics- and 

knowledge-driven applications across the entire 

process lifecycle in manufacturing. 

3 REPOSITORY CONTENTS AND 

REQUIREMENTS 

The MKR integrates different kinds of process 

knowledge, called insights, by associating them with 

corresponding process components. Hence, the two 

core building blocks of the MKR’s content are a 

holistic process meta model as well as a catalogue of 

different types of insights. The main requirements 

for these building blocks are described in the follow-

ing and are used as a basis for the definition of the 

data model in Section 4. 

The holistic process meta model defines essential 

components of discrete manufacturing processes, 

e. g., process steps and resources, whereas it is inde-

pendent of a concrete industry in order to be univer-

sally applicable. It has to integrate both design-time 

and a run-time perspective, that is, aspects of pro-

 

Figure 1: The Manufacturing Knowledge Repository. 
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cess planning and execution, to provide a holistic 

view. The design-time perspective comprises the 

process model defining, e. g., the types of resources 

needed, whereas the run-time perspective covers all 

aspects of the execution of the model, e. g., individ-

ual employed resources or occurred failures. There-

by, both a process view referring to the flow of pro-

cess steps including the routing of materials as well 

a resource view referring to the detailed specifica-

tion and dependencies of resources like machines 

have to be combined. Moreover, changes of process 

models, that is, their evolution over time, have to be 

traceable in order to support process optimization 

purposes (Niedermann et al., 2011). It is important 

to remark, that there is no need for a highly detailed 

meta model like in computer aided planning sys-

tems. Instead, the meta model has to cover all major 

components of manufacturing processes to associate 

corresponding insights while remaining easy to un-

derstand for non-expert users in IT like production 

supervisors. Finally, it has to be able to be imple-

mented in a database environment in order to use it 

for repository storage. 

Regarding insights, a huge variety of knowledge-

relevant objects exists in manufacturing ranging 

from work instructions over failure reports to key 

performance indicators. Thus, we analyzed insights 

across the entire process life cycle from a technical 

point of view differentiating structured and unstruc-

tured insights. We observed the following types of 

structured insights: 

 Metrics, e. g., lead time, aggregating quantitative 

process attributes (Brown, 1996) 

 Data mining models, e. g., decision trees or clus-

ter models, representing patterns and relationships 

of process attributes (Han et al., 2012) 

 Formal rules in terms of if-then relations, which 

can be used for rule-based reasoning (Giarratano 

and Riley, 2005) or as business rules (Morgan, 

2002) 

 Special process constructs, e. g., rework sequenc-

es, which refer to sets of process steps with cer-

tain business semantics (Niedermann et al., 2011) 

 Ontology concepts in terms of semantic annota-

tions using manufacturing-specific ontologies like 

MASON (Lemaignan et al., 2006) to enable rea-

soning and semantic search capabilities 

In addition, we identified the following types of 

unstructured insights: 

 Text referring to any kind of unstructured textual 

data, e. g., emails or reports 

 Images like photos, graphics or diagrams 

 Audio comprising any kind of sound recordings 

 Videos 

4 CONCEPTUAL REPOSITORY 

DATA MODEL 

The conceptual repository data model realizes the 

contents and requirements discussed in Section 3 

and comprises a holistic process meta model as well 

as an insight model. In the following, we represent 

both parts as class diagrams in the Unified Modeling 

Language (UML) and describe their association. 

4.1 Holistic Process Meta Model 

The basis of the holistic process meta model is the 

basic meta model described in (Gröger et al., 

2012a). The latter comprises a manufacturing pro-

cess meta model which takes a run-time perspective 

on manufacturing processes and is designed for the 

implementation in a data warehouse environment. 

We refine and extend this meta model with respect 

to design-time aspects in order to derive the holistic 

process meta model. To this end, we analyze exist-

ing process-oriented manufacturing meta models, 

especially (Erlach, 2011), (Zor et al., 2011), (Inter-

national Society of Automation, 2000), (Lemaignan 

et al., 2006). Figure 2 shows the main components 

of the resulting process meta model, which we de-

scribe in the following. For the sake of simplicity, 

we omit many additional classes of the model, e. g., 

for spatial aspects of process steps, and do not detail 

attributes. 

4.1.1 Design-Time Aspects 

From a design-time point of view, that is, with re-

spect to process planning and design, a manufactur-

ing process in terms of a process model produces 

one or more types of products. A product can be 

described by features referring to informational 

aggregations of product characteristics, like geomet-

ric or functional aspects (Shah and Mäntylä, 1995). 

Features relevant for a certain process step are asso-

ciated with the latter to enable both feature-oriented 

analysis across different manufacturing processes as 

well as the association of feature-oriented insights, 



 

 

Figure 2: Main components of the holistic process meta model. 
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especially rules for knowledge-based process plan-

ning. 

A manufacturing process comprises several pro-

cess steps, that is, all steps necessary to produce the 

specified product. In order to analyze the evolution 

of a manufacturing process over time, different pro-

cess versions can be defined, which comprise indi-

vidual compositions of process steps. According to 

(Erlach, 2011), (Zor et al., 2011), we differentiate 

manufacturing steps, comprising the actual manu-

facturing and assembly of parts, testing steps, which 

refer to quality control activities in a process, trans-

porting steps, covering the movement of parts be-

tween different steps, and warehousing steps, refer-

ring to stock-keeping. Process steps are further asso-

ciated with three types of resource groups, namely 

operating resource groups comprising machine 

groups and productions aid groups, as well as em-

ployee groups. These groups define requirements for 

the actual resources selected during process execu-

tion and control, e. g., specific machines, tools and 

workers. Input material refers to products and parts 

as external input of process steps, e. g., for assembly 

operations. It defines necessary material properties 

and amounts as described in the work plan. 

Regarding the process flow, that is, the connec-

tion of process steps and the modeling of different 

paths, we exclusively focus on the flow of material 

as done in value stream design (Erlach, 2011). Thus, 

we omit additional control flow aspects for the sake 

of understandability. Moreover, we model the flow 

of material using material gateways and refine the 

concept in (Zor et al., 2011) as follows: Two process 

steps are always connected by a material gateway. 

The first and the last step of a process have no input 

gateway or no output gateway respectively. Moreo-

ver, we differentiate five types of gateways: The 

sequence gateway defines a simple sequential pass-

ing of material from one process step to the other. 

The route gateway represents a diversion point in 

the material flow, i. e., one out of several possible 

subsequent process steps has to be chosen according 

to a defined condition. As a counterpart, the select 

gateway refers to a selection of one out of several 

preceding process steps. The split gateway creates 

parallel flows of material with a condition defining 

how the material is split up. The join gateway again 

joins parallel material flows. 

4.1.2 Run-Time Aspects 

The run-time perspective focuses on the execution of 

single instances of a manufacturing process which 

are initiated by a production order. The latter de-

fines the customer as well as various order details 

like batch size. Instantiation refers to process execu-

tion and control and comprises the detailed planning 

of resources and materials. That is, individual ma-



 

 

Figure 3: Main components of the insight model. 

 

 

Regression Clustering

Association Classification

Insight

Target

Audio
Special construct

Text

Image Video

Measured
Time seriesSequence

Algorithm

Parameter

Input Data

Calculation

Target Dimension

Result

Unit

Rule

Creator

Value

Title

Description

Ontology Concept

1 *

1 1 *

1

1

1

*

*

1

11

1 *

1

*

1

* 1

1

1

1

1

Metric Data Mining Model

Unstructured Insight

Insight

Detail

chines, production aids and employees are selected 

for process execution and are therefore associated to 

a process step instance which in turn belongs to a 

manufacturing process instance. Moreover, material 

consumption associates the actual batch of input 

material processed in a step instance. 

In addition, there are elements which are not 

modeled at design-time, especially failures, which 

may occur during process execution, and the con-

sumption of operational material. The latter refers 

to external input material which is consumed in a 

process step but does not become part of the product 

itself, e. g., oil or electricity. 

4.2 Insight Model 

Figure 3 shows the main components of the reposi-

tory’s insight model. In the following, we focus on 

metrics, data mining models and unstructured in-

sights as major types of insights in manufacturing. 

In general, an insight is associated with a creator 

referring to the employee who created the insight. 

This enables the integration of the MKR with exist-

ing yellow page systems for community-based 

knowledge management by linking the creator with 

its entry in the yellow page system. 

Metrics primarily comprise the actual value and 

the unit of measurement, e. g., seconds or kilos. 

Moreover, they are organized in general target di-

mensions of manufacturing, especially time, quality, 

flexibility and cost (Kaushish, 2010). For example, 

lead time and adherence to delivery dates are metrics 

belonging to the time dimension. The calculation 

defines the formula as well as the meaning of the 

metric itself. Besides, we differentiate two types of 

metrics: Target metrics define values in terms of 

thresholds to be achieved during process execution, 

e. g., the maximum lead time of a process, whereas 

measured metrics comprise the actual recorded val-

ue. Thereby, measured metrics are associated with 

one or more target metrics with the latter defining, 

e. g., maximum or minimum values. 

With respect to data mining models, we differen-

tiate six major types, namely regression models, 

classification models, association models, time se-

ries and sequences. For a detailed description, we 

refer to (Han et al., 2012). Each model is generated 

by a certain algorithm, e. g., a classification tree can 

be generated by the C4.5 algorithm, and algorithm-

specific parameters, e. g., whether tree pruning is 

activated, are stored as well. Moreover, the input 

data that is used as a source for the algorithm is 

specified using a predicate filter which is evaluated 

over the repository’s data. Further, the repository 

allows to store application results of data mining 

models, e. g., when a regression model is applied for 

predicting a metric. Yet, we assume this to be useful 

only in special cases, e. g., for compliance reasons. 

Unstructured insights have no predefined compo-

nents and are thus generally descripted by a title and 

a textual description. 

4.3 Insight Association 

In general, insights can be associated with all com-

ponents of the process meta model whereas one 

insight can be associated with multiple components 

and vice versa. In the following, we detail the asso-

ciation of metrics, data mining models and unstruc-

tured insights with respect to the major meta model 

components for a process-oriented browsing of in-

sights, namely processes, process steps and re-

sources (see Table 1). These associations are to be 

seen on a conceptual level independent of the im-



 

plementation, e. g., whether they may be enforced 

using application logic or database constraints. 

With respect to metrics, target metrics are solely 

associated with design-time components like the 

version of the manufacturing process and operating 

resource groups as they define values to be achieved. 

Measured metrics are generated during process exe-

cution, e. g., the actual lead time of a process in-

stance is measured. Thus, they are associated with 

corresponding run-time components. However, 

measured metrics may be aggregated over several 

run-time components representing values on the 

design-time level as well, e. g., the average lead time 

of a selected manufacturing process. 

Data mining models describe patterns and rela-

tionships of a set of run-time elements, e. g., a clus-

tering of process instances of a selected manufactur-

ing process. Thus, they are solely associated with 

design-time elements. 

Unstructured insights are generally associated 

with both design-time and run-time components like 

certain machines or entire machine groups. Yet, with 

respect to processes and process steps, unstructured 

insights are solely associated with the corresponding 

design-time components in order to reuse them 

across all process instances and step instances. 

5 IMPLEMENTATION ISSUES 

In this section, we analyze the characteristics of the 

data in the MKR and discuss different storage archi-

tectures. Moreover, we present a prototypical im-

plementation of the MKR. 

5.1 Data Characteristics 

A storage-oriented analysis of the conceptual data 

model presented in Section 4 reveals several kinds 

of data that have to be stored. In the following, we 

characterize these different kinds of data as a basis 

for the development of a storage architecture for the 

MKR. Thereby, we focus on selected types of in-

sights, namely, metrics, data mining models and 

unstructured insights, as major types of insights in 

manufacturing process management. Thus, there are 

four kinds of data to be stored: 

 Data concerning the manufacturing process and 

metrics: This comprises data related to all com-

ponents of the process meta model as well as on 

corresponding metrics. Thus, the data are well 

structured and can be very large in volume, espe-

cially with respect to process instance data. 

Moreover, they have to be efficiently accessed by 

analytical applications, in particular data mining 

tools, in order to generate data mining models. 

 Data concerning data mining models: These data 

have to allow for a universal representation of da-

ta mining models as well as associated parameters 

in order to exchange them with external data min-

ing tools for model evaluation and application. 

 Data concerning unstructured insights: These 

data are semi-structured or unstructured and may 

comprise large volumes of multimedia data and 

text. The latter should be searchable whereas the 

former is primarily stored for manual exchange 

by the user. 

 Data concerning associations: These data are 

structured and refer to the association of insights 

and components of the process meta model as 

outlined in Section 4.3. These data have to facili-

tate a flexible association, even if insights and 

meta model components are stored in different 

systems.  

5.2 Storage Architectures 

With respect to the above data characteristics, rela-

tional database technology constitutes the starting 

point of a storage architecture for the MKR to store 

data on processes and metrics in a multidimensional 

warehouse structure. This mature technology is suit-

able here because it handles huge amounts of struc-

tured data in a scalable and universally accessible 

way. 

Regarding data mining models, there are two ma-

jor references for their specification and exchange: 

The Predictive Model Markup Language (PMML) 

(Data Mining Group, 2013) is an XML-based format 

to specify data mining models in a semi-structured 

and vendor-independent way. Besides, the Common 

Warehouse Meta Model (CWM) (Poole et al., 2003) 

and its data mining package define a general meta 

model for data mining models. Both approaches 

define the structure of the actual mining model, e. g., 

Table 1: Association of insights with process meta model 

components. 

 
x /  / - Insights fully/partially/not associated

Insights /

Meta Model Components

Target

Metrics

Measured

Metrics

Data 

Mining

Models

Un-

structured

Insights

Design-Time Components x x x x

Run-Time Components - x - ○



 

a decision tree, as well as parameters used to gener-

ate it, e. g., pruning settings. Yet, in contrast to the 

CWM data mining model, PMML is supported by a 

wide range of commercial and open source data 

mining tools and thus represents the first choice to 

store data mining models in a semi-structured format 

in the MKR. 

Hence, semi- and unstructured data on unstruc-

tured insights and data mining models have to be 

stored and associated with structured data on pro-

cesses and metrics in the MKR. As mentioned, rela-

tional database technology is suitable to store these 

data on processes and metrics. Taking this into ac-

count, there are two major storage architecture vari-

ants for the MKR: 

 In the relational-only architecture, additional 

features of relational database management sys-

tems are exploited to store semi- and unstructured 

data together with structured data on processes 

and metrics in the relational database. That is, 

PMML files are stored as XML data and binary 

large objects (BLOB) and character large objects 

(CLOB) are used to store unstructured insights. 

Associations are directly realized as foreign key 

relationships between tuples representing insights 

and process components in the database. Moreo-

ver, full-text search capabilities of relational da-

tabase management systems are employed to 

make use of text in unstructured insights like PDF 

documents. 

 In the extended architecture, semi- and unstruc-

tured data are stored separately from the relation-

al database in a Content Management System 

(CMS) (Kampffmeyer, 2007). A CMS allows for 

the central storage and management of content 

items, which are accessed by object identifiers. 

The latter are used to realize the association of in-

sights and process components based on mapping 

tables. These tables combine primary keys of pro-

cess components with object identifiers of corre-

sponding insights. 

For a comparison of these architecture variants, we 

refer to three major criteria: the handling of insights, 

the realization of associations between insights and 

process components as well as maintenance issues 

(see Table 2). 

In view of the handling of insights, the extended 

architecture profits from advanced functions of a 

CMS. Apart from simple full-text search capabilities 

as in the relational-only architecture, a CMS typical-

ly provides text recognition functions as well as 

versioning concepts for content items. Moreover, it 

allows for a workflow-oriented handling of content 

items and thus eases the reuse and sharing of in-

sights in workflow-based processes (Kampffmeyer, 

2007). 

Regarding the realization of associations be-

tween insights and process components, the relation-

al-only architecture allows for a simple implementa-

tion using foreign key constraints. In contrast, the 

extended architecture requires additional efforts to 

ensure consistency of associations, e. g., to make 

sure that all affected associations are deleted if a 

corresponding content item in the CMS is removed. 

With respect to maintenance issues, the relation-

al-only architecture reduces maintenance efforts as 

existing database procedures, e. g., for backup and 

recovery, can be seamlessly applied to data on in-

sights. In contrast, the extended architecture requires 

the maintenance of two separate storage systems. 

To conclude, we opt for the relational-only archi-

tecture to implement the MKR as it eases the associ-

ation of insights and process components and reduc-

es maintenance efforts. 

5.3 Prototypical Implementation 

Our prototypical implementation is based on the 

work of (Vetlugin, 2012) and is carried out as part of 

our Advanced Manufacturing Analytics platform for 

the data-driven optimization of manufacturing pro-

cesses. The platform comprises data mining use 

cases for continuous process improvement (Gröger 

et al., 2012b) and makes use of a manufacturing-

specific process warehouse, the Manufacturing 

Warehouse (Gröger et al., 2012a). 

The technical architecture of our prototype is 

based on the relational-only architecture discussed 

above and is shown in Figure 4. We implemented a 

simplified version of the MKR’s conceptual data 

model as a relational schema in an IBM DB2 data-

base. To this end, we extended the schema of the 

Manufacturing Warehouse with respect to the holis-

tic process meta model and selected insights. The 

schema is oriented towards a relational snowflake 

schema to realize a multidimensional structure of the 

holistic process meta model with minimum redun-

Table 2: Comparison of architecture variants. 

 

Relational-only 

Architecture

Extended 

Architecture

Handling of Insights - +

Realization of Associations + -

Maintenance + -



 

dancy in the dimension tables. The schema compris-

es process step instances as central facts with met-

rics like lead time of a process step. Process details, 

e. g., the process the step belongs to, as well as em-

ployed resources in a step are treated as dimensions. 

This structure enables a multidimensional analysis 

of process execution data in the MKR, e. g., using 

Online Analytical Processing (OLAP). 

Moreover, we defined an API implemented in 

Java which comprises two services: Navigation ena-

bles both browsing of the MKR’s contents, e. g., to 

view insights associated with a certain process step, 

and uploading of new contents, e. g., photos. Root 

cause analysis is a data mining use case described in 

(Gröger et al., 2012b) and focuses on the analysis of 

metric deviations using decision trees, e. g., for pro-

duction supervisors identifying influence factors for 

high lead times as shown in Figure 4.  

Decision trees are stored as insights in the MKR 

whereas RapidMiner is used as an open source data 

mining tool to derive the decision trees. These API 

services can be accessed by applications using the 

MKR. 

6 EVALUATION 

In this section, we provide a qualitative evaluation of 

the MKR as well as a technical proof of concept. We 

first evaluate the holistic process meta model and the 

insight model including MKR’s support for analysis 

and insight generation. Next, we show that the MKR 

satisfies the whole range of process-oriented infor-

mation needs and thus enables a holistic process 

management. Finally, for a technical proof of con-

cept, we employ our prototype of the MKR in an 

exemplary case in the automotive industry. 

6.1 Evaluation of the Holistic 
Process Meta Model 

To evaluate the holistic process meta model (see 

Section 4.1), we analyze its universal applicability 

by showing that it covers all types of discrete manu-

facturing processes. In addition, we compare it with 

existing manufacturing meta models and show that it 

provides a sound basis for insight association and 

universal process representation in the MKR. 

6.1.1 Evaluation of Universal Applicability 

According to (Buzacott et al., 2013), there are three 

general types of processes in discrete manufacturing, 

namely mass manufacturing processes, series manu-

facturing processes and one-piece manufacturing 

processes (see Figure 5). These types differ in their 

scale of production, their organization and their 

market orientation. In the following, we briefly de-

scribe these types and analyze how the holistic pro-

cess meta model covers them. 

 

Figure 5: Types of discrete manufacturing processes. 
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Figure 4: Technical architecture of the prototype. 
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amount of manual work whereas functionally similar 

workplaces are grouped together in the factory. 

Routing between these workplaces is complex as it 

may vary for each product. One-piece manufacturing 

follows the make-to-order principle with no signifi-

cant stock keeping. The holistic process meta model 

allows for the representation of a job shop produc-

tion layout by modelling various material gateways 

to represent flexible routings between manufacturing 

steps and transportation steps. Moreover, a produc-

tion order models individual orders of customers 

whereas features allow to represent the customiza-

tion of the ordered product. Hence, one-piece manu-

facturing processes can be represented by the holis-

tic process meta model, as well. 

Series manufacturing processes focus on the 

production of different but related products in prede-

fined lot sizes and represent a hybrid form between 

one-piece manufacturing and mass manufacturing. 

These processes are based on a combination of flow 

shop production and job shop production depending 

on the lot size. Thereby, a middle to high degree of 

automation and temporary stock keeping are typical. 

As stated above, the holistic process meta model 

allows to represent both flow shop production and 

job shop production as well as a combination using 

additional material gateways. Besides, production 

orders, products and features can be modelled to 

represent series information, e. g., the number of 

goods and the product variant to be produced. Thus, 

series manufacturing is covered by the holistic meta 

model, too. 

To sum up, the holistic process meta model sup-

ports the modelling of all general types of discrete 

manufacturing processes. Individual manufacturing 

processes in industry practice can be seen as derived 

or hybrid forms of these types (Buzacott et al., 2013) 

and are thus supported by the meta model, as well. 

This confirms the universal applicability of the ho-

listic process meta model and thus the generality of 

the MKR for discrete manufacturing. 

6.1.2 Comparison of Meta Models 

To evaluate the holistic process meta model with 

respect to existing process meta models in manufac-

turing, we did a qualitative comparison against the 

requirements defined in Section 3. For the compari-

son (see Table 3), we chose the ISA-95-1 process 

meta model (International Society of Automation, 

2000) as it represents a common standard imple-

mented in manufacturing execution systems. More-

over, we selected the Virtual Factory (VF) Data 

Model (Terkaj et al., 2012) as it integrates a wide 

range of industrial and scientific manufacturing meta 

models. In addition, we chose the value stream de-

sign (VSD) model (Erlach, 2011) because value 

stream design is a typical method used to document 

manufacturing processes. 

All these models are universally applicable for 

discrete manufacturing processes without focusing 

on specific branches or industries. Yet, only our 

holistic model integrates design-time aspects and 

run-time aspects, that is, information on process 

planning and process execution. We consider this an 

important point for a holistic knowledge manage-

ment because the combined analysis of process exe-

cution information, e. g., resulting from machine 

data or occurred failures, as well as process planning 

information enables the generation of novel insights 

(Kemper et al., 2013). For instance, a data-mining-

based root cause analysis of metric deviations as 

described in Section 5.3 can reveal new knowledge 

for process improvement. Neither the ISA-95-1 

model, nor the VF model nor the VSD model sup-

port the explicit modelling of process execution 

information. 

Regarding the combination of a process view and 

a resource view, our meta model as well as the VSD 

model allow for the modelling of process flow as-

pects using gateways as well as basic resource in-

formation, e. g., on machines and production aids. 

However, detailed specifications of resources, e. g., 

regarding maintenance requirements, are not cov-

ered by these models. In contrast, the ISA-95-1 

model as well as the VF model provide an additional 

resource view with details on all types of resources. 

The tracking of the process evolution is fully 

supported by our meta model and the VF model. 

Both models include versioning concepts and keep 

track of the adaption of process models. This is im-

portant to support continuous knowledge-driven 

Table 3: Comparison of process meta models. 
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process improvement by reusing insights and evalu-

ating their improvement impact over time. The VSD 

model does not focus on tracking process adaptions 

and the ISA-95-1 model only supports versioning of 

selected parts of the model without tracking changes 

of the entire process model over time. 

The model simplicity refers to the number of el-

ements and the structure of the model with respect to 

the comprehensibility for the end user. We consider 

model simplicity an important factor as it reduces 

the barriers for the collection and reuse of insights 

by the user which stimulates knowledge manage-

ment. The VF model is comparatively complex as it 

integrates various meta models, e. g., on products, 

processes and resources, and comprises several ab-

straction layers. Similarly, the ISA-95-1 model 

comprises multiple generic definitions on processes 

and resources, e. g., abstract resource requirements 

are matched with actual resource capabilities. In 

contrast, the VSD model is designed for a simple 

modelling of manufacturing processes with a core 

list of process elements. Our holistic meta model 

refines and extends these elements without referring 

to generic views or definitions. 

All in all, the qualitative comparison reveals that 

only the holistic process meta model fully supports 

the integration of design-time and run-time aspects 

and provides both model simplicity and support for 

process evolution. Although the resource view is 

only basically represented, a coarse-grained associa-

tion of resource-related insights is possible with the 

holistic process meta model. Hence, it provides a 

sound basis for insight association and universal 

process representation in the MKR. 

6.2 Evaluation of the Insight Model 
and MKR’s Analysis Support 

In the following, we evaluate the insight model (see 

Section 4.2) in combination with the MKR’s analy-

sis support and show that the MKR provides a com-

prehensive basis for the generation and storage of 

analysis results and insights of major data analytics 

systems (see Figure 6). 

According to (Kemper et al., 2010), there are 

four general types of data analytics for knowledge 

generation in business intelligence: free data explo-

ration, OLAP, reporting and model-based analytics. 

The analysis results of these systems represent in-

sights and thus have to be covered by the insight 

model to store them in the MKR. Moreover, the 

MKR as a whole should support the use of these 

data analytics for the generation of new insights. 

Free data exploration refers to the direct search 

and browsing of insights in the MKR by the user. 

There is no direct generation of new analysis results. 

Free data exploration rather provides the basis for 

further analytics by identifying needs for new anal-

yses, e. g., failure reports which require further root 

cause analyses. The MKR fully supports free data 

exploration by navigation features (see Section 5.3). 

OLAP comprises the multidimensional analysis 

of metric-oriented information (Pendse and Creeth, 

1995). Metrics represent analysis facts and dimen-

sions constitute views on these facts, e. g., analyzing 

the lead time of certain process steps. The MKR 

fully supports process-oriented OLAP analyses be-

cause (1) the insight model defines metrics and their 

relationships and (2) the MKR makes use of a multi-

dimensional warehouse structure with these metrics 

as facts and elements of the process meta model as 

dimensions (see Section 5.3). 

Reporting systems focus on the textual, graphical 

or diagram-oriented documentation of metric-

information in reports. Reports constitute semi-

structured or unstructured text documents and are 

thus covered as text insights in the insights model. 

Moreover, the multidimensional structure of the 

MKR with metrics as central facts supports the use 

of reporting systems, which are typically employed 

on multidimensional data warehouses. 

Model-based analytics comprise data mining ap-

proaches (Han et al., 2012) and expert systems 

(Giarratano and Riley, 2005). The former refer to the 

broad range of data mining techniques and models, 

e. g., clustering and classification. The latter mainly 

comprise case-based, model-based and rule-based 

approaches. With respect to the insight model, the 

six major types of data mining models are covered 

explicitly and further types may be added flexibly by 

inheritance. Formal rules are supported by the in-

sight model, as well. In contrast, formal cases and 

formal models are not directly supported by the  

  

 

Figure 6: Types of data analytics and support by the MKR. 
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insight model due to their heterogeneity in different 

case-based und model-based applications. That is, 

they have to be represented as unstructured textual 

insights in order to incorporate them in the MKR. 

Considering the generation of data mining models, 

the MKR, with its multidimensional structure, fully 

supports the use of data mining tools like 

RapidMiner (see Section 5.3). Yet, the use of specif-

ic case-based, rule-based or model-based applica-

tions may require application-specific adaptions of 

the MKR’s data structure due to missing standards 

for expert systems. 

To sum up, the MKR supports both the genera-

tion and storage of analysis results from reporting 

and OLAP applications as well data mining systems 

and includes free data exploration. The key enablers 

are the insight model in combination with a multi-

dimensional structure based on the process meta 

model which comprises process model data and 

process execution data for analysis purposes. With 

respect to expert systems, formal rules, models and 

cases can be stored in the MKR. Yet, the use of the 

MKR as a data basis for expert systems to generate 

new insights requires additional application-specific 

adaptions. 

6.3 Evaluation of the MKR for  
Knowledge Management 

On the basis of the above evaluation of the holistic 

process meta model and the insight model, we show 

that the realization of the models in the MKR ena-

bles a holistic process knowledge management by 

satisfying the whole range of process-oriented in-

formation needs in manufacturing. 

In our previous work (Gröger et al., 2013), we 

identified four general types of process-oriented 

information, namely process context, process per-

formance, process documentation and process com-

munication. In the following, we describe these 

information needs and analyze how the MKR satis-

fies them. Table 4 shows for each information need 

whether it is satisfied using insights or meta model 

components of the MKR. 

 Process context refers to the structure and the 

status of the overall process and its underlying re-

sources, e. g., machines, as well as the goods to 

be produced. The MKR’s process meta model 

comprises all information relevant for the process 

context: Process steps and material gateways rep-

resent the structure and employees and operating 

resources provide information on process re-

sources both from a design-time and a run-time 

point of view. Information on the product and its 

features is available, as well. 

 Process performance alludes to information about 

the effectiveness and efficiency of the process 

and its resources. All information relevant for 

process performance is provided by insights, es-

pecially metrics and data mining models, as well 

as information about material consumption in the 

meta model. 

 Process documentation refers to information to 

support the execution of a process, e. g., work in-

structions, as well as information for process im-

provement, especially improvement suggestions. 

Process documentation can be represented as spe-

cial kinds of unstructured insights which may 

comprise text, audio or video supported by the 

MKR. 

 Process communication covers information ex-

changed between employees participating in the 

process, especially text, video or audio messages. 

These can be treated as corresponding insights 

and are therefore supported by the MKR, too. 

To conclude, the MKR satisfies the whole range of 

process-oriented information needs in manufacturing 

and thus enables a holistic knowledge management. 

The MKR consolidates knowledge across the entire 

process lifecycle and facilitates sharing amongst 

various target groups of users. Moreover, the MKR 

enables the cross-correlation of different types of 

knowledge like failure reports, metrics and data 

mining models to support the discovery of new in-

sights for process improvement. 

6.4 Case Example and Technical Proof 
of Concept 

The technical proof of concept is based on the appli-

cation of the prototype of the MKR (see Section 5.3) 

in an exemplary case in the automotive industry, that 

is, the mass production of steel springs for car mo-

tors as described in (Erlach, 2011). The manufactur-

Table 4: Information needs satisfied by the MKR. 
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ing process consists of several sequential steps for 

winding, tempering and shot peening of springs and 

involves various machines like winding machines. 

For our technical proof of concept, we modelled 

the manufacturing process according to the holistic 

process meta model whereas we used the typical 

model constructs to represent mass manufacturing 

processes as described in Section 6.1.1. On this ba-

sis, we identified attributes of resources and process 

steps, e. g., winding speed of winding machines, and 

generated corresponding process model and process 

execution data to populate the MKR with instance 

data. Thereby, we generated data on 100.000 execu-

tions of the manufacturing process and calculated 

metric values, e. g., for lead times and quality rates. 

With respect to insights, we did several root 

cause analyses on lead times using process execution 

data in the MKR and deduced corresponding deci-

sion trees as data mining models which were stored 

in the MKR. Moreover, we stored exemplary ma-

chine manuals, photos and reports as JPEG and PDF 

files representing unstructured insights in the MKR. 

Considering an application on top of the MKR, 

we implemented a knowledge-based process dash-

board on an Android tablet pc addressing both 

workers on the factory shop floor and production 

supervisors (see Figure 4). The dashboard is based 

on our requirements analysis described in (Gröger et 

al., 2013) and represents an application using the 

MKR and its API to provide mobile access to differ-

ent kinds of process knowledge in different applica-

tion scenarios. For instance, workers can get infor-

mation on best practices and work instructions as 

well as upload photos and reports of manufacturing 

failures. Besides, production supervisors can corre-

late metrics and failure reports and execute root 

cause analyses. 

Based on our test system (Windows Server 2008 

R2, Core i7-2620M@2,7 GHz, 8 GB RAM) and 

data on 100.000 process instances, the MKR proved 

to provide acceptable system performance for inter-

active usage in typical application scenarios of the 

dashboard described in (Gröger et al., 2013). 

This technical proof of concept demonstrates the 

fundamental feasibility and applicability of the 

MKR combined with suitable applications like the 

dashboard. The MKR proved to provide the facilities 

for insight generation, storage and reuse based on 

data of a realistic manufacturing process. 

7 CONCLUSION AND  

FUTURE WORK 

In this article, we introduced the Manufacturing 

Knowledge Repository, a holistic repository facili-

tating process knowledge management in manufac-

turing. It consolidates structured and unstructured 

knowledge, e. g., metrics, data mining models and 

text documents, and can be used by various applica-

tions. We presented the conceptual data model in-

cluding a holistic process meta model and an insight 

model and discussed different storage architectures. 

We did a qualitative evaluation of the data models 

and presented a technical proof of concept based on 

a prototypical implementation in a case example. 

With respect to future work, our goal is to im-

plement an alternative storage architecture for the 

MKR and to investigate novel analytics on top of the 

MKR. That is, on the one hand, we are going to 

implement the extended architecture introduced in 

this article. This architecture seams promising to us 

as it exploits the functionality of a Content Man-

agement System for the workflow-based reuse and 

distribution of insights in business processes. On the 

other hand, we are going to examine novel analytics 

which combine structured and unstructured 

knowledge to generate new insights, e. g., combin-

ing data mining on process execution data and text 

analytics on unstructured text documents. 
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